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Minimal change disease (MCD) is the most common type of idiopathic nephrotic

syndrome in childhood and represents about 15% cases in adults. It is characterized by

massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement

on electron microscopy. Clinical and experimental studies have shown an association

between MCD and immune dysregulation. Given the lack of inflammatory changes or

immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to

be mediated by an unknown circulating factor(s), probably released by T cells that

directly target podocytes leading to podocyte ultrastructural changes and proteinuria.

Not surprisingly, research efforts have focused on the role of T cells and podocytes in

the disease process. Nevertheless, the pathogenesis of the disease remains a mystery.

More recently, B cells have been postulated as an important player in the disease either

by activating T cells or by releasing circulating autoantibodies against podocyte targets.

There are also few reports of endothelial injury in MCD, but whether glomerular endothelial

cells play a role in the disease remains unexplored. Genome-wide association studies are

providing insights into the genetic susceptibility to develop the disease and found a link

between MCD and certain human haplotype antigen variants. Altogether, these findings

emphasize the complex interplay between the immune system, glomerular cells, and

the genome, raising the possibility of distinct underlying triggers and/or mechanisms of

proteinuria among patients with MCD. The heterogeneity of the disease and the lack

of good animal models of MCD remain major obstacles in the understanding of MCD.

In this study, we will review the most relevant candidate mediators and mechanisms of

proteinuria involved in MCD and the current models of MCD-like injury.

Keywords: minimal change disease, nephrotic syndrome, proteinuria, immune cell, podocyte, circulating factor

INTRODUCTION

Minimal change disease (MCD) is the most common type of nephrotic syndrome in children,
whereas it only accounts for 10–16% cases in adults (1, 2). The term MCD refers to a histological
pattern characterized by the normal or near-normal appearance of glomeruli on light microscopy
and immunofluorescence with podocyte foot process effacement (FPE) on electron microscopy
as the sole abnormality observed in kidney biopsy (3). While histological findings are similar in
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children and adults with MCD, the clinical response to steroids,
considered as first-line therapy, is different. Most children
achieve resolution of proteinuria within days, whereas it can
take months in adults (4, 5). Therefore, a kidney biopsy is only
performed in selected pediatric cases, whereas it is mandated
in all the adults to rule out other forms of nephrotic syndrome
including infections, malignancies, or other glomerular diseases.
For children who respond to steroid therapy, namely steroid-
sensitive nephrotic syndrome (SSNS), MCD represents the
most common underlying histological pattern followed by focal
segmental glomerulosclerosis (FSGS), a more severe form of
nephrotic syndrome involving glomerular scarring (4).

The name MCD can be misleading. While kidney histology
shows minor changes and MCD has been traditionally
considered a benign disease, it is often associated to multiple
relapses, important comorbidities, and serious complications
[acute kidney injury (AKI), thrombotic disorders, infections,
etc.] (6–8). In addition, the pediatric onset disease can persist in
adulthood (9). Therefore, MCD represents an important burden
to patients, families, and the healthcare system (10). Some
patients also develop resistance to therapies and/or progression
toward advanced stages of chronic kidney disease (CKD) and this
is usually associated with a change in the glomerular histology
from MCD to FSGS (11, 12). So, a diagnosis of MCD may not be
definitive; but, whether MCD and FSGS are distinct diseases or a
continuum of the same disease remains unclear (13).

The clinical hallmark of MCD is sudden-onset proteinuria
and anasarca. However, the mechanisms of proteinuria remain
poorly understood (14). The lack of inflammatory cells and
immune complexes in the MCD glomerulus led to the hypothesis
that some circulating factor(s), presumably released by T cells,
may trigger proteinuria and podocyte injury (15–18). This
assumption is widely accepted by the nephrology community
and it is supported by some clinical observations; but the
presence, nature, and the cell source for the presumed circulating
factor(s) have remained elusive for decades. With the discovery
of nephrin as a key protein in the podocyte slit diaphragm (SD)
and the glomerular filtration barrier (GFB), podocyte biology
has been the center of most research efforts in MCD over
the last two decades (19–21). In fact, podocytes are key to
maintain the integrity of the GFB as implied in forms of genetic
nephrotic syndrome with abnormal or absent podocyte proteins
and in knockout in-vivo models (19, 22–24). In MCD, there are
changes in the expression, phosphorylation, and/or localization
of podocyte-specific proteins such as synaptopodin and nephrin
during relapse (25–27). In addition, the observations that some
immunosuppressive drugs used in MCD may act directly on
podocytes have also supported the concept of MCD as a podocyte
disorder (28–32). In the recent years, there has been an increasing
interest on the underpinning genetic architecture in MCD and
several studies have identified gene variants that seem to confer
susceptibility to the disease (33–36). Therefore, the pathogenesis
of MCD seems to involve a complex interplay between immune
cells, the glomerulus, and genetics (Figure 1). This complexity
is reflected by the paucity of major breakthroughs in the
understanding of the disease and lack of targeted therapies.

In this manuscript, we will provide an overview of the current
experimental approaches available to study MCD and a review of

candidate mediators and mechanisms of proteinuria involved in
MCD and SSNS, that is commonly associated with MCD.

EXPERIMENTAL MODELS OF MCD

Table 1 shows a summary of current experimental models to
study MCD. While these models have helped to advance, to
some extent, our understanding of the disease, they still have
significant limitations. Hence, there is an urgent need to develop
better experimental approaches that mimic the natural course of
human MCD.

