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Machine learning (ML) approaches are a collection of algorithms that attempt to extract

patterns from data and to associate such patterns with discrete classes of samples

in the data—e.g., given a series of features describing persons, a ML model predicts

whether a person is diseased or healthy, or given features of animals, it predicts weather

an animal is treated or control, or whether molecules have the potential to interact

or not, etc. ML approaches can also find such patterns in an agnostic manner, i.e.,

without having information about the classes. Respectively, those methods are referred

to as supervised and unsupervised ML. A third type of ML is reinforcement learning,

which attempts to find a sequence of actions that contribute to achieving a specific

goal. All of these methods are becoming increasingly popular in biomedical research

in quite diverse areas including drug design, stratification of patients, medical images

analysis, molecular interactions, prediction of therapy outcomes and many more. We

describe several supervised and unsupervised ML techniques, and illustrate a series

of prototypical examples using state-of-the-art computational approaches. Given the

complexity of reinforcement learning, it is not discussed in detail here, instead, interested

readers are referred to excellent reviews on that topic. We focus on concepts rather than

procedures, as our goal is to attract the attention of researchers in biomedicine toward

the plethora of powerful ML methods and their potential to leverage basic and applied

research programs.

Keywords: machine learning, biomedical research, supervised learning, unsupervised learning, reinforcement

learning

INTRODUCTION

Machine learning (ML) is a branch of artificial intelligence (AI) that deals with the implementation
of computational algorithms that improve performance upon experience; in other words, a
ML system learns from data (1, 2). In its classical definition, ML approaches include three
types of knowledge acquisition: supervised learning, unsupervised learning and reinforcement
learning (3) (Figure 1).

In supervised learning, an algorithm trains a statistical model, which in turn is able to make
predictions about an unlabeled instance. During training, a column of data containing the answer
(label or target) is used to supervise the learning process (4, 5). For example, given a data set of
cancer patients, the label column could contain tumor classes indicating whether the tumor of a
patient ended up being benign or malignant. Alternatively, the label column could indicate the
number of people affected by an infectious disease in each country of the world. In both cases, the
model learns to associate the values of a series of predictor variables, known as “features” in the ML
jargon, with the label variable. Once trained, the model can predict the label value in new data only
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FIGURE 1 | Representative machine learning algorithms. Machine learning is a

subfield of artificial intelligence and can be divided into supervised,

unsupervised and reinforcement learning. The list of algorithms in each

subfield is not exhaustive but instead are the most popular algorithms in each

subfield. k-NN, k nearest neighbors; PCA, Principal components analysis;

NMF, Non-negative matrix factorization; t-SNE, T-distributed stochastic

neighbor embedding; DQNs,Deep Q networks; SARSA,

State-action-reward-state-action; DDPG, Deep deterministic policy gradient.

from the values of features. It is, a model would be able to predict
whether an unclassified tumor will turn benign or malignant,
or the number of infected people in each country at a future
time point.

Unsupervised learning, as suggested by its name, does not
rely on labels, but purely on values of features, i.e., the intrinsic
structure of data (5, 6). The emphasis here is on the extraction
of knowledge through a process of pattern discovery. An obvious
advantage of unsupervised learning, compared to its supervised
counterpart, is that the onerous and often expensive task of
creating accurate labels is omitted, and so are the potential biases
introduced thereby. A drawback of unsupervised learning is that
it is difficult to assess the quality of what the model has learned,
because it is not known what the correct answer should be (7). In
many scenarios, unsupervised learning can be applied to assign
labels to multidimensional data, and subsequently supervised
learning is applied on the resulting dataset, to gain additional
insight. A typical application of unsupervised learning is the
ordination of transcriptomes sequenced from single cells to
define clusters of cells transcriptionally similar (8). Here, features
values correspond to abundance of thousands of transcripts (or
genes), samples correspond to cells and there are no labels.

Reinforcement learning (RL) is fundamentally different from
the two former approaches because it does not need human-
generated data for training, but instead it learns from a trial
and error process (9, 10). The algorithm receives feedback from
the analytical process itself in the form of rewards when an

action contributes to reach the goal, or conversely in the form
of penalties when the action does not contribute to reach the
proposed goal. The agent (algorithm) aims at maximizing reward
and minimizing penalty (11). Implementation of RL is relatively
more challenging than supervised and unsupervised learning and
for this reason it will not be discussed further here. Readers
interested in fundamentals of RL, or in applications of RL to
biomedical research, are encouraged to read the following (9–16).

ML approaches have been used for decades, and its
conception dates back centuries (17). In recent years, three main
technological advances have given renewed impetus to ML (2).
First, a substantial increase in computing power, which has been
democratized through cloud computing. This has enabled an
effervescence of research in ML by developers and theoreticians
around the world. Second, high-throughput technologies for
data acquisition, including sensors, cameras, DNA and protein
sequencing instruments, high-throughput metabolomics, etc.,
have allowed the accumulation of large amounts of data,
which is invaluable for the efficient training of ML models.
Third, the emergence of big software companies, including
Google, Facebook, Amazon, Microsoft, but also academic
institutions, have contributed the most popular ML frameworks
(libraries) to the community, including TensorFlow, Keras,
PyTorch, Scikit-Learn, Caffe, CNTK, Lasagne, and Theano,
among others. Moreover, cloud computing providers like Google,
Amazon, Microsoft and IBM, now enable users with Artificial
Intelligence algorithms as a Service (AIaaS). Recently, many ML
implementations have already contributed to solving real life
problems in ways that were not possible before.

