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INTRODUCTION

The use of pulse oximetry data has grown significantly in recent years due to new applications of
the technology and new wearable sensor platforms, as well as the widespread clinical demands of
the ongoing coronavirus pandemic. The recent letter by Sjoding (1) (NEJM, Dec 2020) raising the
effect of race (skin color) on pulse oximetry data has recently prompted the U.S. Food and Drug
Administration (FDA) to exercise caution when using and interpreting pulse oximetry readings,
with recommendation being given to following the trend in pulse oximeter readings rather than
focusing on the absolute value of the readings alone (2). This finding is now being communicated
to the nursing community as well (3).

The database referenced by Sjoding is one of many large pulse oximetry databases that are
often used in clinical research to develop and decision support systems. In addition to the oxygen
saturation values, there is now an increasing use of themorphological features of the pulse oximetry
waveform which are being used, for example, to develop algorithms to predict blood pressure (4)
as well as atherosclerosis (5) for use in patient monitoring and disease management. With the
increasing use of these publicly available pulse oximetry databases, caution should be taken to
prevent creating a bias in the resulting computer algorithms.

METHODS

Prompted by the Sjoding letter, we proceeded to perform a demographic analysis of the
main publicly available pulse oximetry databases. In particular, we were most focused on age
distribution across these data sets, since it is well-known that the pulse waveform morphology
changes significantly as a function of age and atherosclerosis. The result of this analysis, using
freely accessible databases (from 2013 through 2021) consisting of pulse oximeter signal (called
photoplethysmogram or PPG) signals is presented in Table 1. We classified publicly available
databases into two different age categories namely, children (<16 years) and adults (≥16 years).

DISCUSSION

As shown in Figure 1, there is a substantial difference in the number of subjects overall in all
publicly available datasets between children and adults. This significant age bias could potentially
impact algorithms developed to detect specific abnormalities. The morphology of the PPG
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TABLE 1 | Details of different publicly available pulse oximeter databases.

Database No. of subjects Age range (in

years)

Purpose Google scholar citations

(as of 21st of May 2021)

BIDMC PPG and respiration dataset (6) 53 19–90+ Heart rate, respiration rate,

and blood oxygen

saturation level

101

Wrist PPG signals recorded during

exercise (7)

8 22–32 Heart rate 39

MIMIC-III, a freely accessible critical care

database (8)

53,423 16+ Heart rate, oxygen

saturation, systolic, and

diastolic blood pressure

2,641

Real-world PPG dataset (9) 35 NA Heart rate NA

PPG-BP database (10) 219 21–86 Blood pressure 45

PPG dalia (11) 15 21–55 Heart rate 43

WESAD (12) 15 24–35 NS 129

Synthetic dataset (13) 39 18–40 Respiratory rate 173

IEEEPPG dataset (14) 12 18–35 Heart rate 470

PULSE ID (15) 43 22–55 Biometric 14

CapnoBase (16) 42 <76 Respiratory rate 280

NA, not available; NS, not specified.

FIGURE 1 | Number of subjects in publicly available pulse oximeter databases according to two age groups: children (<16 years) and adult (≥16 years). Two

examples of photoplethysmogram waveforms collected via fingertip pulse oximetry probe (left: 15 years old and right: 50 years old) is shown for each age group. Note

that the dicrotic notch is more salient in children compared to adults (i.e., the pulse becoming more triangulated with age).
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waveform is typically different between children and adults, as
shown in Figure 1. If a digital health solution is developed
that combines a PPG sensor and an algorithm, then testing
and evaluating over different age groups is essential to achieve
reliability. Note that a significant difference (p < 0.05) between
PPG waveform morphologies of different age groups (subjects
younger than 30 years, 30–39 years, 40–49 years, and 50 years
of age or older) was reported (17).

On examining all of the 12 databases as reported in Table 1,
there is only one database (i.e., CapnoBase database) that has
data recorded from the children age group, specifically 29 out of
42 subjects. Referring to all the above-mentioned reasons, it can
be clearly stated that there is an age bias while recording data,
whichmakes the evolution of devices such as pulse oximeters and
systems for detecting vascular disease more biased toward the age
category (16 years and above).

Most of the machine learning algorithms, developed to detect
abnormalities, are published on publicly available databases.
Even the FDA-approved PPG-based devices use publicly available
databases for validation. If the publicly available databases are

biased in terms of age, it is expected that all these algorithms
will be developed for a specific age group. This point, to our
knowledge, is not addressed by the FDA yet, and it is essential to
raise awareness so researchers can add “in adults” in their titles,
for example, or in the discussion.

We argue that since pulse oximetry measurements are
particularly susceptible to age, caution should be taken when
using these data to create computer algorithms for patient
monitoring or diagnosis.
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