Animal Models
Puromycin aminonucleoside (PAN) (rat model) and
lipopolysaccharide (LPS) (mouse model) are the two most
widely used models to induce sudden-onset proteinuria and
MCD-like injury on kidney histology. The PAN model induces
DNA damage via reactive oxygen species resulting in remarkable
proteinuria, FPE, redistribution of proteins of the SD, changes
in anionic charges in the glomerular basement membrane
(GBM), and podocyte loss (37–41). In contrast, the LPS model
is thought to directly activate the Toll-like receptor 4 (TLR-4)
and downstream inflammatory pathways on podocytes resulting
in mild and transient proteinuria, FPE, and changes in nephrin
phosphorylation (20, 42, 43). Therefore, both models resemble
some key features of MCD (sudden proteinuria, MCD-like injury
on histology, and changes in podocyte proteins) (25–27), though
apparently by different mechanisms. The main strength of the
PAN model is the remarkable proteinuria and FPE, whereas
that of the LPS model is the immune activation, likely relevant
to MCD given its clinical association with infections (44, 45).
However, both models have significant limitations. The PAN
model often results in FSGS likely due to direct podocyte injury
and loss rather than by a circulating factor (39). The LPS model
is associated with a remarkable immune response resulting in
sepsis, transient proteinuria, and AKI (46).

Other animal models have been described, but their use to
study MCD is anecdotic. Polyinosinic: polycytidylic acid (Poly:
IC) is a TLR-3 ligand that, when injected to mice, induces
proteinuria and podocyte injury involving synaptopodin loss and
FPE with no immune deposits on electron microscopy (47),
mimicking features ofMCD. Poly: IC is thought tomediate direct
podocyte injury via TLR and activation of the inflammatory
pathway nuclear factor-kappa B (NF-kB) (48). A weakness of
this model is that proteinuria is mild and transient, but contrary
to the LPS model, it is not associated with clinical sepsis (47).
This model seems promising because it is well-tolerated by
mice and results in glomerular changes that mimic MCD, but it
remains to be determined whether variations from the original
Poly: IC model of proteinuria may yield higher and/or sustained
proteinuria like that observed in human MCD.

Sellier-Leclerc et al. developed a humanized mouse model of
MCD by injecting CD34+ (a marker for hematopoietic stem
cells) and CD34– peripheral blood mononuclear cells (PBMCs)
from patients with MCD and FSGS into immunocompromised
mice (49). Mice injected with CD34+ cells, but not with
CD34–, developed albuminuria and partial FPE. Since CD34+
and CD34– induce the expansion of immature and mature T
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FIGURE 1 | Representative schematic of the pathogenesis in MCD. MCD is associated with immune dysregulation. Notably, there is a strong association between

human leukocyte antigen (HLA) and susceptibility to idiopathic nephrotic syndrome. So, it is possible that children with MCD have a genetic predisposition toward

immune dysregulation that, in turn, contributes to release of factors that may play a role in the pathogenesis of the disease. Also, infections often trigger relapse in

these patients and this may be the result of an exaggerated immune response in a susceptible patient. Several candidate mediators, released by systemic T or B cells

or by glomerular cells, have been suggested to play a role in the development of proteinuria in MCD, but to date, there is a no definitive mediator of MCD. The

podocyte exhibits morphological and molecular changes involving key proteins such as synaptopodin, FAK, and nephrin, but these changes are not specific for MCD

and the upstream pathways leading to these changes remain unknown. The glomerular basement membrane (GBM) and the endothelial cell also show subtle

changes. Thus, there is a loss of anionic charges in the GBM, but this does not appear to be a key driver of proteinuria. More recently, there is evidence of endothelial

cell activation and oxidative stress, but whether this may play a role in the disease or it may represent a paraphenomenon is unclear. MCD, minimal change disease; IL,

interleukin; VEGF, vascular endothelial growth factor; Angptl4, angiopoietin-like 4; ZHX1, zinc fingers and homeoboxes; FAK, focal adhesion kinase; JAK, Janus kinase.

cells, respectively, authors postulated that proteinuria in this
model could be mediated by immature T cells. The caveat
of this model is that the degree of albuminuria was low and
its use has not been reported since. It is unknown whether
an additional insult (PAN, LPS, and Poly: IC) could have
triggered a higher degree of proteinuria and still maintain
MCD features.

A transgenic (TG) rat model characterized by the
podocyte-specific overexpression of angiopoietin-like 4
(Angptl4) has also been associated to proteinuria and
MCD-like changes on kidney histology (50). The main
caveat of this model is the slow-onset proteinuria, contrary
to the animal models described above and to the human
disease. Therefore, these TG rats need to be exposed to an
additional insult (puromycin, adriamycin, etc.) to accelerate
proteinuria (50).

Another animal model of interest is the Buffalo/Mna rat.
These rats spontaneously develop nephrotic syndrome with
histological features of glomerulosclerosis. Notably, proteinuria
and kidney lesions resolved when the Buffalo/Mna kidneys were
transplanted into healthy rats, suggestive of a circulating factor(s)
as driver of proteinuria (51). In addition, the Buffalo/Mna
kidneys exhibited a greater infiltration of macrophages and T
cells than control rats, along with an upregulation of macrophage
and T-helper type 2 (Th2) cytokine transcripts before the
progression of proteinuria (52). This model could serve to
investigate potential mechanisms of disease progression and
recurrence after transplantation.

In-vitro Models
Cell culture studies are a valuable tool to study podocyte
biology and they remain as standard approach to study
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TABLE 1 | Overview of experimental models of MCD.

Animal models (animal/route) Strengths Limitations

PAN (Rat, IP) - MCD-like injury

- Acute and severe proteinuria

- Can evolve to FSGS

- Direct toxicity on podocytes

LPS (Mouse, IP) - MCD-like injury

- Systemic immune activation

- Acute proteinuria

- Mild proteinuria

- Sepsis

- Acute kidney injury

Poly: IC (Mouse, IP) - MCD-like injury

- Acute proteinuria

- Mimic viral infection

- Mild proteinuria

- Anecdotical use

Humanized mouse - MCD-like injury

- Incorporate PBMC from patients

- Mild proteinuria

- Acute proteinuria - Anecdotical use

Angptl4 (Rat, TG) - MCD-like injury - Slow onset proteinuria

- Requires second insult (puromycin, etc.)

