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Retinal vessel segmentation plays an important role in the diagnosis of eye-related

diseases and biomarkers discovery. Existing works perform multi-scale feature

aggregation in an inter-layer manner, namely inter-layer feature aggregation.

However, such an approach only fuses features at either a lower scale or a higher scale,

which may result in a limited segmentation performance, especially on thin vessels.

This discovery motivates us to fuse multi-scale features in each layer, intra-layer

feature aggregation, to mitigate the problem. Therefore, in this paper, we propose

Pyramid-Net for accurate retinal vessel segmentation, which features intra-layer pyramid-

scale aggregation blocks (IPABs). At each layer, IPABs generate two associated branches

at a higher scale and a lower scale, respectively, and the two with the main branch

at the current scale operate in a pyramid-scale manner. Three further enhancements

including pyramid inputs enhancement, deep pyramid supervision, and pyramid skip

connections are proposed to boost the performance. We have evaluated Pyramid-Net on

three public retinal fundus photography datasets (DRIVE, STARE, and CHASE-DB1). The

experimental results show that Pyramid-Net can effectively improve the segmentation

performance especially on thin vessels, and outperforms the current state-of-the-art

methods on all the adopted three datasets. In addition, our method is more efficient

than existing methods with a large reduction in computational cost. We have released

the source code at https://github.com/JerRuy/Pyramid-Net.

Keywords: deep learning, neural network, feature aggregation, pyramid scale, retinal vessel segmentation

1. INTRODUCTION

The subtle changes in the retinal vascular, including vessel width, tortuosity, and branching
features, indicate mass eye-related diseases, such as diabetic retinopathy (1), glaucoma (2),
and macular degeneration (3). Meanwhile, those characteristics are important biomarkers for
numerous systemic diseases, including hypertension (4) and cardiovascular diseases (5). Retinal
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vessel segmentation is one of the cornerstones to access those
characteristics, particularly for automatic retinal image analysis
(6, 7). For example, hypertensive retinopathy is a retinal disease,
which is caused by hypertension. Increased vascular curvature
or stenosis can be found in patients with hypertension (8).
Conventionally, manual segmentation is laborious and time-
consuming, and suffers subjectivity among experts. To improve
efficiency and reliability and reduce the workload of doctors, the
clinical practice puts forward high requirements for automatic
segmentation (9).

Recently, deep neural networks have boosted the
segmentation performance of retinal vessel segmentation
(10, 12) by a large margin compared with traditional methods
(13, 14). However, thin vessels cannot be segmented accurately.
For example, Figure 1 demonstrates a commonly-seen fundus
image containing numerous thin vessels and thick vessels,
and corresponding segmentation (11) and ground truth. We
can easily notice that the thick vessels enjoy a promising
performance, but the thin vessels suffer a big miss. A potential
reason is that the continuous pooling operations in most neural
networks are used to encode the features, which leads to a mass
loss of appearance information and harms the segmentation
accuracy, especially on thin vessels. Note that in practice, it is
also difficult to segment these thin vessels for experts due to
low contrast and ambiguousness. Currently, some works have
been proposed to tackle the above problems, e.g., a particular
processing branch for thin vessels (12), a new loss function
to emphasize thin vessels (10). However, the segmentation
performance is still limited considering the clinical requirement
of retinal image analysis.

Meanwhile, multi-scale feature aggregation to fuse coarse-
to-fine context information has been popular to segment
thin/small objects (15–19). There are mainly two approaches:
input-output level category and intra-network level category. In
the input-output level category, connections exist between inputs

FIGURE 1 | Examples of challenging thin vessels in retinal vessel segmentation. The retinal fundus image (left) contains numerous thin vessels (1–2 pixels wide) and

thick vessels (3 pixels wide or more) (10). Regions of representative thin and thick vessels, and their corresponding ground truth and predictions (11) are shown in the

right. It can be noticed that the thick vessels obtain a better segmentation performance, while the thin vessels suffer a big miss (indicated by red rectangles).

at various scales and corresponding intermediate layers (15), or
between the intermediate layers and the final predictions with
corresponding scales (18). In the intra-network level category,
features from previous layers are adjusted in channel numbers
and spatial dimension and then aggregated with the ones in the
later layer (16). However, current multi-scale feature aggregation
works in an inter-layer manner, inter-layer feature aggregation,
which can only fuse features at either a lower scale or a higher
scale. For example, in the encoder, feature maps at the lower
scale cannot be fused by that at the current scale because of the
processing order of the layers. A possible solution is to fuse multi-
scale features in each layer, intra-layer feature aggregation, to
consider features at both the high scale and the low scale.

