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Accelerated ageing is implicated in the pathogenesis of respiratory diseases as chronic

obstructive pulmonary disease (COPD), but recent evidence indicates that the COPD

can have roots early in life. Here we hypothesise that the accelerated ageing markers

might have a role in the pathobiology of young COPD. The objective of this study was

to compare two hallmarks of ageing, telomere length (TL), and mitochondrial DNA copy

number (mtDNA-CN, as a surrogate marker of mitochondrial dysfunction) in young (≤50

years) and old (>50 years) smokers, with and without COPD. Both, TL and mtDNA-

CN were measured in whole blood DNA by quantitative PCR [qPCR] in: (1) young ever

smokers with (n = 81) or without (n = 166) COPD; and (2) old ever smokers with (n =

159) or without (n = 29) COPD. A multivariable linear regression was used to assess

the association of TL and mtDNA-CN with lung function. We observed that in the entire

study population, TL and mtDNA-CN decreased with age, and the former but not the

latter related to FEV1/FVC (%), FEV1 (% ref.), and DLCO (% ref.). The short telomeres

were found both in the young and old patients with severe COPD (FEV1 < 50% ref.).

In addition, we found that TL and mtDNA-CN were significantly correlated, but their

relationship was positive in younger while negative in the older patients with COPD,

suggesting a mitochondrial dysfunction. We conclude that TL, but not mtDNA-CN, is

associated with the lung function impairment. Both young and old patients with severe

COPD have evidence of accelerated ageing (shorter TL) but differ in the direction of the

correlation between TL and mtDNA-CN in relation to age.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major
public health problem because of its high prevalence (>10% of
adults), rising incidence (third current global cause of death),
and associated costs (circa 38 billion annually in the European
Union [EU] only) (1). It has been traditionally understood as self-
inflicted disease caused by tobacco smoking and characterised
by an accelerated decline of lung function with age (2, 3),
suggesting that smoking can accelerate the physiological lung
ageing (4–6). Recent research, however, has clearly shown that
lung development abnormalities, both before or after birth, limit
the peak lung function value achieved in early adulthood and
can also lead to COPD later in life (7). As a result, there is
great interest in understanding the pathobiology of COPD in
young patients (8–10). We hypothesise that ageing pathways
are dysregulated in young patients with COPD, a research
question, that to our knowledge, has not been investigated
to date.

Telomere attrition and mitochondrial dysfunction are two
well-recognised and inter-related molecular hallmarks of ageing
(4) since, on the one hand, telomere attrition leads to
mitochondrial biosynthesis reprogramming and, on the other,
the latter induces telomere attrition (11). Further, their
correlation can provide insights into the regulation of the
ageing process (11). Previous studies have shown that both
telomere length (TL) (5, 12–16) and mitochondrial DNA copy
number (mtDNA-CN, as a surrogate marker of mitochondrial
dysfunction) (17) in the circulating leukocytes are reduced
in the old patients with COPD, but they have not been
investigated in young patients with COPD so far. Likewise,
their relationship with the smoking history of the patient,
the severity of airflow limitation, or degree of emphysema
present have not been studied in this setting either. Here,
we investigated the relationship between TL and mtDNA-CN
with several lung function indices and smoking exposure in
peripheral blood of young (35–50 years.) and old (>50 years.)
ever smokers, with or without COPD, as well as their correlation
in this setting.

MATERIALS AND METHODS

Study Population and Ethics
Following the operational definition of Early COPD by Martinez
et al. (9), we defined young as those individuals between 35 and
50 years of age, and old as those over 50 years (18). All the
individuals were current or former smokers, with preserved ratio
between the forced expiratory volume in one second and the
forced vital capacity FEV1/FVC (controls) or with COPD (cases,
FEV1/FVC < 0.7) (Table 1). All the individuals were recruited
from the centers participating in the CIBERES COPD research
program in Spain (19–21). All the participants signed their
informed consent, and the Ethics Committee of Hospital Clinic
(Barcelona, Spain) approved the study (HCB-2018/135). All
experimental determinations were performed in our laboratory
at IDIBAPS by the same operator.