Cell studies Strengths Limitations

Human podocytes - Well-characterized

- Mechanistic control

- High throughput

- Relatively easy and inexpensive

- Does not recapitulate microenvironment

- No shear stress

- Limited glycocalyx

- Inability to test permselectivity

Kidney organoids - Incorporate different glomerular cells

- Ability to test permselectivity and study crosstalk

- Requires expertise and longer timeline for experiments

- Expensive

- Does not include all glomerular cells

- Limited throughput

3D co-cultures - Ability to integrate two cell types and extracellular matrix

- Microfluidic system

- Reproduce shear stress

- Ability to test permselectivity and study crosstalk

- Develops glycocalyx

- Requires expertise and longer timeline for experiments

- Expensive

- Does not include all glomerular cells

- Limited throughput

PAN, puromycin aminonucleoside; IP, intraperitoneal; MCD, minimal change disease; FSGS, focal segmental glomerulosclerosis; LPS, lipopolysaccharide; Angptl4, angiopoietin-like 4;

TG, transgenic. Poly: IC, Polyinosinic: polycytidylic acid.

mechanisms of disease in glomerulopathies. As such, different
toxins (puromycin, LPS, and Poly: IC) and sera from patients
with MCD have been used on cultured immortalized human
podocytes in an attempt to replicate molecular changes triggered
by the circulating factor(s) involved in MCD (43, 53). However,
cultured human podocytes do not form secondary processes or
slit diaphragms, show a variable expression of podocyte-specific
proteins, and lack of cell-to-cell communication with glomerular
endothelial cells (GEnC) and mesangial cells as in the human
GFB (54). These are important limitations given the importance
of the SD and the crosstalk between glomerular cells to maintain
the integrity of the GFB. Another important consideration is
that circulating toxins, at least those presumably present in the
MCD sera or plasma, may not directly encounter podocytes in
the human glomerulus as they do in culture systems.

To overcome the above limitations, new and promising in-
vitro systems, such as kidney organoids and three-dimensional
(3D) cocultures, have been developed over the last few
years. These systems help to recapitulate the ontogeny of renal
development and recapitulate features of the glomerular filtration
barrier including cell-to-cell interactions and microfluid
circulation. Proposed applications have included in-depth
mechanistic studies and drug screening, gene knockouts and
overexpression, and structural changes in response to sera of

patient and various and sundry cytokines. These models have
been reviewed in detail elsewhere and a detailed discussion is
beyond the scope of this review (54, 55).

MEDIATORS AND MECHANISMS OF
PROTEINURIA IN MCD

Table 2 shows a summary with some postulated mediators and
mechanisms of proteinuria involved in MCD.

CIRCULATING FACTORS

Since early 1970s, MCD has been thought to bemediated by some
circulating factor(s). While this remains to be proven, there are
some clinical and experimental observations that support this: (1)
therapeutic response to immunosuppression, (2) lack of immune
complexes in glomeruli, (3) resolution of proteinuria after
transplanting kidneys with active MCD into patients without
MCD, and (4) development of MCD-like injury in rats that
received supernatants of PBMCs from patients with active SSNS
and supernatants from T-cell hybridomas derived from MCD
in relapse (4, 56–58). However, the clinical observations do not
demonstrate causality and the experimental studies remain to be
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TABLE 2 | Summary of candidate mediators and mechanisms of proteinuria in

MCD.

Candidate mediators Potential mechanisms of podocyte injury

Circulating factors

Cytokines

IL-13 - Loss and redistribution of podocyte proteins (60)

- Glomerular CD80 upregulation (60)

IL-8 - Loss anionic charges in GBM (61)

IL-4 - Podocyte JAK signaling (62)

Autoantibodies

UCHL1 - Unknown

Anti-nephrin - Disrupting nephrin signaling

Hemopexin - Loss anionic charges in GBM (77)

- Disrupting nephrin signaling (78)

Microbial products - Podocyte TLR activation and NFkB signaling (43, 47)

Intraglomerular factors

IL-4 - Podocyte JAK signaling (62)

TNF-α - Nephrin loss (88)

- Podocyte FAK phosphorylation (89)

- Glomerular CD80 upregulation (91)

- NFkB activation (91)

- Podocyte syndecan 4 shedding and β3 integrin

signaling (104)

VEGF-A - Dysregulated endothelial-podocyte crosstalk (92)

Charge selective barrier

Angptl4 - Loss anionic charges in GBM (50)

Hemopexin - Loss anionic charges in GBM (77)

IL-8 - Loss anionic charges in GBM (61)

Podocyte dysfunction

CD80 - Prevent β1 integrin and Neph1 signaling (31, 111)

- Activates local inflammatory pathways (47)

Angptl4 - Loss anionic charges in GBM (50)

- Oxidative injury in GEnC (50)

- Podocyte-endothelial crosstalk (50)

C-mip - Disrupt nephrin signaling (121)

FAK - Actin cytoskeleton reorganization (123)

- Enhance metalloprotease activity (122)

ZHX1 - Podocyte angptl4 upregulation (124)

Endothelial dysfunction

EG degradation and release

of EG products (syndecans,

etc.)

- Loss of electrostatic charges (101)

- Podocyte activation via β3 integrin signaling (104)

CD80 - Activates local inflammatory pathways (47)

Caveolin-1 - Facilitates albumin transcytosis (133)

IL, interleukin; GBM, glomerular basement membrane; UCHL1, ubiquitin carboxyl-

terminal hydrolase L1; TLR, Toll-like receptor; TNF-α, tumor necrosis factor-α; VEGF,

vascular endothelial growth factor; Angptl4, angiopoietin-like 4; GEnC, glomerular

endothelial cell; FAK, focal adhesion kinase; ZHX1, zinc fingers and homeoboxes; EG,

endothelial glycocalyx.

validated decades after the original publication (57, 58). Here, we
will review some of the candidates circulatingmediators and their
postulated mechanisms of proteinuria in MCD.