Motivated by the above discoveries, in this paper, we propose
Pyramid-Net for accurate retinal vessel segmentation. In each
layer of Pyramid-Net, intra-layer pyramid-scale aggregation
blocks (IPABs) are employed in both the encoder and the
decoder to aggregate features at pyramid scales (the higher
scale, the lower scale, and the current scale). In this way,
two associated branches at the higher scale and the lower
scale are generated to assist the main branch at the current
scale. Therefore, coarse-to-fine context information is shared
and aggregated in each layer, thus improving the segmentation
accuracy of capillaries. To further improve the performance,
three optimizations, including pyramid inputs enhancement,
deep pyramid supervision, and pyramid skip connections,
are applied to IPABs. We have conducted comprehensive
experiments on three retinal vessel image segmentation datasets,
including DRIVE (20), STARE (21), and CHASE-DB1 (22) with
various segmentation networks. The experimental results show
that our method can significantly improve the segmentation
performance, especially on thin vessels, and achieves state-of-the-
art performance on the three public datasets. In addition, our
method is more efficient than the existing method with a large
reduction in computational cost.
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Overall, this work makes the following contributions:

1) We discovered that thin vessels suffer a big miss in the
segmentation results of existing methods;

2) We proposed Pyramid-Net for retinal vessel segmentation in
which intra-layer pyramid-scale aggregation blocks (IPABs)
aggregate features at the higher, current, and lower scales to
fuse coarse-to-fine context information in each layer;

3) We further propose three enhancements: pyramid input
enhancement, deep pyramid supervision, and pyramid skip
connections to boost the performance;

4) We conducted comprehensive experiments on three public
vessel image datasets (DRIVE, STARE, and CHASE-DB1),
and our method achieves the state-of-the-art performance on
three datasets.

The remainder of this paper is organized as follows. Section 2
introduces related works and the motivation of the proposed
method. Section 3 details the overall framework of the
proposed Pyramid-Net, including IPABs and three optimizations
(pyramid inputs enhancement, deep pyramid supervision,
and pyramid skip connections). Section 4 first introduces
datasets, implementation, and evaluation. Second, quantitative
evaluations on three vessel image datasets, comparisons with
the state-of-the-art algorithms, and several visual retinal
segmentation results are presented. Third, several ablation
studies that included evaluating the thin vessel, ablation analysis,
and cross-training evaluation are discussed. Section 5 concludes
the paper.

2. RELATED WORK AND MOTIVATION

2.1. Vessel Image Segmentation
With the emergence of numerous public-available retinal
image datasets (20–22), the supervised vessel segmentation
methods became popular in the community. Commonly-seen
supervised methods consist of two steps: feature extraction and
classification. Some methods extracted the color intensity (24)
and principle components (25) from the images, while some
methods utilized wavelet (26) and edge responses (27). In terms
of classification, various classic classifiers, including Support
Vector Machine (SVM) (28), perceptron (29), random decision
forests (30), and Gaussian model (26) are commonly seen and
widely used in traditional supervised vessel image segmentation.
Recently, in the light of fully convolutional networks (FCNs)
(31) and U-Net (23), data-driven deep learning-based methods
have demonstrated promising results and dominated the area
of vessel image segmentation. Yan et al. (10) pointed out that
the training loss tends to ignore the loss of thin vessels and is
dominated by the thick vessels, which may be caused by the
imbalance between thin vessels and thick vessels. Furthermore,
Yan et al. (12) explored a three-stage network separating the
segmentation of thick vessels, thin vessels, and the vessel fusion
into different stages to make full use of the difference between
thick and thin vessels to improve the overall segmentation
performance. Considering that the consecutive pooling may
lead to accuracy loss, CE-Net (32) encodes the high-dimension
information and preserves spatial information to improve the

overall segmentation. HA-Net (33) dynamically assigns the
regions in the image hard regions or simple regions, and then
introduces attention modules to help the network concentrate
on the hard region for accurate vessel image segmentation.
Meanwhile, some works introduce the spatial attention (34)
and the channel attention (34) to the vessel segmentation
domain and achieve promising results. The proposed method
extends considerably to our previous work (35), which only
supply some simplified evaluation on two public available vessel
segmentation datasets. In this work, we have added a new
module named “pyramid skip connections,” which furthers boost
the performance. Meanwhile, we have added another widely-
used dataset (STARE) to demonstrate the generalization of our
proposed Pyramid-Net. Moreover, in terms of the analysis,
we have supplied in-depth analyses of our method including
evaluation on thin vessel segmentation, ablation analysis, and
cross-training evaluation.

2.2. Motivation
Multi-scale feature aggregation is widely used in medical
image segmentation, which fuses the previous feature maps
with different scales to improve the network performance. As
shown in Figure 2, recent works (36–39) introduced multi-
scale feature aggregation to strengthen feature propagation,
alleviate the vanishing gradient problem, and improve the
overall segmentation. We divide those methods into two major
categories: input-output level and intra-network level.