Characterisation of Participants
The demographics and symptoms were registered using
standardised questionnaires. Patients with α1-antitrypsin
deficiency were excluded. Spirometry and the single-breath
carbon monoxide diffusing capacity of the lung (DLCO) were
measured following the international recommendations (22, 23).
The reference values were those of the Global Lung function
Initiative (GLI) (24). A DLCO is a well-established marker of
emphysema (25, 26) so, as previously described, the presence of
emphysema was defined as DLCO lower than 60% ref., and the
absence of emphysema as a DLCO higher than 80% ref. (27, 28).

DNA Extraction
Blood was collected using ethylenediamine tetraacetic acid
(EDTA) anticoagulation tubes and stored at−80◦C until analysis.
DNAwas extracted using theQiAmpBloodDNAkit according to
the supplier’s instructions (Qiagen, Germany). DNA purity and
concentration were assessed with a Nanodrop (Life Technologies,
CA, USA) and a Qubit 4 Fluorometer (Life Technologies, CA,
USA), respectively.

TL Measurement
Telomere length was measured in DNA by quantitative PCR
(qPCR) following themethod described by Cawthon (29). Briefly,
the number of telomere repeats and that of albumin (a single
copy gene) were assessed in the same qPCR tube (as shown in the
Supplementary Material). TL is expressed as a relative telomere
to single copy gene ratio as described by Cawthon (29).

mtDNA-CN Quantification
To determine mtDNA-CN in DNA, the mitochondrial 12S
ribosomal RNA (mt12SrRNA) gene and the nuclear-encoded
RNAse P gene were simultaneously determined in the same
qPCR tube, as previously described (30) (as shown in the
Supplementary Material). ThemtDNA-CNwas calculated as the
ratio 12SrRNA mtDNA copies/RNAseP DNA copies.

Statistical Analysis
The results are presented as number, percentage, mean ±

SD, or median (95% CI). The groups were compared using
the Kruskal–Wallis, Chi-square, or Fisher’s exact tests, as
appropriate. A multivariable regression analysis was used to
explore the association of three lung function variables (FEV1 %
ref., FEV1/FVC (%), and DLCO % ref.) with the two hallmarks
of ageing investigated here (TL and mtDNA-CN, both previously
log transformed to approximate a normal distribution). Initially,
all the models were adjusted by age, sex, smoking status
(current/former), and cumulative smoking exposure (pack-year);
then, the contribution of each of these four covariates to the
model was examined by comparing the goodness of fit of the
different methods. The final models presented here included only
those covariates that improved the fitting of the data significantly.
The effect size was inferred from the estimate of the linear
regression (β coefficient) and its 95% CI, that informs on the
change in the outcome variable (TL or mtDNA-CN) for a unit
change in the explanatory variable, holding all the other variables
in the model constant. All the models with the estimates and
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TABLE 1 | The characteristics of the participants [mean ± SD or number (%)].

Young ≤50 yrs. Old >50 yrs.

Controls n = 166 COPD n = 81 p-value Controls n = 29 COPD n = 159 p-value p. overall

Age, years 43.8 ± 4.41 46.5 ± 3.52 <0.001 61.0 ± 7.18 65.7 ± 7.69 0.002 <0.001

Males, n (%) 83 (50.0%) 55 (67.9%) 0.006 17 (58.6%) 133 (83.6%) 0.005 <0.001

Body Mass Index, Kg/m2 26.7 ± 4.82 28.3 ± 6.34 0.064 27.2 ± 4.33 27.3 ± 5.33 0.96 0.16

Smoking status 0.163 <0.001 <0.001

Current smokers, n (%) 128 (77.1%) 55 (67.9%) 23 (79.3%) 63 (39.6%)

Former smokers, n (%) 38 (22.9%) 26 (32.9%) 6 (20.7%) 96 (60.4%)