Circulating Cytokines
Several cytokines, predominantly from the Th2 subset, have been
linked to MCD (59). A detailed review on systemic cytokine
patterns in MCD is beyond the scope of this review. Here, we will

specifically focus on those cytokines with a presumed pathogenic
role in the development of proteinuria in MCD.

Interleukin-13 (IL-13)
The strongest evidence to support a role of IL-13 in MCD
comes from a TG rat model characterized by high serum IL-
13 levels (60). These rats developed nephrotic syndrome, FPE,
loss and redistribution of some podocyte proteins, and CD80
upregulation in glomeruli, thereby mimicking some key features
of human MCD (60).

Interleukin-8 (IL-8)
Garin et al. postulated that systemic IL-8 could play a role in
MCD. Rats infused with IL-8, reaching serum levels similar
to those observed in MCD, developed proteinuria due to an
increased metabolism of glycosaminoglycans (GAGs) in the
GBM, mimicking the anionic loss reported in the GBM of
some patients with MCD (61). Nevertheless, IL-8 only caused
mild proteinuria.

Interleukin-4 (IL-4)
High systemic IL-4 via liver overexpression caused proteinuria
and podocyte FPE in mice, which was ameliorated with a
JAK inhibitor, suggesting that IL-4 may mediate proteinuria by
activating JAK signaling in podocytes (62). In a single-center
study, 10 of 29 patients with active MCD had a positive staining
for phosphorylated STAT6, a surrogate marker of IL-4 signaling
in glomeruli, whereas it was positive in only 1 of 23 controls.

There is some evidence that IL-13, IL-8, and IL-4 could play a
role in experimental models of proteinuria, but the significance of
these studies remains unclear due to the lack of further validation
by other research groups and by the heterogenous pattern of these
cytokines in patients with MCD (53, 59, 63–65).

While T-cell effectors are the source of the above and
other pro-inflammatory cytokines, a deficiency in regulatory T
cells (Treg cells) has also been implicated in the pathogenesis
of MCD (14, 66). An example is the association of MCD
with immune dysregulation, polyendocrinopathy, enteropathy,
and X-linked (IPEX) syndrome. This is an immunodeficiency
syndrome characterized by a FOXP3 mutation that inactivates
Treg cells (67). In addition, Treg cells express CTLA-4. This is
an important modulator of the immune response by binding to
CD80 on antigen presenting cells (APCs). Of note, patients with
MCD have a high CD80/CTLA-4 ratio in urine, suggesting that
an imbalance in these molecules may have a role in MCD (68).

In summary, experimental studies on animal models have
shown a possible role for some cytokines in the pathogenesis of
proteinuria. However, the results of these studies have not been
confirmed in human disease. This may be due to the variable
methodology among studies, the heterogeneity of the disease, the
differences between human MCD and animal models, and the
complex interplay among pro- and anti-inflammatory cytokines,
immune cells, and glomerulus. To date, there is no evidence that
a single cytokine is a key mediator of podocyte injury in MCD.
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B Cells and Autoantibodies
While most studies have focused on T-cell-related cytokines,
the efficacy of anti-CD20 therapy [rituximab (RTX)] to reduce
the frequency of relapses in SSNS and MCD has brought an
increasing interest on the potential role of B cells in the disease
pathogenesis (69). It remains unclear whether B cells may
contribute to the disease by promoting certain T-cell responses
or by releasing autoantibodies against podocyte proteins (70–72).
For instance, Oniszczuk et al. found higher circulating levels of
plasmablasts and B-cell activating factor in the serum of adults
with MCD during relapse (73), but whether these drive T-cell
activation in MCD remains to be determined. Colucci et al.
found that patients with idiopathic nephrotic syndrome (INS)
and poor response to therapies carry higher levels of T cells with
hyposialylated immunoglobulin M (IgM) on the surface (72).
Supernatants from these T cells caused podocyte cytoskeletal
rearrangements in vitro, but this was prevented when T cells
were incubated with sialylated IgM, suggesting that IgM on the
T-cell surface modulates T-cell responses and that B- and T-cell
crosstalk may play an important role in the pathogenesis of MCD
(72). Trachtman et al. recently showed that IgM can trigger the
classical pathway of complement in glomeruli from patients with
INS (74). These findings emphasize the potential pathogenic role
of B cells in nephrotic syndrome.

Furthermore, B cells produce antibodies. Thus far, there
have been two candidate autoantibodies proposed as mediators
of MCD, but the lack of immune complexes on kidney
tissue remains an argument against a key pathogenic role of
these autoantibodies.

Antiubiquitin Carboxyl-Terminal Hydrolase L1

(UCHL1) Antibodies
Combining human, experimental, and animal studies, Jamin
et al. found elevated anti-UCHL1 antibody titers in plasma
in about half of children with SSNS in relapse compared to
controls (71). These autoantibodies targeted podocytes causing
cell detachment in vitro and proteinuria and MCD-like injury in
vivo. Interestingly, antibody titers were not increased in adults
with active MCD (71). If these findings are validated, this would
support a pathogenic role of autoantibodies and suggest that
childhood- and adulthood-onset MCD may have a different
underlying pathophysiology.