Input-output level category: The connections exist between
inputs at various scales and corresponding intermediate layers,
or between the intermediate layers and the final predictions with
corresponding scales. For example, Wu et al. (40) generated
multi-scale feature maps by max-pooling and up-sampling layer
and employed two sub-models to extract and aggregate features
at multiple scales.MIMO-Net (41) fused scaled input images with
multiple resolutions into the intermediate layers of the network
in the encoder, and optimized the features in the decoder to
improve the overall segmentation performance. MILD-Net (42)
fused scaled original images with multiple resolutions to alleviate
the potential accuracy decline caused by max-pooling.

Intra-network level category: In this approach, features
from previous layers are adjusted in channel numbers and
spatial dimension and then aggregated with the ones in the
later layer. For ease of discussion, we discuss the network
structures of related works based on the U-Net as shown in
Figure 2. Note that U-Net is the most widely-used network in
medical image segmentation. These works contain three main
approaches: dense connections in the encoder (encoder sub-
level), dense connections in the decoder (decoder sub-level) and
dense connections in the cross of the encoder and the decoder
(cross sub-level): (1) Encoder sub-level: (15) aggregated the scale
inputs into the intermediate layers in the encoder to alleviate
the accuracy decline caused by pooling; (2) Decoder sub-level:
Dense decoder short connections (18) made full use of the feature
maps in the decoder by fusing them with the feature maps in
later layers; (3) Cross sub-level: Complete bipartite networks (16)
inspired by the structure of complete bipartite graphs connected
every layer in the encoder and the decoder.
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FIGURE 2 | Illustrations of network structures of (a) basic U-Net (23) and (b–e) existing multi-scale feature aggregation methods, which mainly consist of two major

categories: input-output level and intra-network level. The input-output level category means that the network employs multiple scaled inputs, and the scaled ground

truth supervises the inter feature maps. In the intra-network level category, the encoder level, the decoder level, and the cross-level indicate implemented multi-scale

feature aggregation in the encoder, the decoder, and their cross, respectively.

FIGURE 3 | The network structure of the proposed Pyramid-Net. IPABs (green rectangle) not only aggregate features at pyramid scales [the current scale (green

line), the higher scale (dark green line) and the lower scale (bright green line)] containing coarse-to-fine context information. Meanwhile, pyramid input enhancement

(yellow rectangle), deep pyramid supervision (purple rectangle), and pyramid skip connections (rad rectangle) are employed to further improve the overall

segmentation. Best viewed in color.
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Though multi-scale feature aggregation can significantly
improve segmentation performance, we discover that they
usually work in an inter-layer manner, inter-layer feature

aggregation. In such a manner, features at either a lower scale or
a higher scale are fused by the current layer. For example, in the
encoder, feature maps at the lower scale cannot be fused by that
at the current scale because of the processing order of the layers.
The same phenomenon also exists in the decoder. Note that a
successful segmentation needs to consider both feature maps at
high scales for global localization information and low scales
for detailed appearance information. Thus, we may mitigate the
above problem by performing multi-scale feature aggregation
in each layer of the network, intra-layer feature aggregation.
How to obtain the multi-scale features in each layer becomes
another problem. We may use pooling and upsampling to obtain
two associated branches operating on a higher scale and a low
scale, respectively. In this way, there exist three branches at three
different scales (namely pyramid scales) in each layer, which is
like a ResNet block (43). In this way, we may aggregate coarse-
to-fine context information from pyramid-scale feature maps in
each layer to further improve the segmentation performance.

3. METHODS

In this section, we first introduce IPABs and then describe
three optimizations, including pyramid input enhancement, deep
pyramid supervision, and pyramid skip connections. Figure 3
presents the structure details of Pyramid-Net.

3.1. Intra-layer Pyramid-Scale Aggregation
Block
Intra-layer pyramid-scale aggregation block are based on the
ResNet block (43), which is widely adopted in deep learning.
Figure 4 illustrates the structure of the ResNet block (43), which
is formulated as

Xl+1 = f (Xl)+ Xl, (1)

where Xl and Xl+1 are the input and the output of the current
layer, while f (·) represents the main branch of the current layer.
ResNet learns the additive residual function f (·) with respect
to the unit input through a shortcut connection between them.
Meanwhile, the multi-scale feature aggregation inspires us to
propose associated branches to learn coarse-to-fine features in
each residual branch. Figure 4 illustrates the detailed structures
of traditional ResNet blocks and our IPABs. Different from
ResNet blocks, in each layer, IPABs generate two associated
branches to aggregate coarse-to-fine feature maps to assist the
main branch at the current scale. In each branch, the processing
steps are almost the same as those in traditional ResNet blocks.
Some extra steps such as up-sampling and down-sampling are
adopted at the higher and the lower scales to adjust scales. In
order to reduce the potential increase of computational cost, the
number of channels of the inputs Xl in the main branch has
been reduced to half, while the number of channels of resized

inputs X
p

l
and Xd

l
in the associated branches is reduced to one-

fourth. The feature maps with channel adjustment are fed to the
processing steps at three scales and are processed in parallel. The
three outputs at pyramid scales are then concatenated. The whole
process is formulated as follows,