In the next section, supervised and unsupervised ML are
discussed in more detail and illustrated with examples that
facilitate their comprehension. The algorithms developed for
each approach are plentiful, and it would be impractical to
describe all of them. Instead a handful of the most popular
ones are mentioned here in a rather succinct manner and
the reader is directed to relevant references for a more
comprehensive landscape. This article is not intended for experts
in bioinformatics or statistics, but for researchers in life sciences
that might be interested in incorporating ML approaches to their
research programs. No prior knowledge in computer sciences is
required. We hope that this lay introduction will help readers to
become conversant withML fundamentals to ultimately facilitate
its adoption.

MACHINE LEARNING APPROACHES
DEMYSTIFIED

Supervised Learning
Supervised learning deals with two families of problems:
classification and regression (5, 7). In the first case, predictions
are made about a categorical variable (e.g., cancer type, survival
of patients, etc.); in the second case, the label is a numerical
variable (e.g., number of infected people, price of a treatment,
etc.). Also, a numerical variable can be converted into classes
and then handled as a classification problem. Initially, data is
divided into two subsets: a larger subset, often 60–75%, which is
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used for training the model, and a test subset used for prediction
and evaluation. Often, separate evaluation and test datasets are
used. In those cases, the evaluation dataset is used for tuning the
parameters of the model and for feature selection, while the test
data set is used for an unbiased evaluation. For simplicity, here
we will refer to them just as the test dataset. During training,
the labels are shown to the model, so that it learns to associate
patterns in the data with specific values of the target column.
Once trained, the model can be evaluated on the test data subset,
and its performance is determined based on metrics. When a
model predicts values of the target variable with high accuracy,
it is said that the model generalizes well. The description of
some popular supervised learning algorithms follows. Since most
algorithms are available for classification and regression analyses,
unless otherwise mentioned, that should be assumed to be the
case. Currently, supervised learning is by far the most important
approach for biomedical research and for this reason it receives
special attention here.

K-Nearest Neighbors
The k-NN algorithm assumes that similar things are in close
proximity to each other. Based on Euclidean distances among
samples (or other more sophisticated distance metrics), the k-
NN algorithm iteratively assigns samples to clusters, so that
samples with similar feature values will be separated by shorter
distances and therefore will be assigned to the same cluster (1,
18). However, it is possible that samples clustered together belong
to different classes, e.g., samples from benign and malignant
tumors might integrate the same cluster; in those cases, newly
added samples are assigned to the majority class, through a
voting process (e.g., if most samples in that cluster belong to the
malignant cancer class, any benign sample erroneously assigned
to that cluster, will also be classified as malignant). As proximal
samples are added to a cluster with the nearest centroid, centroids
are recalculated. The final goal is to minimize inertia, which
is the sum of distances between the centroid and the samples
inside a cluster. Because the end data structure of a k-NN process
is a distance matrix, it is not possible to assess the individual
contribution of each feature to the classification process (19).

Let’s illustrate the k-NN algorithm with a real example.
The hepatitis data set (illustrated in Supplementary Figure 1),
contains records of 155 patients affected by hepatitis with
measurements of a series of clinical variables aimed at helping
clinicians with monitoring disease progression. Despite its small
size, this is a popular dataset in ML forums because its structure
is well-suited for explanation of ML concepts (20, 21). Of those,
32 patients died and 123 survived. Survival is the label here. The
optimal number of neighbors (k) to consider in a k-NN model
is determined empirically using the training dataset. As seen in
Figure 2A, 1–5 neighbors lead to the highest accuracy (82%).
Predicting survival of patients correctly 82% of the time is a very
encouraging result, but let’s see whether that can be improved.

Decision Tree-Based Approaches
Using the analogy of a tree to describe this algorithm is very
convenient. Let’s assume that the whole population of samples
corresponds to the root of the tree. The interest then is to split

such a population into branches and leaves so that after each
split, the subset of samples remaining is more homogeneous than
its precursor. More formally, the process consists in splitting
precursor populations into decision nodes, which represent
attributes of the dataset under analysis (7, 22). A simplistic
example involves the classification of birds and mammals from
a mixed root population including penguins, eagles, whales
and wolves. In the first decision node, we could ask “does it
have feathers?” This will separate mammals from birds. In the
mammals branch, we could create a second decision node by
asking “does it live in the sea?” This will separate whales from
wolves. Similarly, in the birds’ branch we could ask “does it fly?”
This will separate penguins from eagles. That is the basic idea.

The choice of attributes as decision nodes is informed by
statistics. Although there are many decision tree algorithms,
all will calculate statistics on each attribute and will select the
one that best purifies the resulting subsets of samples with
respect to the target variable (23–25). Let’s use the iterative
dichotomiser 3 (ID3) algorithm to illustrate the process (26, 27).
The process starts by assigning all samples to the root of the
tree. At each iteration, the algorithm calculates entropy (H) and
information gain (IG) for each attribute that can be used as
a decision node. Here, the entropy of a set is a measurement
of randomness of the labels of those instances; the larger the
entropy the less homogeneous the subset of samples comprising
a node. Conversely, information gain measures how well a given
attribute allows separation of training samples according to the
target variable. Therefore, the algorithm aims at maximizing and
minimizing IG and H, respectively.