Antinephrin Antibodies
Watts et al. recently found circulating antinephrin
antibodies in 29% of patients with active MCD
[“Autoantibodies against nephrin elucidate a novel
autoimmune phenomenon in proteinuric kidney disease.”
Medrxiv (Preprint). Available at https://www.medrxiv.org/
content/10.1101/2021.02.26.21251569v1.full]. In the MCD
glomerulus, authors showed granular immunoglobulin G (IgG)
deposits colocalizing specifically with nephrin, but not with other
podocyte proteins. This is an attractive finding as antinephrin
antibodies mediate recurrence of nephrotic syndrome in
patients with congenital nephrotic syndrome. Watts et al.
postulated that circulating antinephrin antibodies may bind to
nephrin changing its localization in the slit diaphragm, thereby

resulting in proteinuria. However, it remains unknown whether
these antibodies play a causative role either as primary or
secondary insult to the podocyte or whether they may represent
a paraphenomenon. Of note, circulating antinephrin antibodies
are also present in patients with diabetes, but they were not
associated to a higher risk of proteinuria (75). While antinephrin
antibodies cause proteinuria in rats, they only induce a partial
retraction of podocytes; so, the exact mechanisms by which these
autoantibodies may cause proteinuria remains unclear (76).

Future studies are needed to determine the pathogenic
role of B cells, to assess for causality between circulating
autoantibodies and proteinuria in MCD, and to screen for novel
candidate autoantibodies.

Hemopexin
Hemopexin is a plasma glycoprotein with high affinity for
heme and immunoregulatory properties. When infused into
rats, hemopexin caused reversible proteinuria and podocyte FPE
resembling MCD-like injury (77). Mechanistically, it is thought
to contribute to proteinuria by reducing anionic charges in the
GBM in vivo and by disrupting nephrin signaling in vitro (77, 78).
Patients with MCD may carry an “active” form of hemopexin.
While plasma levels were first reported low in patients withMCD
compared to controls, a recent study found that serum and urine
levels of hemopexin are high in children with active nephrotic
syndrome (79, 80); so, larger studies by using standardized
methods to quantify hemopexin could provide insights into the
value of hemopexin as marker or mediator of disease. More
recently, plasma hemopexin was found to discriminate among
patients with SSNS and steroid-resistant nephrotic syndrome
(SRNS) with lower levels noted in SSNS compared to SRNS (81).

Microbial Products
In children withMCD, proteinuria is often triggered by infections
(44). In mice, TLR ligands induce transient proteinuria and
podocyte injury. However, it remains unknown whether viral
or bacterial products directly stimulate TLR on podocytes or
whether proteinuria may be the result of an exaggerated systemic
immune response in susceptible patients (42, 47).

Others
Over the last few years, proteomic and metabolic studies
have identified candidate biomarkers in urine or plasma (α1-
macroglobulin, adiponectin, etc.) to discriminate MCD from
FSGS and SSNS from SRNS, but whether some of these may
also have a pathogenic role in proteinuria is still unclear (81,
82). In 2021, there have been numerous cases reported of new
onset or relapsing MCD following COVID-19 vaccine (83).
These cases shared a strong temporal association between vaccine
administration and onset of proteinuria, highly suggestive of
an exaggerated and rapid T-cell-mediated immune response to
viral messenger RNA (mRNA). Future studies are required to
investigate a potential causal link between the COVID vaccines
and MCD. On the other hand, Angeletti et al. recently reported
that protein-based vaccines are not associated with a higher risk
of relapse in patients with nephrotic syndrome (84).
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LOCAL (INTRAGLOMERULAR) FACTORS

Most researchers have historically focused on the study of
circulating cytokines, but recent studies have recognized the
importance of the local microenvironment in the development
of podocyte injury in the experimental models. Here, we will
review some of the molecules, thought to be released within the
glomerulus, that have been linked to the pathogenesis of MCD.

Interleukin-4
In an elegant study, Kim et al. planted a B-cell antigen (hen egg
lysozyme) on the GBM and found that injection of polarized
antigen-specific B cells led to transient proteinuria within
24 h and histological changes consistent with MCD-like injury.
In contrast, transfer of polarized antigen-specific B cells that
were IL-4 deficient did not cause proteinuria, suggesting that
proteinuria was mediated by local activated B cells and release
of IL-4 (62). Interestingly, circulating IL-4 was undetectable,
suggesting that the local release of IL-4 was sufficient to induce
proteinuria and podocyte injury in vivo (62).

Tumor Necrosis Factor-α (TNF-α)
Studies involving TNF-α have largely focused on FSGS rather
than MCD. Because some patients with MCD eventually develop
FSGS, intraglomerular TNF-α remains a target of interest as
mediator of podocyte injury in MCD (85, 86). Sera from patients
with FSGS are able to increase TNF-α expression in cultured
human podocytes and consistent with this, glomerular TNF-α
is increased in patients with FSGS (86, 87). While glomerular
TNF-α is inversely correlated with estimated glomerular filtration
rate (eGFR), it did not show a correlation with serum TNF-α,
reflecting the discrepancy between the systemic and glomerular
cytokine levels (86). Mechanistically, TNF-α downregulates
nephrin expression and phosphorylates paxillin and focal
adhesion kinase (FAK) leading to cytoskeletal rearrangement
(88, 89). This may be relevant to MCD, as podocyte FAK is
activated in these patients (90). In addition, TNF-α activates the
inflammatory NF-kB pathway and can induce CD80 expression
on podocytes (see CD80 section) (91).

Vascular Endothelial Growth Factor (VEGF)
Podocytes are a source of several factors that act as ligands
of receptors expressed by GEnC and this cellular crosstalk
is key to maintaining endothelial homeostasis and the
integrity of the GFB as demonstrated by landmark studies
in the field (92). VEGF-A is the most well-characterized
molecule of the VEGF family and it has been implicated
in the pathogenesis of diabetic nephropathy, preeclampsia,
and thrombotic microangiopathy (92). Podocyte-specific loss
of VEGF-A in mice prevents glomerular development and
formation of glomerular endothelium and the inactivation of
single VEGF-A allele leads to endothelial injury and end-stage
renal disease. In contrast, the podocyte-specific overexpression
of VEGF164 results in collapsing glomerulosclerosis, suggesting
that VEGF expression within the glomerulus is tightly regulated
(92). In MCD, glomerular expression of VEGF has been
reported high during relapse by some authors but not by others

(93, 94). The discrepancy between studies could be related to
methodology and the heterogeneity of the disease. Another
consideration is that a kidney biopsy only reflects the molecular
signature at a specific time point, whereas VEGF expression may
fluctuate during different stages of relapse and remission.