X̃l+1 = H(f (X̂
p

l
), f (X̂l), f (X̂

d
l ))+ Xl, (2)

where X
p

l
and Xd

l
are the up-sampled and the down-sampled

results of the current input Xl with channel adjustment,
respectively. X̂

p

l
, X̂l and X̂d

l
are the enhanced results using

pyramid input enhancement, which only exists in the encoder
and is detailed in section 3.2. Meanwhile, X̂

p

l
, X̂l, and X̂d

l
are

replaced by X̂
p

l
, X̂l, and X̂d

l
in the decoder, which represents

the enhancement results by pyramid skip connections and are
detailed in section 3.4. H(·) represents the aggregation process,
which performs re-scaling and feature concatenation. X̃l+1 is the
strengthened results of Xl+1 by IPAB.

The channel attention module selectively emphasizes
interdependent channel maps by integrating associated features
among all channel maps. To improve the efficiency of feature
extraction, we also employ an attention mechanism (44, 45) in
IPAB as follows,

8(X̃l+1) = Q(8Avg(X̃l+1))+Q(8Max(X̃l+1)). (3)

9(X̃l+1) = σ (8(X̃l+1)⊗ X̃l+1. (4)

where 9(·) is the operation of attention process, Q is
the conventional operation using 1×1 kernels for channel
adjustment, and σ is the activation function. Average-pooling
8Avg(·) and max-pooling 8Max(·) are adopted to aggregate
channel information. By utilizing IPAB, each layer of the
network aggregates the feature with pyramid scales, which helps
fuse coarse-to-fine context information to improve the overall
segmentation performance.

3.2. Pyramid Input Enhancement
Pyramid input enhancement fuses the input image with multiple
scales to IPABs to reduce the loss of information caused by
re-scaling and enhance feature fusion. Pooling operations with
various pooling sizes are used to guarantee spatial resolution
consistency. Particularly, in each layer, the input image is
scaled at higher, current, and lower scales, and fed to three
parallel processing steps at multiple scales in the IPAB. Pooling
operations over larger regions successively reinforce the scale
and translation invariance while reducing noise sensitivity at the
same time as more and more context information is added. The
aggregation should facilitate discrimination between relevant
features and local noises. The above three pyramid-scale images
are concatenated with corresponding outputs of up-sampling,
down-sampling, and channel adjustment, respectively. Suppose
that Xl is denoted as the input of the current layer, and X

p

l
, and

Xd
l
are results at the higher scale and the lower scale, respectively.

Meanwhile, Il−1, Il and Il+1 are the scaled inputs ofX
d
l
,Xl, andX

p

l
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FIGURE 4 | The network structure of (A) ResNet blocks and (B) our intra-layer pyramid-scale aggregation blocks (IPABs). IPABs (marked by green rectangles)

aggregate coarse-to-fine features at the current scale and both the higher scale and the lower scale (pyramid scales). Meanwhile, pyramid input enhancement

(marked by yellow rectangles) and deep pyramid supervision (marked by purple rectangles) are employed to fuse the original images with corresponding scales, and

supervise the intermediate results in each layer of the decoder, respectively.

with the same size, respectively. The fusion process of the current
scale is formulated as follows,

X̂l−1 = H(Xd
l ,W

d(Il−1)), (5)

X̂l = H(Xl,W(Il)), (6)

X̂l+1 = H(X
p

l
,Wp(Il+1)), (7)

where Wp(·),Wd(·), and W(·) represents 3×3 convolutional
operations and is applied before concatenating to the pyramid-
scale features, and H(·) denotes channel adjustment.

3.3. Deep Pyramid Supervision
Deep pyramid supervision optimizes feature maps at multiple
scales to improve the segmentation of multi-scale objects and
fast the training process. Similar to pyramid input enhancement,
deep pyramid supervision connects the intermediate layer to the
final prediction thus fusing coarse-to-fine context information.
Particularly, the feature maps at multiple scales from each IPAB
in the decoder are fed into a plain 3 × 3 convolutional layer
followed by Sigmoid function. Deep pyramid supervision at the
lth scale of the decoder can be defined as,

Ll = L(Y
p

l
,Ml−1)+ L(Yl,Ml)+ L(Yd

l ,Ml+1). (8)

The ground truths M are scaled to the same size as the
pyramid-scale feature maps for deep supervision, e.g., Y

p

l
,Yl,

and Yd
l
are supervised by the corresponding ground truth Ml−1,

Ml, and Ml+1, respectively. Note that the feature maps in
each layer can be directly fused with the final prediction and
optimized without massive convolutional processing. Therefore,
deep pyramid supervision can be adapted to different depths
for different tasks in training, which supply adaptive model
capacity, thereby facilitating the segmentation of objects with
different scales.