When a decision tree algorithm was applied to the hepatitis
dataset, an accuracy of 82.1% was obtained, which is quite similar
to the results obtained with the k-NN algorithm above. The
decision tree obtained is presented in Supplementary Figure 2A.
As seen, it placed albumin in the first node (root) and asked
whether the content of each sample is smaller or equal to 1.598
and then split samples accordingly. Overfitting occurs when the
model learns the training data too well and consequently does
not perform well on test data. Intrinsically, decision trees are
prone to overfitting, and that reduces their ability to generalize.
There are at least two ways to reduce overfitting in decision
trees, one is by pruning the tree, i.e., reducing its depth. The
other way is to use ensembles of trees, which are implemented
in different algorithms like random forest or gradient boosting
classifiers (1, 3).

Random forest is a collection of decision trees (7, 19). The
assumption is that individual trees will overfit the data in
different ways and averaging the results of many trees will
reduce overfitting and consequently will improve accuracy of
classification. Randomness is injected in two ways. First, the
algorithm bootstraps to extract n samples with replacement.
It means that each data set extracted in this way will be
the same size of the original dataset but some samples will
be missing while others will be repeated. Second, at each
decision node, the algorithm randomly selects a subset of
these samples and selects the feature that best splits these
samples (3). Gradient boosting works in a similar way, but
for the sake of space will not be discussed here. Instead, we
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FIGURE 2 | Illustration of supervised learning algorithms. (A) Relationship between number of neighbors (k) and accuracy in the k-NN algorithm when applied to the

hepatitis dataset. (B) Feature importance when the random forest algorithm was applied to the hepatitis dataset. (C) Tri-dimensional scatter plot of values of albumin,

bilirubin and protime in patients included in the hepatitis dataset. (D) Decision surface of the logistic regression model applied to the hepatitis dataset illustrated in a

two dimensional plot including only albumin and bilirubin. (E) Comparison of the theoretical probability distribution of a logistic regression model with the probability

distribution of survival of patients in the hepatitis dataset when only albumin is considered as regressor. (F) Lollipop plot of accuracy achieved during classification of

survival in the hepatitis dataset. k-NN, k nearest network; SVC, Support vector classifier; LogReg, Logistic regression (R squared); SGDC, Stochastic gradient descent

classifier; DTC, Decision tree classifier; RFC, Random forest classifier; GBC, Gradient boosting classifier; MLPC, Multilayer perceptron classifier.

encourage reading (28–30). When a random forest algorithm
with 60 individual trees was applied to the hepatitis dataset, the
accuracy in classification was 85%, which represents a substantial
improvement compared to the individual decision tree described
above, or to the k-NN approach (accuracy ∼ 82.1%). As shown
in Supplementary Figure 2B (only considering bilirubin and
albumin as predictors), the decision boundary defined by the

random forest algorithm is smoother than the one of the single
decision tree. A convenient attribute of decision trees, random
forest and gradient boosting algorithms is that the individual
contribution of each feature to the model can be visualized. In
Figure 2B, the individual contribution of each feature to the
classification process is presented. Albumin and bilirubin are
dominant, followed by protime (which is the time that takes
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for the blood of a patient to clot in a prothrombin time test),
ascites (build up of fluid in the peritoneal cavity) and age. Indeed,
when plotting samples in a 3D space including only albumin,
bilirubin and protime, a good separation of patients that died
from those that survived is achieved (Figure 2C). Although it
appears obvious that the content of bilirubin and albumin is
higher and lower, respectively, in patients that died, separation of
patients based on only these three features is not perfect, which
suggests that other features also contribute to the outcome of the
disease. Can we still improve on the great performance exhibited
by random forest?

Linear Models
Linear models are among the simplest, and therefore most
popular, models in ML (1, 31). Essentially, a linear model
represents the weighted sum of the input features plus an
intercept or bias term (32). Given their simplicity, they are ideal
for more formally explaining the concept of model or hypothesis.
Let’s consider the following equation:

Equation 1. General equation of linear models for regression.

ŷ = w [0]∗ x [0]+w [1]∗ x [1] . . .+w [n]∗ x [n]+b = b+

N
∑

i=1

wixij

We see that each of the features (X) is weighted in the sum by
a value w and the whole line has a bias equal to b. It means that
the contribution of each feature to the model may be different.
Generally, there will be a difference between the predicted target
values and the real ones, in other words a cost associated with the
process of mapping. The magnitude of such cost can be estimated
by a cost function, using an estimator like the mean squared error
(MSE). The problem becomes one of finding the parameters in
the model that minimize the costs. This can be achieved using
another function called gradient descent (33, 34).

In a two-dimensional space, the equation above defines a
line which starts at b and extends upwards or downwards
depending on the slope (w). In three dimensions, the output
of the function is a plane, and in multidimensional spaces is a
hyperplane. The problem is that the relationship between features
and target is often non-linear, and therefore linear models have
reduced predictive potential to explain such relationships. Most
linear models are used for regression analysis and therefore
are not suitable to predict survival in our hepatitis example.
There are also linear models for classification of categorical
target variables, logistic regression (35) and linear support vector
machines (SVM) being themost popular of them.We will discuss
classification with logistic regression here, for a discussion on
SVM, the reader is encouraged to review (7, 19).