Others
Several molecules involved in endothelial–podocyte crosstalk
such as angiopoietins 1 and 2 and VEGF-C have been linked
to proteinuric glomerular diseases such as preeclampsia and
diabetic nephropathy, but their role in MCD remains to
be investigated.

Further studies are needed to characterize the cytokine and
inflammatory signature in the MCD glomerulus, the cellular
source of these local cytokines (infiltrating T and/or B cells,
podocytes, other glomerular cells, etc.) and the stimuli triggering
such cell responses. Likewise, a reduced number of Treg cells
has been reported in the MCD glomerulus (95), so it is
possible that the imbalance between effectors T and Treg cells
may be important to determine a pro- vs. anti-inflammatory
microenvironment in the glomerulus.

ROLE OF THE GFB AS A CHARGE
SELECTIVE BARRIER IN MCD

The GFB is a size and charge-selective functional unit that allows
the free flow of water and small molecules while preventing
the passage of plasma proteins into urine. It consists of
three layers: GEnC and associated glycocalyx, the GBM and
podocytes with their foot processes, SD, and glycocalyx. The
disruption of the GFB at any layer can result in proteinuria,
but podocytes play a critical role in the formation and integrity
of the GFB (96). However, the cause of proteinuria in MCD
was historically attributed to the loss of negative charges in
the GBM based on the observation that anionic charges were
reduced in the GBM in animal models of podocyte injury and
in some patients with MCD (40, 97). Subsequent experimental
models failed to demonstrate a causal link between the GBM
charges and proteinuria in vivo (98), so this theory was
nearly abandoned in the twenty first century. More recently,
Huizing et al. found evidence of glomerular hyposialytation in
26% of patients with proteinuric glomerular disease including
MCD and other glomerular diseases (99). These observations
provided the rationale for an ongoing randomized trial to
test whether N-acetylmannosamine (ManNAc), a sialic acid
precursor, may ameliorate proteinuria in human glomerular
disease (99). Further studies are warranted to identify the
primary affected glomerular cell/protein with hyposialytation,
the triggering insult, and whether ManNAc restores sialylation
and ameliorates proteinuria in human MCD.

The GBM and, to a lesser extent, podocytes have been the
focus of interest for researchers studying the role of charges in
MCD, but it is notable that little attention has been paid to
the endothelial glycocalyx (EG). This is a thick meshwork of
GAG and proteoglycans negatively charged that covers the entire
endothelium and its fenestrations. It has been postulated that
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the EG is a major site for the generation of an electrokinetic
field that prevents the passage of negatively-charged plasma
proteins such as albumin (100, 101). In support to this, the loss
of EG is associated to proteinuria in experimental models of
diabetes and sepsis and human diseases (102). Of note, a study
found an increase in circulating syndecan 1, as surrogate of EG
degradation, in patients withMCD (103). So, further studies need
to address whether the EG may be relevant for the development
of proteinuria in MCD. It is possible that the EG injury favors
the passage of albumin through the GFB and that EG products
may modulate biological processes including podocyte response
to injury. For example, syndecan 4, an important component
of the EG, can activate podocyte via TRCPC6 and β3 integrin
signaling (104).

PODOCYTE DYSFUNCTION

In MCD, podocytes experience alterations in shape known
as FPE and changes in the regulation of key proteins such
as nephrin and synaptopodin (25–27). These changes include
nephrin downregulation, redistribution, dephosphorylation,
and synaptopodin downregulation (25–27). However, these
molecular dysregulations are not specific of MCD and it is still
unclear whether they are the cause of the podocyte injury and/or
FPE or whether they represent a non-specific adaptive response
of podocytes to injury. Indeed, MCD has been associated with
an increased in podocyte autophagic activity (105, 106) that is an
important mechanism for stress adaptation. Notably, progression
fromMCD to FSGS on histology was associated with a decline of
autophagic activity (106).

Podocytes are key to prevent proteinuria, but there is a poor
correlation between the level of proteinuria and FPE in patients
with MCD and other glomerular diseases (107), questioning
a direct cause and effect between FPE and proteinuria and
suggesting that other cell types may contribute to the disease.

Candidate Mediators of Proteinuria in
Experimental MCD
Current in-vivo approaches to study MCD (PAN and LPS)
result in a reduction and/or redistribution of podocyte proteins
mimicking some key features of human MCD. Here, we will
review some of the most studied and/or promising candidate
mediators of podocyte injury in experimental models of MCD.

CD80
This is a costimulatory molecule expressed by APCs upon
activation. In cultured podocytes, CD80 expression is
upregulated upon injury with LPS and TNF-α and mediates
actin rearrangements, a surrogate marker for FPE (42, 91).
There is indirect evidence in-vivo supporting a role of CD80
as mediator of proteinuria in the LPS model. CD80 knockout
mice do not develop proteinuria following LPS exposure and
CD80 expression on non-hematopoietic cells is also necessary
for TLR stimulation to cause albuminuria in mice (42, 91). Also,
CD80 is excreted into urine following TLR stimulation (47).
However, some groups could not identify CD80 expression
in podocytes following LPS questioning the role of CD80 in

proteinuria (108). More recently, we and others demonstrated
that CD80 is upregulated by kidney endothelial cells following
LPS by using immunofluorescence and endothelial-specific
translating ribosome affinity purification (EC-TRAP) and high-
throughput RNA sequencing analysis, respectively (109, 110).
Mechanistically, CD80 is thought to prevent talin binding to β1
integrin and its downstream signaling and to prevent Neph1
binding to nephrin, thereby altering actin polymerization and
organization (31, 111).