Smoking exposure, pack-years 25.2 ± 13.9 31.3 ± 15.6 0.005 32.8 ± 19.1 54.4 ± 24.4 <0.001

FEV1, % ref 98.0 ± 13.9 70.8 ± 21.5 <0.001 94.1 ± 12.0 52.2 ± 20.8 <0.001 <0.001

FVC, % ref 99.7 ± 14.1 92.5 ± 21.4 0.007 84.0 ± 12.4 77.3 ± 21.3 0.037 <0.001

FEV1/FVC, % 79.5 ± 5.46 58.5 ± 10.5 <0.001 75.4 ± 3.71 50.6 ± 12.5 <0.001 <0.001

DLCO, % ref. 91.6 ± 13.7 82.7 ± 23.5 0.003 98.0 ± 18.6 50.4 ± 27.9 <0.001 <0.001

GOLD grades <0.001 <0.001 <0.001

grade 1–2, n (%) – 66 (81.5%) – 77 (48.4%)

grade 3–4, n (%) – 15 (18.5%) – 82 (51.6%)

log(TL) 3.71 ± 0.19 3.64 ± 0.20 0.012 3.57 ± 0.25 3.43 ± 0.22 0.01 <0.001

log(mtDNA-CN) 3.54 ± 0.54 3.53 ± 0.63 0.906 3.18 ± 0.30 3.16 ± 0.37 0.74 <0.001

FIGURE 1 | Relationship between telomere length [log(TL)] (A) or mitochondrial DNA copy number [log(mtDNA-CN)] (B), both log transformed, and age in the entire

study population, stratified by controls (n = 188) (green dots and line) and patients with COPD (n = 205) (blue dots and line). Forest plots of the linear regression

models of all individuals (n = 393) presenting the point estimates and 95% CI (whiskers) of the change in log(TL) or log(mtDNA-CN) when adjusted for the potential

confounders. For further explanations, see text.
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CIs are provided in the Supplementary Tables 1–3. A p-value
lower than 0.05 was considered statistically significant. All the
calculations were performed using R with custom scripts, with
figures being produced using its ggplot2 (31) and forestmodel
(32) packages.

RESULTS

Characteristics of Participants
In this analysis, we included 240 patients with COPD (81 young
and 159 old) and 195 controls (166 young and 29 old) (Table 1).
The patients with COPD were slightly older than corresponding
controls and included a higher proportion of men. Airflow
limitation was mild in younger and moderate-severe in the older
patients with COPD, and DLCO % ref. was mildly reduced in the
younger but severely impaired in the older patients with COPD.
As previously described (10), our population of young ever

smoker controls included some individuals with abnormal FEV1

% ref. and DLCO % ref. values despite a preserved FEV1/FVC
ratio, who may currently qualify as pre-COPD subjects (8).

TL and mtDNA-CN as Ageing Markers in
the Entire Study Population
Figure 1 shows that both TL and mtDNA-CN were negatively
correlated with age (p-values = 5.9E-14 and 2.5E-11,
respectively), confirming that both were indeed hallmarks
of ageing in the population studied here. These associations
were present in both controls and patients with COPD (p-values
= 4.4E-05 and 1.1E-06 for TL and p-values = 3.7E-03 and
1.4E-08 for mtDNA-CN) (Figure 1). TL attrition with age was
more pronounced in men, and cumulative smoking exposure
(pack-year) just failed to reach statistical significance (p =

0.06) (Figure 1A). By contrast, neither sex, smoking status
(current/former), or cumulative smoking exposure (pack-year)

FIGURE 2 | Relationship between the TL [log(TL)] and FEV1/FVC% (A), FEV1% ref. (B), and DLCO% ref. (C). The blue dots identify the patients with COPD (A: n =