Logistic regression is very popular in biomedical research (36),
and is often used to predict whether a set of conditions will result,
or not, in disease or death of patients. Logistic regression is a non-
linear function that models the probability of belonging to a class
or another based on a linear combination of features (36). For
a target variable with two outcomes, as in our hepatitis example
(death or alive), the logistic regression equation is as follows:

Equation 2. Logistic regression equation for binary
target variables.

ŷ =
eX

1+ eX

where x corresponds to the linear regression equation
presented above. The linear regression equation defined by the
exponent x gives rise to the logit or logarithm of the odds:

Equation 3. Log odds in logistic regression.

ln

(

ŷ

1− ŷ

)

= b+

N
∑

i=1

wixij

In other words, the linear model defines the natural logarithm
of the probability of being in a class divided by the probability
of being in the other class. When we applied logistic regression
to the hepatitis dataset, an R2 of 0.90 (90%) was obtained,
which is a pretty satisfactory result. To illustrate its intrinsic
linear nature, we plotted the decision surface of this model
only for albumin and bilirubin (Figure 2D). The probability
distribution of survival based only on albumin, which is the most
influential feature, closely mirrored the theoretical probability
distribution of logistic regression (Figure 2E). As can be seen,
there are no values for albumin concentration below some point,
likely because that is the threshold of lethality (Figure 2E). It
is important to note that the R squared statistic is not directly
comparable to the accuracy of a model; it does not reflect
the prediction power of the model, instead, it represents the
proportion of the variance explained by the model.

Deep Learning
The approaches discussed so far belong to the classical ML
realm. Artificial neural networks (ANN; often referred to as
feed-forward neural nets) owe their name to the fact that they
aspire to emulate the interconnected system of neurons. ANNs
are central to deep learning (37). Although ANNs were initially
proposed more than 70 years ago (38), interest in them has
recently been revived mainly due to the exponential increase
seen in computer power and data for training ANNs. This led
to successful implementations that further boost their relevance.

The perceptron is an ANN with a single neuron (Figure 3A),
and it is an ideal architecture to explain the foundations of neural
networks (39). As seen in Figure 3A, the perceptron receives
numeric inputs and calculates a weighted sum (as explained
above for linear models of regression). It means that each input
value is multiplied by a weight and then all are summed, along
with a bias, to finally produce an output. In other words, the
weights estimate how large a change in the output is expected to
be when the input changes (i.e., the relative contribution of each
feature to the output), while the bias allows shifting the activation
function by a constant to better fit the model to the data. The
reader probably already noticed that such a description is simply
a linear model of regression. ANNs differ from classical linear
models in what is called an activation function (Figure 3A),
and weights are calculated in a different manner. As biological
neurons, an artificial neuron has to decide, using the activation
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FIGURE 3 | Illustration of artificial neural networks (ANNs). (A) Perceptron, a neural network with a single neuron.
∑

represents the weighted sum, f represent the

activation function, and b represents the bias term. (B) Deep neural network with three hidden layers. Each interconnected node represents a neuron. (C) Neural

network with a single hidden layer. (D) Heat map representation of weights in the multilayer perceptron model applied to the hepatitis dataset.
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function, whether it gets activated or not, based on themagnitude
of the stimulus received. Thus, the equation of a perceptron is the
linear regression equation multiplied by an activation function.

Equation 4. Equation of a perceptron output.

ŷ = f

(

b+

N
∑

i=1

wixij

)

The activation function can be as simple as the
implementation of a threshold (i.e., step function) that acts
like a switch that turns the neuron on and off if a threshold value
is exceeded, or there can be other non-linear transformations that
allow ANNs to learn complex data patterns. The true complexity
is based in many layers applying simple functions. Non-linear
transformations include the rectified linear function (ReLu;
which despite its name is non-linear), the sigmoid function (the
same as the logistic regression) and hyperbolic tangent function
(Tanh), among others (3, 40, 41).

Deep learning relies on deep neural networks (1, 19). Unlike
perceptrons, a deep neural network contains many neurons,
each of them connected to neurons in other layers by edges
that represent the weights and each neuron has an activation
function (Figure 3B). The weighted sum, including a bias term,
and passed through an activation function is associated with an
error that represents the distance from the output to the expected
prediction values. Neural nets adjust weights to reduce the error
through algorithms like back-propagation (1, 42), but discussion
of such concepts is beyond the scope of this article. If we imagine
a neural net with four features as inputs, then going through a
single hidden layer with three nodes (Figure 3C), the equation to
calculate the output would be the following.

Equation 5. Deep neural network equation using tanh non-
linearity.

ŷ = v [0]∗ h [0]+ v [1]∗ h [1]+ v [2]∗ h [2]+ b

v: weights between the hidden layer and the output.
h: intermediate values stored in neurons of the hidden layer.
h is calculated as:

h [i] = tanh









(H−1)
∑

(i=0)

(N−1)
∑

(j=0)

w[i, j]



+ b[i]





H: number of nodes in the hidden layers.
N: number of features
w: weight between the input and the nodes in the hidden layer.
When we applied a multilayer perceptron to the classification

problem on the hepatitis dataset, we achieved an accuracy of
84.6%. A disadvantage associated with neural networks is that
interpretation of the model is quite troublesome. In our example,
we applied a neural network and calculated and deployed
the weights associated with such a neural network in a heat
map (Figure 3D); results are far from clear. A statement that
can be made is that features with smaller weights are less
important for the model (their influence on the target variable
is less significant).