In humans, CD80 was initially found upregulated in
podocytes in some patients with MCD during relapse. However,
there have been contrasting results among studies questioning
the validity of the CD80 staining in human kidney tissue and
this has tamped down the initial enthusiasm for this molecular
target (108, 112). Our group recently demonstrated that CD80
is indeed present in podocytes in MCD, but, surprisingly,
most CD80 was lining the capillary lumens in an endothelial
pattern (109). We and others also showed that urinary CD80
levels are consistently high in a subset of patients with MCD
in relapse compared to controls and to patients with other
proteinuric glomerular disease (68, 112–115). Interestingly,
there are two cases reported in that patients with active
MCD and high CD80 in urine underwent rapid transient and
sustained remission following anti-CD80 therapy, respectively
(116, 117). In contrast, the efficacy of anti-CD80 therapy in
FSGS, usually associated to normal CD80 levels in urine, remains
controversial (118). These observations suggest a potential link
between CD80 or downstream pathways and proteinuria in
selected patients with MCD (those with either high urinary or
glomerular CD80).

Angiopoietin-Like 4
This is a glycoprotein highly expressed by the liver and
adipose tissue. Podocyte-specific Angptl4 overexpression in
rats caused albuminuria and FPE over time without immune
complex deposition mimicking features of MCD. Proteinuria
was exacerbated when these transgenic rats received a single
dose of puromycin and it was partially ameliorated when animal
received steroids or ManNAc, which is a sialic acid precursor
(50). In this model, injured podocytes released hyposialylated
Angptl4 that bound to the GBM neutralizing its negative
charges and also enhanced oxidative injury to GEnC in vitro.
In contrast, normosialylated Angptl4 is released into circulation
and this mediates hyperlipidemia and ameliorates proteinuria by
interacting with glomerular endothelial αvβ5 integrin in different
animal models of proteinuria including FSGS and diabetic
nephropathy (50, 119). Still, the mechanisms of proteinuria in the
podocyte Angptl4 model are not fully understood. In humans,
Angptl4 was found overexpressed in podocytes from few patients
with MCD in relapse (50), but these findings were not validated
in a larger clinical study (120). Angptl4 is excreted into urine
at high levels in different proteinuric diseases, suggesting that
Angptl4 may reflect a non-specific response of podocytes to
various insults rather than being a specific marker or mediator
of MCD (120). More clinical studies are necessary to determine
whether Angptl-4 may contribute to human MCD.
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c-Mip
This was initially found elevated in T cells of patients with
MCD in relapse and subsequently in podocytes of patients with
active MCD and other forms of proteinuric glomerular disease.
In animal studies, c-mip overexpression in podocytes causes
albuminuria, FPE, and loss of total and phosphorylated nephrin
without evidence of inflammatory changes in the glomerulus,
thereby mimicking key features of MCD (121). LPS triggers
podocyte c-mip upregulation and this seems independent of the
cellular or humoral immunity. Mechanistically, c-mip interferes
with Fyn binding to nephrin preventing downstream signaling
and nephrin phosphorylation, which is a critical for podocyte
restoration following transient podocyte injury (121). To date,
there is strong experimental data to support a potential role of
c-mip as mediator of proteinuria in MCD and other glomerular
disease, but further clinical studies are necessary.

Focal Adhesion Kinase
FAK is a non-receptor tyrosine kinase that resides at sites of
integrin clustering serving as a link between the extracellular
matrix and the acting cytoskeleton. Upon phosphorylation, FAK
modulates cell motility and migration and also contributes to
the secretion of matrix metalloproteinases (122). In podocytes,
FAK activation is necessary for the development of proteinuria
and FPE following LPS (123). In experimental models, nephrin
phosphorylation is an upstream activator of the Cas-Crk
pathway, involving FAK activation (90). In patients with MCD,
but not FSGS, FAK activation is observed in podocytes during
relapse. However, MCD is associated with a reduction in nephrin
phosphorylation (26), so that the upstream signaling triggering
FAK activation in MCD is not fully understood.

Zinc Fingers and Homeoboxes (ZHX)
This refers to a family of transcriptional factors (ZHX1, ZHX2,
and ZHX3) that regulates the expression of key podocyte
genes. ZHX proteins localize at the membrane as hetero-
or homodimers. Using different injury models of proteinuria,
Macé et al. showed that translocation of ZHX proteins from
the membrane into the nucleus may result in distinct types
of nephrotic syndrome (124). Nuclear ZHX3 alone or in
combination with ZHX2was associated to FSGS, whereas nuclear
ZHX1 was associated to MCD-like injury and podocyte Anpgtl4
upregulation in culture systems. Thus, this study provided a
mechanism by which podocyte Angptl4 expression may be
regulated in MCD and it proposed a plausible pathway that may
be involved in the development of several forms of proteinuric
kidney disease (124). Data on human MCD are still scarce. The
same group found an increase in ZHX1 expression in podocyte
nuclei from patients with active MCD, whereas ZHX2 expression
was downregulated compared to controls (124).

In summary, there are several candidate mediators
of podocyte injury and proteinuria in models of MCD.
Nevertheless, the lack of specificity to discriminate among
models of proteinuria and the lack of validation in large clinical
studies do question their clinical relevance for human MCD.
This emphasizes the urgent need to develop novel experimental
models and/or approaches to study MCD.