240, B: n = 240, C: n = 180) whereas the green dots correspond to controls (A: n = 195, B: n = 194, C: n = 169). Forest plots of the linear regression models of all

individuals (A: n = 435, B: n = 434, C: n = 349) presenting the point estimates and 95% CI (whiskers) of the change in log(TL) when adjusted for the potential

confounders. For further explanations, see text.
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FIGURE 3 | Relationship between TL [log(TL)] and FEV1/FVC% (A,D), FEV1% ref. (B,E), and DLCO% ref. (C,F) in young (left) (A: n = 81, B: n = 81, C: n = 72) and

old (right) patients with COPD (A: n = 159, B: n = 159, C: n = 108). Forest plots of the linear regression models presenting the point estimates and 95% CI (whiskers)

of the change in log(TL) when adjusted for the potential confounders. For further explanations, see text.

significantly influenced the relationship of mtDNA-CN with age
(Figure 1B).

Relation Between the Ageing Hallmarks
and Lung Function in the Entire Study
Population
Figure 2 shows that, in the multivariable analysis of the entire
study population, shorter telomeres were associated with lower
FEV1/FVC ratio [estimate (β) = 3E-03 (95% CI: 1.6E-03, 4.5E-
03), p = 4.4E-04], lower FEV1 % ref. [β = 2.1E-03 (95% CI
1.2E-03, 2.9E-03), p = 1.5E-06], and lower DLCO % ref. [β =

1.6E-03 (95% CI: 7.4E-04, 2.5E-03), p= 3.3E-04] values, with age
and sex being significant covariates in the model. Of note, these
relationships remained in the patients with COPD (Figure 1, blue
dots) but did not in controls (green dots). If we use the lower limit

of normal, instead of a fixed FEV1/FVC ratio <0.7, we observed
similar results (Supplementary Figure 1). On the other hand,
mtDNA-CN was not related to any of these three lung function
indices (Supplementary Figure 2).

Comparison of Young vs. Old Patients With
COPD
Figure 3 presents the relationship between TL and these three
lung function variables in young (left) and old (right) patients
with COPD. As in the entire population or patients with COPD
at large, TL was significantly related to FEV1/FVC ratio [β =

3.2E-03 (95% CI 5.5E-04, 5.9E-03), p = 0.02], FEV1 % ref. [β
= 3.2E-03 (95% CI 1.6E-03, 4.8E-03), p = 8.8E-05], and DLCO
% ref. [β = 1.8E-03 (95% CI 2.6E-04, 3.3E-03), p = 0.02] in old
patients (Figure 3, right panels), but failed to reach the statistical
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FIGURE 4 | (A) A box plot of log(TL) by severity of airflow limitation in the patients with COPD stratified by young (n = 81) and old (n = 159), and corresponding forest

plots (bottom) of the linear regression model presenting the point estimates and 95% CI (whiskers) of the change in log(TL) when adjusted for the potential

confounders. (B) A box plot of log(TL) according to the presence (DLCO % ref. < 60%) or absence (DLCO % ref. > 80%) of emphysema in the patients with COPD

stratified by young (n = 55) and old (n = 78), and the corresponding forest plots (bottom) of the linear regression model presenting the point estimates and 95% CI

(whiskers) of the change in log(TL) when adjusted for the potential confounders.

FIGURE 5 | A scatter plot of log(TL) vs. log(mtDNA-CN) in young (n = 81) (dark blue dots) and old (n = 159) (red dots) patients with COPD, and the corresponding

forest plots of the linear regression model estimates. For further explanations, see text.
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significance in younger patients [FEV1/FVC ration [β = 3.2E-
01 (95% CI −0.11, 7.5E-03), p = 0.15], FEV1 % ref. [β = 0.17
(95% CI −4.4E-04, 3.8E-03), p = 0.12], and DLCO % ref. [β
= 0.14 (95% CI −8.1E-04, 3.7E-03), p = 0.02)] (Figure 3, left
panels). Supplementary Figure 3 shows that mtDNA-CN was
not related to any lung function variable in old or young patients
with COPD. These associations were not influenced by smoking.