3.4. Pyramid Skip Connections
Pyramid skip connections perform feature reuse among the three
scaled feature maps (the higher scale, the current scale, and the
lower scale) in each IPAB module. Suppose that Xl is the input of
the current layer in the decoder, and X

p

l
, and Xd

l
are the results

at the higher scale and the lower scale, respectively. Meanwhile,
(X̃

p

l
, X̃l+1, X̃

d
l+2

), (X̃
p

l−1
, X̃l, X̃

d
l+1

), and (X̃
p

l−2
, X̃l−1, X̃

d
l
) are three

groups of learned feature maps from the encoder, and feature
maps in each group have the same spatial dimension with the
corresponding scaled input X̂l−1, X̂l, and X̂l+1, respectively. The
fusion process of the current scale is formulated as follows,

X̂l−1 = H(Xd
l ,H(X̃

p

l
, X̃l+1, X̃

d
l+2)), (9)
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X̂l = H(Xl,H(X̃
p

l−1
, X̃l, X̃

d
l+1)), (10)

X̂l+1 = H(X
p

l
,H(X̃d

l , X̃l−1, X̃
p

l−2
)), (11)

whereH(·) denotes channel adjustment. We can see that features
at the current-scale l can reuse and aggregate feature maps at
most five scales (l− 2, l− 1, l, l+ 1, andl+ 2).

4. EXPERIMENTS

4.1. Datasets
We used three public available retinal vessel datasets, DRIVE
(20), STARE (21), and CHASE-DB1 (22) for evaluation. The
images in the three datasets are collected using digital retinal
imaging, a standard method of documenting the appearance of
the retina. More details of the datasets are as follows.

DRIVE: The DRIVE dataset (20) consists of 40 images with
a resolution of 565 × 584 pixels, which were acquired using a
Canon CR5 non-mydriatic 3CCD camera with a 45-degree field
of view (FOV). Two trained human observers labeled the vessels
in all images, and the ones from the first observer were used for
network training. The dataset has been divided into a training
and a test set (20), both of which contain 20 images.

CHASE-DB1: The CHASE-DB1 dataset (22) contains
vascular patch images with a resolution of 999× 960, which were
acquired from 28 eyes of 14 ten-year-old children. Since images
were captured in subdued lighting and the operators adjusted
illumination settings, the images contain more illumination
variation in CHASE-DB1 compared with the DRIVE datasets.
Following the configuration in Li et al. (46), the first 20 images
and the remaining 8 images are employed as the training set and
the test set, respectively.

STARE: The STARE dataset (21) consists of 20 equal-sized
images with a resolution of 700 × 605 pixels. Each image is
with a 35◦ FOV, and half of the images of eyes are with ocular
pathology. As the training set and the test set are not explicitly
specified, the same leave-one-out cross-validation is adopted (33)
for performance evaluation, where models are iteratively trained
on 19 images and tested on the rest images. Liking other methods
(10), manual annotations generated by the first observer are used
for both training and test.

4.2. Implementations
All experiments were conducted on an Nvidia GeForce Titan X
(pascal) containing 12 GB memory. Meanwhile, we employed
CE-Net (32), one of the state-of-the-art methods in retinal vessel
segmentation, as the backbone models to implement IPABs,
pyramid input enhancement, deep pyramid supervision, and
pyramid skip connections. Normalization of the training data has
been implemented. In order to express the details of multi-scale
feature fusion more clearly, we use U-Net as the basic network to
explain, which is widely used in the medical image segmentation
domain. In practice, we use the state-of-the-art method CE-Net
to replace U-Net to obtain better performance. During training,
we adopted AdaptiveMoment Estimation (Adam) as the learning
optimizer with a batch size of 4. Data augmentation operations
including horizontal flip, vertical flip, and diagonal flip are used

TABLE 1 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the DRIVE dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

FCN (31) 74.89 96.21 94.13 95.67

U-Net (23) 75.31 96.45 94.45 96.01

DeepVessel (11) 76.12 97.68 95.23 97.52

(10) 76.53 98.18 95.42 97.52

(47) 77.92 98.13 95.56 97.84

(40) 78.44 98.07 95.67 98.19

CE-Net (32) 83.09 97.47 95.45 97.79

BTS-DSN (48) 78.91 98.04 95.61 98.06

(49) 79.16 98.11 95.70 98.10

(50) 79.40 98.16 95.67 97.72

Vessel-Net (51) 80.38 98.02 95.78 98.21

MResU-Net (52) 79.69 97.99 - 97.99

CTF-Net (53) 78.49 98.13 95.67 97.88

Hybrid-Net (6) 83.53 97.51 95.79 -

HA-Net (33) 79.91 98.13 95.81 98.23

Pyramid-Net 82.38 98.19 96.26 98.32

Bold values mean the state-of-the-art performance.

to enlarge the train samples. We use a threshold to obtain the
final segmentation from pixel probability vectors. Particularly,
the pixels with values smaller than the threshold are assigned to
the background class, and the remaining pixels with values equal
to or greater than the threshold are categorized as the vessel class.
The final prediction is the ensemble of the segmentation output
of the vessel images, its rotation (90◦), and its flip (horizontal
and vertical).