Candidate Targets Identified in Human
Tissue
The use of novel approaches such as transcriptomics has
helped to identify molecules and pathways relevant for the
pathogenesis of the human disease. Sanchez-Niño et al. showed
higher expression of fibroblast growth factor-inducible 14
(Fn14), monocyte chemotactic peptide-1 (MCP-1), and NF-kB
in podocytes from kidney tissue of patients with FSGS, but not
from MCD (125). Bennet et al. reported an increased expression
of genes involved in inflammation and fibrosis (osteopontin,
CD24, CCL3, CXCL2, CXCL14, SOX9, etc.) in FSGS glomeruli
compared to controls. Likewise, authors found a decrease in
podocyte-specific genes (NPHS1, WT1, VEGF, etc.) in patients
with FSGS compared to controls (126). Hodgin et al. identified
few differentially expressed genes in glomeruli from MCD
in relapse vs. controls. Specifically, these genes are involved
in amino acid and metabolic processes (BHMT, DDC, and
XPNEP2) and cell adhesion (CDH11, MPZL2, OPCML, and
TRO) (127). Using single cell transcriptomics, Menon et al.
demonstrated an upregulation of alpha-2 macroglobulin in
GEnC from patients with FSGS compared to living donors and
this was associated to poor clinical outcomes (128).

These novel approaches and collaborative efforts are key to
elucidate the different molecular signatures linked to MCD. In
particular, single cell transcriptomics is important to identify the
dysregulated cell type within the glomerulus. Likewise, future
research should also address the upstream pathways leading to
these intraglomerular changes.

ENDOTHELIAL DYSFUNCTION

Endothelial cells line the entire vasculature and, in the
glomerulus, are in close proximity to podocytes. Endothelial–
podocyte communication is critical for the maintenance of the
GFB. In addition, endothelial cells also have the machinery to
present and process antigens and are important modulators
of the immune response and inflammation (129). These
features along with the assumption of a circulating factor
involved in MCD could make endothelial cells an attractive
cell target for the disease pathogenesis. However, studies
involving GEnC in MCD are anecdotical unlike in other
glomerular diseases. There have been few reports that showed
evidence of endothelial dysfunction, ultrastructural changes in
the glomerular endothelium, and upregulation of markers of cell
activation, such as CD80 and caveolin-1, in GEnC of patients
with MCD during relapse (103, 109, 130–132). These findings
suggest that the endothelium is injured and/or activated in MCD
and raises the possibility that activated GEnC may contribute to
a pro-inflammatory milieu in the glomerulus rather than being
an innocent bystander. For instance, CD80 is associated with
activation of downstream inflammatory pathways and caveolin-
1 mediates albumin transcytosis and endothelial cell function
(133). More recently, Trachtman et al. showed that IgM can
bind to epitopes on injured GEnC and activate the complement
pathway (74). In addition, injury to the endothelium may
facilitate the passage of proteins through the GFB due to the loss
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of the glycocalyx that serves as charge barrier (101). Therefore,
further studies are warranted to determine whether activated
GEnC plays a pathogenic role in proteinuria in MCD.

GENETICS

Epidemiological studies have shown cases of familial SSNS
and certain ethnic differences across populations. For instance,
SSNS is more common in Asian children and it may have a
more difficult clinical course in patients of African-American or
Hispanic descents (134). However, Mendelian mutations have
been rarely described in SSNS or MCD contrary to that observed
in SRNS or FSGS. These findings suggest that SSNS andMCD are
polygenic diseases with a complex inheritance pattern influenced
by individual genetic risk and environmental factors. Given
the association of SSNS and MCD with immune dysregulation,
HLA genes have been a target of interest for researchers (33,
135). Numerous groups used an HLA candidate approach
to identify genetic risk loci for SSNS and identified several
variants including HLA-DQB, HLA-DBA, HLA-DRB1, HLA-
DQB1, HLA-DQW2, and HLA-DR7 (134). Using a non-biased
approach such as genome-wide association studies (GWASs),
Gbadegesin et al. identified HLA-DQA1 and PLCG2 missense
variants as candidate risk loci for children with SSNS. HLA-
DQ1 variants resulted in perturbation of protein secondary
structure, which may alter the process of antigen presentation
in these patients. Notably, HLA-DQA1 is also reported in IgA
nephropathy andmembranous nephropathy, suggesting a shared
immune dysregulation among these proteinuric diseases (36).
As previously mentioned, IL-4 and IL-13 have been linked
to MCD/SSNS. Several studies have investigated the potential
association between gene variants and MCD with contrasting
results. Al Rushood et al. found no association between IL-
4 and IL-13 gene polymorphisms and susceptibility to SSNS
(136), whereas Acharya et al. reported a possible association of
these gene variants and MCD (137). In a similar study, Ikeuchi
et al. showed an association between STAT6 gene polymorphisms
and MCD (138) contrary to that reported by others (137).

Using GWAS, Jia et al. recently identified NPHS1 (nephrin)
and TNFSF15 regions as susceptibility factors for childhood
SSNS (139).

Genetics studies continue to shed light into potential targets
and pathways relevant for the disease and also reinforce the role
of immunity in MCD. Nevertheless, these studies demonstrate
associations rather than causality.

CONCLUSION

Minimal change disease is a clinical–histopathological entity
with variable clinical outcomes. Despite research efforts, the
mechanisms of proteinuria remain poorly understood and
this has hampered the development of targeted therapies.
MCD involves a complex interplay between environmental
factors, genetic susceptibility, immune dysregulation, and the
glomerular microenvironment, suggesting that MCD is not
simply an immune or podocyte disease. This may explain
the heterogeneity of the human disease, which together with
the lack of good animal models, remain major obstacles
to elucidate the pathogenesis of MCD. Therefore, future
research strategies should integrate analysis of timed human
biosamples including large and well-characterized cohort of
patients along with novel experimental models including
animal studies and state-of-the-art in-vitro approaches to
improve our understanding of cell-to-cell interactions in
the disease.
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