Figure 4A shows that TL was significantly shorter in patients
with severe-very severe airflow limitation (FEV1 <50% ref.)
than patients withmild-moderate airflow limitation (FEV1 ≥50%
ref.), both in young and old patients with COPD. By contrast,
mtDNA-CN was not different by airflow limitation severity in
young or old patients (Supplementary Figure 4A). Figure 4B
shows that the presence of emphysema in the patients with
COPD, as indicated by a DLCO < 60% ref., was associated with
shorter telomeres in old patients with COPD but failed to reach
the statistical significance in young patients (Figure 4B).

Finally, Figure 5 shows that TL and mtDNA-CN in the
patients with COPDwere significantly related but the direction of
such relationship was positive in young patients [β = 0.15, 95%
CI: (8.6E-02, 0.22) p = 1.4E-05] and negative in older ones [β =

−0.12, 95% CI: (−0.22, −2.5E-02), p = 0.01]. This different sign
of correlation was preserved when the individuals with mtDNA-
CN > 2 SDs of the mean, were removed from the analysis
(Supplementary Figure 5).

DISCUSSION

Our study confirms previous reports that showed that TL and
mtDNA-CN are hallmarks of ageing in the population since
both decrease significantly with age (33). Yet, it extends previous
observations by showing that TL (but not mtDNA-CN) relates
to worse lung function in the population at large, in the patients
with COPD (but not in ever smoking controls), as well as
in the old patients (but not in young ones), and in patients
with severe airflow limitation (both young and old). It also
shows that the relationship between TL and mtDNA-CN was
different in the young and old patients with COPD, suggesting
different regulation of the telomere-mitochondria axis in these
two age groups.

Previous Studies
Several studies have previously investigated TL and mtDNA-
CN in patients with COPD. Telomerase mutations and telomere
attrition are described in alveolar type II and endothelial cells
in patients with severe emphysema (34–36) and in mice models
of smoking exposure (37). Other studies reported shortened
telomeres (15) in old patients with COPD vs. controls (12, 13,
15, 16) and a modest association between TL and FEV1 % ref.
(13), albeit the latter was not reproduced in other investigations
(13–15, 38, 39). Recently, a longitudinal study in patients with
COPD (40) showed an association between the accelerated
telomere shortening, progressive worsening of the pulmonary gas
exchange, and all-cause mortality risk. Moreover, some studies
have included young and old individuals (14, 32) but none of

them have stratified the analysis by age group, nor by the presence
of COPD according to age.

However, compared with non-smokers, patients with COPD
showed reduced mtDNA levels in exhaled breath, urine, and
peripheral leucocytes (17, 41, 42). Finally, other approaches, as
ageing clocks, are used to assess the relation between ageing and
lung function in older ever/never smokers (43). None of these
previous studies, however, investigated TL or mtDNA-CN in the
young patients with COPD.

Interpretation of Novel Findings
By studying a large population of young and old ever
smokers, with and without COPD, our results provide a more
comprehensive perspective on the relationship between these
two well-established hallmarks of ageing (TL and mtDNA-CN)
and lung function than the previous studies. We found that, as
expected, both decreased with age but, in contrast, they exhibit
a different relationship with lung function. While TL related to
FEV1/FVC, FEV1 % ref., and DLCO % ref. in the population
at large (patients and controls), in the patients with COPD
(importantly, not in controls), old patients (not in young ones),
and in patients with severe airflow limitation (both young and
old), mtDNA-CN did not. This suggests the involvement of
specific ageing mechanisms (telomere shortening) in the lung
function abnormalities that characterise COPD. This may be
particularly relevant in the young individuals since we observed
here, for the first time to our knowledge, that telomere shortening
also occur in the young patients with COPD with severe airflow
limitation, a population that may be more susceptible to the
environmental exposures associated to COPD and/or carry a
genetic background predisposing them to telomere attrition.
This finding agrees with the relationship between the accelerated
telomere shortening and progressive worsening of pulmonary gas
exchange previously described (40).