Figure 2F presents the classification results achieved by
several algorithms. Logistic regression achieved an R2 of 90%,
accuracy of other algorithms (k-NN, support vector classifier,
SVC; stochastic gradient descent classifier, SDGC; random forest
classifier, RFC and multi-layer perceptron classifier, MLPC)
ranged between 82 and 85%.

Another type of neural nets are convolutional neural networks
(CNNs or ConvNets), which are often applied to the field of
computer vision to conduct image classification. CNNs were
inspired by the organization of the visual cortex of the human
brain (43). In their seminal work on cats and monkeys, Hubel
andWiesel (44, 45) determined that the individual neurons in the
visual cortex were responsible for perceiving only a small portion
of the visual field and the tiling of many overlapping visual
subfields acquired by many neurons creates complex images. As
illustrated in Figure 4A, when the brain attempts to perceive
the image of a car, a whole image will be the composite of
many subfields that observe individual overlapping sections of
the car. The authors also discovered a high level of diversity
and specialization among neurons of the visual cortex: some
of them were dedicated to the perception of simple geometric
patterns like lines and arcs, while other higher-level neurons
were able to perceive more complex patterns, derived from
the combination of lower level patterns (Figure 4A). For such
breakthrough discoveries, Hubel andWiesel won the Nobel prize
for Physiology and Medicine in 1981.

Although CNNs were conceived in the 1980’s (47, 48), they
remained in the shadows because of their initial inability to
scale up: they needed a lot of images and hence computer
resources to perform considerably well. However, it should not
be surprising that emulating the primary visual pathway of the
human brain has been troublesome, after all it took nature 500
million years to evolve such a system (49). Recent advances in
computer power and the exponential accumulation of images
in diverse realms of research and technology revived interest in
CNNs (50, 51).

As said above, CNNs function in a highly hierarchical manner.
Initially, a CNN layer starts detecting lines and arcs. This
information is passed to the next convolutional layer, which
detects combinations of edges and corners. Eventually, the deeper
layers of the convolutional network are able to detect complex
patterns, like faces, cars, cancerous tissues, etc. They are called
convolutional because to transfer information across layers of the
network, mathematical convolution is used. Convolution refers
to the combination of two functions to produce a third function;
or more simply put, two sources of information are merged into
a single function (52).

In a conventional neural net, the neurons of a hidden layer
are fully connected to all neurons in the contiguous layer, and
finally a fully-connected output layer provides the predictions of
the network (53). In a CNN, layers are three dimensional (width,
height, and depth), and more importantly, the neurons in a layer
are not connected to all neurons in the next layer, but instead
to only a small number of them. The output could be a class or
a vector of probability of classes. CNNs processing starts with
feature extraction; for that, a filter or kernel (of size equal to
the receptive field) is slid along the full image to create a feature
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FIGURE 4 | Application of a convolutional neural network (CNN) to classify cancer tissue. (A) CNNs are emulations of sets of neurons that detect individual

overlapping visual sections called receptive fields. Such neurons detect simple features of the object, such as lines and arcs. Deeper neuronal layers detect more

complex shapes derived from the initial elements and progressively the whole object is resolved. (B) Representative patches from the invasive ductal carcinoma (IDC)

tissue sections described in Cruz-Roa et al. (46) and classified as non-cancerous tissue by a pathologist. (C) Representative patches from the invasive ductal

carcinoma (IDC) tissue sections classified as cancerous tissue by a pathologist. In (B,C), darker regions correspond to nuclei stained with hematoxylin, which appear

denser in (C) probably due to increased cell proliferation in cancerous tissues. (D) Digital reconstruction of tissue sections from individual patches in six different

patients. Red regions represent non-cancerous tissue, while blue regions represent cancerous tissue. (E) Accuracy for training and test data sets obtained when a

CNN was applied to the IDC dataset.

map, which is the sum of convolutions. Finally, a classification
procedure is applied (43).

In order to illustrate CNNs, we used breast cancer (invasive
ductal carcinoma, IDC) sections that had been classified by a
pathologist (46). The authors divided the slides’ pictures into
100 × 100 pixels non-overlapping patches, which resulted in
more than 270,000 patches. A patch was considered positive if
at least 80% of the patch was contained inside the cancerous
annotated region, or negative otherwise. Examples of negative
and positive patches are presented in Figures 4B,C, respectively.
Digital reconstructions of sections from its constituent patches
are depicted in Figure 4D. Because the IDC dataset is largely

unbalanced, i.e., many negative and few positive patches, we
extracted a subsample with equal number of positive and negative
patches (∼13,000 patches in each class), in order to be able
to evaluate the performance of our CNN using accuracy as
a metric (accuracy is not a reliable metric for unbalanced
datasets). Although we run the model for 50 epochs (iterations)
it quickly (around epoch 20) plateaued between 81 and 82%
(Figure 4E). Thus, a relatively simple implementation of a
CNN yielded satisfactory classification of cancerous and non-
cancerous breast tissues.

In addition to conventional (feed forward) neural nets and
CNNs, there exist other types of more complex neural nets
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not discussed here, including long short-term memory (LSTM)
(50, 54) and Kohonen’s self-organizing maps (SOM) (55), which
find applications in, for example, protein folding (54) and
hematopoietic differentiation (56), respectively.