4.3. Evaluation Metrics
We introduce four evaluation metrics including Sensitivity
(Sens), Specificity (Spec), Accuracy (Acc), and Area Under the
ROC Curve (AUC) to validate our proposed Pyramid-Net. The
metrics are calculated as follows:

Sensitivity = TP/(TP+ FN), (12)

Specificity = TN/(TN+ FP), (13)

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN). (14)

True positive (TP) and true negative (TN) present that pixels
are correctly classified to objects or backgrounds, respectively.
Meanwhile, pixels will be labeled as false positive (FP) or
false negative (FN), if they are misclassified to objects or
backgrounds, respectively.

4.4. Quantitative Results
We compared our Pyramid-Net with existing state-of-the-art
works on three vessel image segmentation datasets (DRIVE,
CHASE-DB1, and STARE). Tables 1–3 illustrate the comparison
results of Pyramid-Net and the current state-of-the-art methods.

Frontiers in Medicine | www.frontiersin.org 7 December 2021 | Volume 8 | Article 761050

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Pyramid-Net for Retinal Image Segmentation

TABLE 2 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the CHASE-DB1 dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

(54) 76.15 95.75 94.67 96.23

(46) 75.07 97.93 95.81 97.16

(55) 81.94 97.39 96.30 -

(10) 76.33 98.09 96.10 97.81

(47) 77.56 98.20 96.34 98.15

FCN (31) 76.41 98.06 96.07 97.76

(56) 81.55 97.52 96.10 98.04

(48) 78.88 98.01 96.27 98.40

(50) 80.74 98.21 96.61 98.12

(51) 81.32 98.14 96.61 98.60

Three-stage (12) 76.41 98.06 96.07 97.76

CTF-Net (52) 79.48 98.42 96.48 98.47

Hybrid-Net (6) 81.76 97.76 96.32 -

HA-Net (33) 82.39 98.13 96.70 98.70

Pyramid-Net 81.17 98.26 96.89 98.92

Bold values mean the state-of-the-art performance.

TABLE 3 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the STARE dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

(54) 73.20 98.40 95.60 96.70

(57) 77.91 97.58 95.54 97.48

(58) 76.80 97.38 - -

(10) 75.81 98.46 96.12 98.01

(56) 75.95 98.78 96.41 98.32

Three-stage (12) 77.35 98.57 96.38 98.33

MResU-Net (52) 81.01 97.95 - 98.16

Hybrid-Net (6) 79.46 98.21 96.26 -

HA-Net (33) 81.86 98.44 96.73 98.32

Pyramid-Net 82.35 98.87 97.19 98.62

Bold values mean the state-of-the-art performance.

For the DRIVE dataset, Pyramid-Net achieves a high score of
82.38, 98.19, 96.26, and 98.32% on Sens, Spec, Acc, and AUC,
respectively, and outperforms state-of-the-art methods in three
metrics including Spec, Acc, and AUC. In terms of Sens, CE-
Net achieves the best performance of 83.09%, while our method
achieves a comparable result, which is 0.71% lower. Overall,
Pyramid-Net achieves higher overall performance than CE-Net.
For the CHASE-DB1 dataset, compared with the state-of-the-
art results, the proposed Pyramid-Net achieves high score of
81.17, 98.26, 96.89, and 98.92% for Sens, Spec, Acc, and AUC,
respectively, which consistently enjoys a better performance than
all the current state-of-the-art methods. For the STARE dataset,
Pyramid-Net achieves a promising score of 82.35, 98.87, 97.19,
and 98.62% for Sens, Spec, Acc, and AUC, respectively, which
is also consistently better than all the current state-of-the-art
methods. The consistent improvements in Tables 1–3 indicate
the effectiveness and robustness of our Pyramid-Net.