The observation of a correlation between the blood TL and
airflow limitation suggests either that the circulating immune
cells may have a pathobiologic role or that the effect of smoking
exposure can be identified outside the lung (44, 45).

Although, as expected (46, 47), mtDNA-CN decreased
significantly with age, it was not related to any lung function
parameter. A previous study showed reduced mtDNA-CN levels
in blood of COPD (17) but, at variance with our analysis, their
results were not adjusted by age. In any case, our observations
here illustrate that two different hallmarks of ageing (TL and
mtDNA-CN) behave differently in relation to lung function,
indicating again that not all the ageing mechanisms may be
equally relevant for the pathobiology of COPD. This observation
is in line with the results of Rutten et al. (38), who also measured
different ageing markers in patients with COPD, albeit they only
found TL to relate to lung function.

A somewhat surprising finding was that the multivariable
analysis showed that cumulative smoking exposure in ever
smokers did not affect the relationship between TL and lung
function at any age. Yet, this observation is in keeping with the
results of a meta-analysis of 18 longitudinal cohorts by Bateson
et al. indicating that smoking does not accelerate leucocyte
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telomere attrition (48), and with those of Cordoba et al. showing
that telomere shortening is associated with the airflow limitation
independently of the smoking status (16). Importantly, it does
not detract from the firmly established view that smoking is a key
environmental risk factor for COPD (3); it only indicates that
smoking per se does not influence the relationship between TL
and lung function. In fact, the previous studies have shown a lack
of correlation between packs year and FEV1 % ref. in the patients
with COPD (49). Future studies should assess the prevalence of
genetic variants associated to telomere length in the young and
old patients with severe COPD (50).

Finally, it is known that TL and mtDNA-CN are inter-related.
Whereas, mitochondrial dysfunction cause telomere attrition
(51), telomere dysfunction activates the DNA damage response
(p53) and leads to the repression of PGC-1α/PGC-1β and their
downstream targets, that in turn drive a mitochondria biogenesis
decline (52) and mitochondrial dysfunctions (11). Therefore, it
has been suggested that investigating the correlations between
TL and mtDNA-CN (as a surrogate marker of mitochondrial
dysfunction) can provide insights into the balance between
these two processes (53). Here we found that the relationship
between TL and mtDNA-CN had a positive slope in the young
patients with COPD, indicating that the young individuals with
shorter telomeres have less mtDNA copies, but a negative one
in the old patients with COPD, suggesting an accumulation
of mitochondria with impaired respiratory chain because of
impaired mitophagy (54), and/or compensatory mtDNA over-
replication (55, 56). Interestingly, a similar loss of TL and
mtDNA-CN co-regulation has been described in precancerous
lesions (57, 58). It is well-established that lung cancer is more
prevalent in (old) patients with COPD (59). Whether or not our
observation of a different co-regulation of TL and mtDNA-CN in
old patients with COPD relates to their higher incidence of lung
cancer deserves further investigation (60).

Strengths and Potential Limitations
To our knowledge, our study is the first to investigate two
ageing hallmarks in young and old patients with COPD. Yet,
we acknowledge several potential limitations. First, the sample
size of the young patients with COPD and older controls
is limited, and the cases and controls are not age-paired,
accordingly, all the models were adjusted by age. Second, to
avoid a potential confounding effect of tobacco smoking, controls
were ever smokers with normal lung function and we did not
study never smokers, which could have given us additional
information. Finally, the blood cell counts were not available
in our study so we could not include them as covariates in
our models.

CONCLUSIONS

Telomere length, but not mtDNA-CN, is associated with
lung function parameters independently of age, sex, and

smoking. Short telomeres are observed both in young and old
patients with COPD with severe airflow limitation, suggesting
that telomere attrition may be involved in some COPD
endotypes and in the young patients. The different relationship
between TL and mtDNA-CN in young and old patients with
COPD deserves further investigation. Finally, more studies
investigating several hallmarks of ageing are needed to better
understand the influence of accelerated ageing in young patients
with COPD.
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