In summary, supervised ML approaches have great potential
in biomedical research because supervision of the model
performance with real clinical data provides confidence for
making decisions about treatment of patients. The emphasis of
this report is just to provide a general overview of how ML
approaches work, providing enough details for the reader to
gain a good grasp about the underlying methods but without
entering into particular details of algorithms or unnecessary
mathematical explanations.

Unsupervised Learning
Clustering and Ordination
There are two families of techniques in unsupervised learning:
clustering and dimensionality reduction (ordination). Clustering
aims at partitioning data into constituents, usually based on
distance among samples. The basic idea is that data points
in the same cluster have similar properties, and are more
different from data points in other clusters. There exist a variety
of clustering algorithms—including agglomerative clustering,
DBSCAN, KMeans, Birch clustering, Gaussian mixture model,
spectral clustering, etc. (1, 57). Their efficiency and reliability
depends on the distribution of the dataset under analysis; this
means no single algorithm performs best on all tasks This is why
deciding on the best model needs to be determined empirically.
Also, some algorithms scale better than others; for example,
algorithms that compute pairwise similarities among all samples
do not work well for large datasets.

Instead of defining each clustering algorithm, we will
illustrate some of them with a simulated example. We generated
10,000 random instances (each a pair of values) grouped
into three classes, each of them with a normal distribution
(Supplementary Figure 3A). To evaluate the performance of
clustering methods, the Silhouette score may be used. The
Silhouette score is a metric to estimate the robustness of
clustering, whose value ranges from−1 to 1, with higher values
associated with clusters integrated by similar samples, while
low values indicate that clusters contain heterogenous samples
(58, 59). We applied a series of clustering algorithms on our
simulated 3-clusters dataset (Supplementary Figures 3B–F), and
then colored each according to the cluster it was assigned to by
the clustering algorithm. As seen, all clustering algorithms tested
achieved very similar results, faithfully reflecting clustering in
the original dataset. KMeans clustering produced a Silhouette
score (0.506) that was slightly higher than the other methods:
Spectral clustering (0.492), Gaussian mixture clustering (0.484),
Birch clustering (0.479) and Agglomerative clustering (0.471). As
said above, no clustering method is the best, but KMeans is often
a good starting point.

The number of input variables or features describing
an instance is called its dimensionality. Techniques for
dimensionality reduction are often used for visualization.
Dimensionality reduction techniques use linear algebra,
projection methods and autoencoders (see below for a brief

discussion on autoencoders). Many ordination techniques
were developed in the context of population ecology, where
the interest was to know the relationship among groups (e.g.,
species) in a community (60, 61). Popular ordination approaches
include distance-based techniques like Principal coordinates
analysis (PCoA) and Non-metric multidimensional scaling
(MDS), Eigen vector gradient analysis like Principal component
analysis (PCA) and Correspondence analysis (CA), and manifold
learning like autoencoders, isomaps and t-distributed stochastic
neighbor embedding (t-SNE) (1, 57, 62).

Because those techniques have been widely used in biomedical
research for quite some time (60, 61, 63, 64), they will not
be discussed in detail here. However, we will illustrate t-SNE,
PCA and MDS with real data. In a nutshell, t-SNE derives
a probability distribution in the high-dimensional space using
Euclidean distances between objects and a similar distribution
in the low-dimensional space, trying to minimize the Kullback-
Leibler divergence between the two probability distributions
(65–67). The most important parameter of a t-SNE algorithm
is the perplexity, which controls the width of the Gaussian
kernel used to compute similarities between samples, and hence
to control the number of nearest neighbors associated with a
specific data point (68). Nevertheless, t-SNE is criticized for not
preserving global structure of data, which may be critical for
some practical applications (69). PCA is a multivariate statistical
technique developed at the very beginning of the twentieth
century by none other than Pearson (70). The central tenet in
PCA is to reduce dimensionality of multidimensional datasets
with interrelated features, to be able to visualize data in a
low-dimensional space that contain most of the variance of
such a dataset. This is achieved by transforming the original
feature into uncorrelated, orthogonal, principal components
(63, 71). MDS is a representation and dimensionality reduction
technique that maps instances into a low-dimensional space in
a way that attempts to preserve the relative distances between
instances. Samples that are more similar will be represented
near to each other, while different samples will be represented
apart (72, 73). Mathematically, it transforms, using Eigenvalues
decomposition, a dissimilaritymatrix (distance between samples)
into a coordinate matrix while minimizing a loss function;
in other words, trying to preserve the original distances
between samples (64).