4.5. Qualitative Results
The visual comparisons between Pyramid-Net and the state-
of-the-art methods, including DeepVessel and CE-Net on
the DRIVE dataset and the CHASE-DB1 dataset are shown
in Figure 5. White (TP) and black (TN) pixels are correct
predictions of vessels and the background, respectively, while red
(FP) and green (FN) pixels are incorrect predictions. In Figure 5,
dark yellow rectangles contain the selected areas used for detail
comparison, and the bright yellow rectangles contain the zoomed
area in the dark yellow rectangle. We can notice that current
methods enjoy a good performance on the segmentation of main
retinal vessels, but the effect on some capillaries is poor. For
example, Row 1 of Figure 5 shows that the result of DeepVessel
misses a large number of thin vessels on the DRIVE dataset,
and that of CE-Net obtains a much better accuracy on thin
vessels. However, in Row 2, there is no significant difference
between the results of the two methods. In both Rows 1 and
2 of Figure 5, our method can achieve much higher accuracy,
but we can still notice that our method cannot segment them
correctly if the vessels are too thin. We can further observe
that our method has much fewer false-negative pixels (indicated
by green) than the other two. This may due to the fact that
our proposed IPABs can consider more scales thus improving
the segmentation accuracy. Overall, our proposed Pyramid-Net
evidently improves the segmentation performance, especially for
those narrow, low-contrast, and ambiguous retinal vessels.

4.6. Evaluation on Thin Vessels
In the previous subsection, the results in Figure 5 indicate
that though the main vessels enjoy a promising segmentation
performance, the segmentation of thin vessels always suffers a big
miss in the prediction. In practice, it is challenging to segment
the thin vessels from the complex retina background, which are
always low-contrast and extremely narrow (1–2 pixels). Thus,
in this subsection, to evaluate the effectiveness of Pyramid-Net
on thin vessels, we compared Pyramid-Net with the state-of-
the-art methods on an additional dataset only containing thin
vessel labels. Vessels with a width of 1 or 2 pixels are commonly
regarded as the thin vessels in the DRIVE dataset. To avoid
potential unfair in the evaluation on the manual addition label of
the thin vessel, we distinguish thick vessels from thin vessels by an
opening operation (10). The evaluation results are summarized
in Table 4. It can be noticed that Pyramid-Net achieves a high
ACC score of 96.26, 96.51, and 91.64% on all vessels, thick vessels,
and thin vessels, respectively. Overall, our method outperforms
the state-of-the-art methods on all metrics. As for the thin vessel
segmentation, our methods achieve an improvement of 4.73%
over backbone model CE-Net and outperforms the state-of-the-
art method by about 3.86%. The experiment results indicate that
our Pyramid-Net is particularly effective on thin vessels.

4.7. Ablation Analysis
To justify the effectiveness of IPABs, pyramid input
enhancement, deep pyramid supervision, and pyramid skip
connections in the proposed Pyramid-Net, we conduct ablation
analysis using the DRIVE dataset as a vehicle. The ablation
experimental results are summarized in Table 5. We use CE-Net
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FIGURE 5 | Visual comparison of Pyramid-Net and the state-of-the-art methods including DeepVessel (11) and CE-Net (32) on DRIVE (Row 1–2), CHASE-DB1 (Row

3–4), and STARE (Row 5) datasets. White (TP) and black (TN) pixels indicate correct predictions of object and background, respectively, while red (FP) and green (FN)

pixels indicate incorrect predictions. The dark yellow rectangle contains the area used to compare segmentation details, and the bright yellow rectangle contains the

zoomed area in the dark yellow rectangle. Best viewed in color.

(32) as our backbone, which achieves a good score of 95.45 and
97.79% on Acc and on AUC, respectively. Firstly, we evaluate
the effectiveness of IPABs on the backbone. Benefiting from
aggregating coarse-to-fine context information from pyramid
scale in each layer, the backbone model with IPABs achieves
improvements of 0.62% on Acc and 0.30% on AUC. Second,
we evaluate pyramid input enhancement and deep pyramid
supervision to feed the original image at multiple scales into the
network and supervise the immediate layers contains features
at various scales. In Table 5, we can notice that the above two
optimizations achieve improvements of more than 0.10 and
0.07% in AUC, respectively. Third, pyramid skip connections
connect the encoder and the decoder and make full use of the
features from multiple layers and scales in the encoder, which
achieves an improvement of about 0.15% on AUC. Overall,
integrating the pyramid-scale concept into the design of the
basic unit and skip connections can obviously improve the
network segmentation, and the other two optimizations also
bring some improvement.

TABLE 4 | Performance comparison on thick and thin vessels of Pyramid-Net on

the DRIVE dataset.

Method All vessel (%) Thick vessel (%) Thin vessel (%)

(10) 95.42 95.78 87.78

CE-Net (32) 95.45 95.96 86.91

Pyramid-Net 96.26 96.51 91.64

Bold values mean the state-of-the-art performance.

4.8. Cross-Training Evaluation
To evaluate the generalization of Pyramid-Net, we performed
a cross-training evaluation on the DRIVE dataset and the
STARE dataset. We directly implemented our models trained
on the source dataset and tested on the target dataset for
fair comparisons. The experimental results are summarized
in Table 6. Overall, our method achieves the state-of-the-art
transfer performance on both configurations. Particularly, for
the configuration that models are trained on the STARE dataset
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TABLE 5 | Ablation analysis of Pyramid-Net on the DRIVE dataset.