To provide a more practical illustration of both clustering
and ordination techniques, we analyze here, in an agnostic way,
transcriptomics single-cell data from (8). The dataset contains
gene abundance derived by 10X Chromium technology from
1,291 individual microglia from mice with injury in their spinal
cord, as well as naive animals. In order to select the optimal
number of clusters defined by the dataset, we used the elbow
method of the KMeans clustering algorithm. In this method,
the algorithm is fit to a range of cluster numbers (k). For
each k, we compute the inertia, which is the sum of squared
distances of instances to the closest cluster center; in other
words, how far away points within a cluster are located. When
plotting the inertia as a function of the number of classes, we
typically see an arm-like shape; we can then use the point of
inflection of the curve (elbow) as an indicator of best fit of
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the model. In our case, the elbow was located at three clusters
(Figure 5A). However, because we had the knowledge presented
by Plemmel et al. in their paper, we knew that two (naive
vs. injury), three (two naive vs. one major injury groups) or
five (two naive vs. three injury groups) clusters were correct
forms to partition the dataset. Silhouette coefficients of KMeans
clusters suggested partition of data points into two (Figure 5B)
or three (Figure 5C) clusters. For graphical representation, we
initially chose the t-SNE method. As seen in Figure 5D, t-
SNE deployed instances into a somewhat circular distribution;
however, the specific shape of the t-SNE plot is highly dependent
on the data transformation method used prior to t-SNE and
the value of perplexity chosens. We applied the StandardScaler
method of Scikit-learn and a perplexity of 30, which is the
default value in most t-SNE implementations. Because we knew
that the cells represented subpopulations from mice with or
without injury in their spinal cord, we initially clustered the
data points population into two clusters (Figure 5E; orange and
green clusters) and subsequently into three clusters (Figure 5F;
red, black and blue clusters). Plemmel and collaborators reported
that cells in lesion 1 exhibited higher expression of the genes
Apoe, Spp1, Cxcl2, Lyz2, and Cd74. Accordingly, we conducted
differential expression analysis, and found that indeed all those
five genes were differentially expressed when the two naive
clusters (together) were compared against lesion 1 samples
(Figure 5G). Thus, combining KMeans clustering and t-SNE, we
were able to recapitulate the results reported by Plemmel and
collaborators for the major lesion samples vs. the naive ones. To
further test the reliability of our clustering, we subjected such
classification to supervised ML. We applied gradient boosting
classification and could indeed predict labels of the two clusters
(Figure 5E) with an accuracy of 98% and labels of the three
clusters (Figure 5F) with an accuracy of 94%. For comparison,
we also clustered the same data using PCA (Figure 5H) andMDS
(Figure 5I) and found that bothmethods effectively separated the
same three clusters but separation of clusters was less clear than
in the case of t-SNE. When we applied a regularized logarithmic
transformation to the data, prior to ordination, it substantially
improved the resolution of clusters for t-SNE, but had the
opposite effect for PCA andMDS (Supplementary Figure 4).We
did not explore this in more detail.

Autoencoders
Autoeconders are typically artificial neural networks (ANNs)
used for representation learning. Representation learning is a
technique that allows a model to learn features essential for
accomplishing a specific analytical task. An autoencoder learns
to compress data and also has the capability to reconstruct such
data to generate a representation that attempts to be as similar as
possible to the original data. These two tasks are accomplished
by two submodels: the encoder (recognition network) and the
decoder (generative network), respectively (74–76). The encoder
can be viewed as a filter that selects some of the most relevant
features that are sufficient to represent the data in a compressed
format (fewer dimensions). Between them is the compressed code
that is able to regenerate the data and is also known as latent-
space representation (74). However, although the decoder aims

at reconstructing the original data, it only uses the information
contained in the code. The difference between the original and
the regenerated data is called the error, which is estimated by
a loss function. Because autoencoders remove noise to generate
the compressed representation of the data, they naturally reduce
dimensions. There are several types of autoencoders, including
undercomplete, stacked, sparse, convolutional, contractive and
variational ones, among others. For a detailed description of such
approaches, see (19, 75).

For the sake of clarity, we reproduce here an example
presented by Géron (19) that helps to understand the encoding
process. Consider two vectors of numbers:

[40, 27, 25, 36, 81, 57, 10, 73, 19, 68]
[50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13,

40, 20]
The second vector, despite being longer, is easier to encode

than the first one, because it contains a pattern. Every even
number is followed by its half (50 by 50/2 = 25), while odd
numbers are followed by its triple plus one (25 by 25 × 3+1 =

76). Thus, to learn the second sequence of numbers, the encoder
only has to deduce these two rules, the first number in the series,
and the length of the series of numbers. The first vector would
be difficult to compress. Thus, autoencoders work better when
elements in a data set contain patterns and poorly when they are
independent from each other. Thus, the task of the autoencoder
is to detect correlations between input features (19).

The architecture of an autoencoder is similar to the ANNs
(multi-layer perceptrons) presented in Figure 3, with two
caveats: (i) the number of neurons in the output layers is the
same as the number of inputs (features), because the autoencoder
tries to regenerate the original data; and (ii) for undercomplete
autoencoders, the hidden layers have fewer neurons than inputs,
that force the autoencoder to select only the most relevant
features in a compressed representation (Figure 6A). We applied
undercomplete autoencoders to assess whether a better visual
representation of the suspected two or three clusters could be
obtained for the microglia single cell transcriptomics data. As
mentioned above, among critical parameters of an ANN are the
activation and loss function used, which affect performance of
the model in a data-type dependent manner. When trying to
separate two clusters, we used the Tanh and GELU activation
functions (for hidden layers) and the Poisson NLL loss (pnl)
and the Kullback Liebler divergence (kl_div) loss functions. We
tested three configurations, and found each was successful in
separating naive from lesion cells (Figures 6B–D). In all cases,
the decoder loss was smaller than 10% (loss< 0.1), and the lowest
error (loss) was reported for the configuration GELU-kl_div. We
then run a gradient boosting classifier (GBC) to train a model
that could classify instances into the appropriate original labels
from the compressed representation of data in the latent space of
the autoencoder. The resulting GBC model was able to classify
the compressed representation of two clusters with an accuracy
of 94%. We then tried to separate three clusters in the single
cell population, using the same loss functions, combined with
the ReLU or GELU activation functions. Three configurations
tested provided satisfactory separation of the three expected
clusters (Figures 6E–G), but the lowest loss was obtained for the
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FIGURE 5 | Clustering of microglia single cell transcriptomes using tSNE, PCA or MDS. (A) Determination of optimal number of clusters through K-means clustering.