Method Acc (%) AUC (%)

Baseline 95.45 97.79

Baseline + IPABs 96.07 98.09

Baseline + IPABs + pyramid input 96.10 98.15

Baseline + IPABs + Pyramid supervision 96.15 98.12

Baseline + IPABs + pyramid skip connection 96.21 98.24

Pyramid-Net 96.26 98.32

Bold values mean the state-of-the-art performance.

TABLE 6 | Cross-training evaluation on the DRIVE dataset and the STARE

dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

DRIVE (train) -> STARE (test)

(12) 70.14 98.02 94.44 95.68

(56) 65.05 99.14 94.81 97.18

HA-Net (33) 71.40 98.79 95.30 97.58

Pyramid-Net 75.71 98.86 95.57 97.78

STARE (train) -> DRIVE (test)

(12) 73.19 98.40 95.80 96.78

(56) 70.00 97.59 94.74 97.18

HA-Net (33) 81.87 98.79 95.30 97.58

Pyramid-Net 82.67 98.76 95.36 97.72

Bold values mean the state-of-the-art performance.

and tested on the DRIVE dataset, it can be noticed that the
transfer model can achieve competitive results on Spec and suffer
a big loss of accuracy on Sens. The potential reason is the
imbalance between thick vessels and thin vessels in the STARE
dataset. Manual annotations of the STARE dataset contain
more thick vessels than thin vessels, which led that the pre-
trained model on the STARE dataset obtains a bad segmentation
performance of thin vessels on the DRIVE dataset. When the
conditions are reversed, the above situation is alleviated, and
the corresponding scores on Sens, Spec, Acc, and AUC on the
STARE dataset are comparable with the model trained on the
STARE dataset.

4.9. Comparison With Multi-Scale
Aggregation Methods
To evaluate the effectiveness of the multi-scale information
aggregated in the proposed Pyramid-Net, we compare existing
multi-scale aggregation methods, including Dense Pooling
Connections (15), Complete Bipartite Network (CB-Net) (16),
Dense Decoder Short Connections (DDSC) (18), and U-Net++
(17) on the DRIVE dataset. For fair comparisons, we directly
implement those different connection styles and our Pyramid-
Net on U-Net (23). The comparison results and the p-values
for the paired t-test are summarized in Table 7. Compared
with existing methods, our method outperforms them by 0.65–
0.99% and 0.67–1.50% on Acc and AUC, respectively. On
the other hand, we also compare the computational cost of
the proposed Pyramid-Net with existing methods. Obviously,

TABLE 7 | Comparison with existing multi-scale aggregation methods on the

DRIVE Dataset.

Method Acc (%) AUC (%) FLOPs p-values

U-Net (23) 94.45 96.01 334.95G <0.01

DPC (15) 95.56 97.65 351.33G <0.01

CB-Net (16) 95.61 97.52 441.62G <0.01

DDSC (18) 95.42 97.48 381.07G <0.01

U-Net ++ (17) 95.27 96.82 828.69G <0.01

CE-Net (32) 95.45 97.79 - <0.05

Pyramid-Net 96.26 98.32 188.15G -

Bold values mean the state-of-the-art performance.

existing methods improve the network performance and increase
the computational cost by 16.38–493.74G (104.9–247.4%) on
FLOPs from the numerous feature reuse. Particularly, our
proposed Pyramid-Net achieves state-of-the-art performance
with a computational cost reduced by 216.8G (64.7%) on FLOPs.
The reason for the above phenomenon is the channel reduction
in each IPAB. The channels’ main branch is reduced to half, while
the number of channels at associated branches is half of that of
the main branch. Overall, our method achieves the state-of-the-
art performance of 96.26% on Acc and 98.32% on AUC with a
64.7% reduction on FLOPs.

5. CONCLUSION

In this paper, we introduced Pyramid-Net for accurate retinal
vessel segmentation. In Pyramid-Net, the proposed IPABs are
utilized to generalize two associated branches to aggregate
coarse-to-fine feature maps at pyramid scales to improve the
segmentation performance. Meanwhile, three optimizations
including pyramid inputs enhancement, deep pyramid
supervision, and pyramid skip connections are implemented
with IPABs in the encoder, the decoder, and the cross of the two
to further improve performance, respectively. Comprehensive
experiments have been conducted on three retinal vessel
segmentation datasets, including DRIVE (20), STARE (21), and
CHASE-DB1 (22). Experimental results demonstrate that our
IPABs can efficiently improve the segmentation performance,
especially for thin vessels. In addition, our method is also much
more efficient than existing methods with a large reduction in
computational cost.
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