Validation of cluster number (n) with the Silhouette method when two (B) or three (C) clusters were considered. (D) Transcriptome samples clustered with tSNE (n = 2)

and colored with a single color, or with two colors (E). Such clusters correspond to naive and lesion cells. (F) Transcriptome samples clustered with tSNE (n = 3) and

colored with three colors. Such clusters correspond to two naive and one lesion groups of cells. (G) Representative differentially expressed genes between naive and

lesion cells (see E), were in agreement with (8). (H) Transcriptome samples clustered by PCA or with MDS (I).

configuration ReLU-pnl. AGBCwas able to classify data points in
the latent space of the autoencoder with an accuracy of 88%. The
autoencoder compressed the 12,138 features (transcripts) into
40 compressed features. Thus, although using an autoencoder
to generate low-dimensional representation of the single-cell
RNAseq data slightly reduced the classification accuracy with a
GBC model, the visual representation had higher resolution and
allowed better discrimination of the clusters. A few instances
corresponding to the lesion cluster were spread out away
from the corresponding cluster. It is possible that those data
points correspond to the small lesion clusters reported by
Plemel et al. (8).

Anomaly Detection
In classical statistics, an outlier can be defined as an observation
that lies at an unexpected distance from the rest of observations

in a random sample from the same population. Assessment of
such observations usually involves graphical methods like scatter
or box plots, and were historically identified and removed from
datasets. ML also offers methods to detect outliers and refers to
them as anomalies (77–79). Essentially, a model is trained with
“normal” instances, and learns to identify instances that deviate
from such a subset (19, 80). Initially, those samples were removed
for subsequent analysis, but more recently they are studied
as cases that could represent critical stages of a phenomenon
under study. Such methods have seen applications in many
fields, including biomedical research. Examples are detection of
anomalous signals from body sensors, or detection of cancer cells
in micrographs of tissue from cancer patients in early stages, and
many more (66, 81–83).

Finally, we would like to mention a very exciting class
of ML frameworks dubbed generative adversarial networks
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FIGURE 6 | Clustering of microglia single cell transcriptomes using autoencoders. (A) Cartoon depicting an autoencoder neural network. When aiming at

discriminating between two clusters, we used Tanh (B,C) and GELU (D) as activation functions for hidden layers, and either Poisson NLL (pnl) (B) or Kullback Liebler

divergence (kv_div) (C,D) loss functions. When aiming at discriminating between three clusters, either ReLU (E), or sigmoid (F,G) were used as activation functions.

Loss functions are also indicated (E–G).

Frontiers in Medicine | www.frontiersin.org 12 December 2021 | Volume 8 | Article 771607

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jovel and Greiner Machine Learning in Biomedical Research

(GANs) where supervised and unsupervised deep learning
notions converge. Here, an unsupervised generative model is
trained using two neural networks that compete in a zero-
sum game (84). Informed by statistics from the training
dataset, a generative model learns to create new instances,
while a discriminator model attempts to differentiate between
instances generated by the contesting model and the real
instances from the actual training dataset (50, 75, 84). The two
models update each other until the generator model fools the
discriminator model half of the time (85). GANs can be applied
to different fields in biomedical research, including clinical image
processing (through CNNs), prediction of disease outcome,
and modeling of cell differentiation from single cell RNAseq
data (86–88).

CONCLUDING REMARKS

Machine learning (ML) comprises a vast collection of
computational methods that attempt to extract patterns from
data, then use those patterns to derive mathematical models
that are able to generalize the learned rules on unseen data. In
other words, it generates artificial intelligence. In biomedical
research, supervised and unsupervised ML techniques have
been applied for decades, including regression analyses and
clustering (1, 32, 36, 57, 64). However, with the exponential
increase in computer power and data availability, ML has
gained renewed impetus, especially in the area of deep
learning. Application of modern ML approaches extends
across many areas in biomedical research (14) ranging from
analysis of clinical images, to stratification of patients into
most promising therapeutic interventions, to drug discovery,
and robotics, just to mention a few. Our goal was to bring an
updated and simplified perspective of ML for non-experts in
hope that members of the biomedical research community
would realize the opportunities that ML offers for basic and
applied researchers.
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Supplementary Figure 1 | Graphical description of the hepatitis dataset used to

illustrate supervised machine learning algorithms.

Supplementary Figure 2 | (A) Decision tree obtained when the DTC algorithm

was applied to the hepatitis dataset. (B) Comparison of decision surfaces of a

single decision tree and a random forest applied for classification of survival of the

hepatitis dataset (only albumin and bilirubin were used for creation of such plots).

Supplementary Figure 3 | Illustration of clustering methods on simulated data.

(A) 10,000 random points clustered into three clusters were generated. Such

random points were reorganized into three clusters using agglomerative clustering

(B), Birch clustering (C), KMeans clustering (D), spectral clustering (E) and

Gaussian mixture clustering (F). The Silhouette score is included in each case.

Supplementary Figure 4 | tSNE (A), PCA (B), and MDS (C) when the microglia

single cell transcriptome data was normalized using a regularized logarithmic

transformation.
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