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Objective: To explore the efficacy of anticoagulation in improving outcomes and safety of

Coronavirus disease 2019 (COVID-19) patients in subgroups identified by clinical-based

stratification and unsupervised machine learning.

Methods: This single-center retrospective cohort study unselectively reviewed 2,272

patients with COVID-19 admitted to the Tongji Hospital between Jan 25 and Mar

23, 2020. The association between AC treatment and outcomes was investigated in

the propensity score (PS) matched cohort and the full cohort by inverse probability

of treatment weighting (IPTW) analysis. Subgroup analysis, identified by clinical-based

stratification or unsupervised machine learning, was used to identify sub-phenotypes

with meaningful clinical features and the target patients benefiting most from AC.

Results: AC treatment was associated with lower in-hospital death risk either in

the PS matched cohort or by IPTW analysis in the full cohort. A higher incidence of

clinically relevant non-major bleeding (CRNMB) was observed in the AC group, but not

major bleeding. Clinical subgroup analysis showed that, at admission, severe cases

of COVID-19 clinical classification, mild acute respiratory distress syndrome (ARDS)

cases, and patients with a D-dimer level ≥0.5µg/mL, may benefit from AC. During the

hospital stay, critical cases and severe ARDS cases may benefit from AC. Unsupervised

machine learning analysis established a four-class clustering model. Clusters 1 and
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2 were non-critical cases and might not benefit from AC, while clusters 3 and 4

were critical patients. Patients in cluster 3 might benefit from AC with no increase

in bleeding events. While patients in cluster 4, who were characterized by multiple

organ dysfunction (neurologic, circulation, coagulation, kidney and liver dysfunction) and

elevated inflammation biomarkers, did not benefit from AC.

Conclusions: AC treatment was associated with lower in-hospital death risk, especially

in critically ill COVID-19 patients. Unsupervised learning analysis revealed that the most

critically ill patients with multiple organ dysfunction and excessive inflammation might not

benefit from AC. More attention should be paid to bleeding events (especially CRNMB)

when using AC.

Keywords: COVID-19, anticoagulation, outcomes, mortality, bleeding events, unsupervised machine learning

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
developed into a pandemic disease and affected nearly every
country in the world. There is no comprehensive and strong
clinical evidence to support the efficacy of any drugs that
specifically target the SARS-CoV-2 (1). Previous research
has found that coagulopathy is very common in COVID-19
patients, and includes thrombosis and coagulation abnormalities
and dysfunction such as an elevated D-dimer level and
prolonged prothrombin time (PT), respectively (2). Autopsy
histopathologic analysis has identified widespread thrombosis
and microangiopathy in small vessels and capillaries of the
lung (3–5), which are different from the pathologies observed
in respiratory failure caused by other diseases (3, 6–8). Some
scholars have therefore proposed anticoagulation (AC) treatment
as an integral part of systemic therapy in the early stage of
COVID-19 (9). Generally, retrospective studies have suggested
that AC may decrease mortality in COVID-19 patients (9,
10), However, these conclusions are not completely reliable
nor applicable to all COVID-19 patients due to limitations
in methodology such as no prospective control or matching
cohort (9–11), large heterogeneity in anticoagulant therapy
(9–12), and a lack of subgroup analysis (10, 11, 13). A
recently completed randomized controlled trial (RCT) found
that, compared with usual-care thromboprophylaxis, an initial
strategy of therapeutic-dose anticoagulation did not result in
a higher probability of survival in critically ill COVID-19
patients (14). The conclusion of this RCT may be inconsistent
with that of previous retrospective studies. At present, the
recommendations for empiric systemic AC treatment currently
differ between COVID-19 management guidelines (15–17), with
some recommending using anticoagulant drugs preventively
for patients who have no contraindications to AC and a
significantly increased D-dimer level, while others recommend
that all hospitalized adults with COVID-19 should receive
pharmacologic thromboprophylaxis with low molecular weight
heparin (LMWH) rather than unfractionated heparin (UFH).

We conducted a retrospective cohort study using a
comprehensive database of COVID-19 patients to investigate

whether AC treatment was protective and safe for COVID-19
patients. Innovative analyses using propensity score matching
(PSM) and inverse probability of treatment weighting (IPTW)
were performed to balance baseline covariates, variates related
to AC treatment assignment and variates related to the
outcome between patients with or without AC treatment.
Further sensitivity analyses were carried out to explore the
association between outcome and duration, dosage and type
of AC treatment. The second aim of the study was to identify
the patients who benefited most from AC treatment using
subgroup analysis that involved stratifying the data according to
the severity of the acute respiratory distress syndrome (ARDS)
(18), COVID-19 clinical classification (17), and D-dimer levels.
Taking into account the heterogeneity of the patients, clinically
relevant patient subpopulations were identified by unsupervised
machine learning algorithms. The effectiveness of AC treatment
was verified further in identified clusters.

MATERIALS AND METHODS

Ethics and Registration
This retrospective cohort study was approved by the ethics
committee of Tongji Medical College, Huazhong University
of Science and Technology (No. 2020-S220). The clinical trial
was registered and verified by the Chinese Clinical Trial
Registry (ChiCTR2000039855).

Patient Population
This single-center retrospective cohort study was conducted
in two designated branches for COVID-19 patients in Tongji
Hospital, an academic hospital affiliated to Tongji Medical
College, Huazhong University of Science and Technology in
Wuhan, China. All patients with confirmed COVID-19 admitted
consecutively to these two institutions between Jan 25 to Mar 23,
2020, were enrolled retrospectively in the study. Approval was
obtained from the ethics committee at our institution that the
patients did not need to provide informed consent for inclusion
in the study. Patients were assigned to three groups, including
one group of patients with systemic AC treatment for at least
7 days, one group of patients with systemic AC treatment for
<7 days and one group of patients without AC treatment. The
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medications administered and clinical outcomes were followed
up to June 4, 2020, when these two branches for exclusive
COVID-19 treatment were closed. All COVID-19 patients were
diagnosed according to the World Health Organization interim
guidelines (19) and the Diagnosis and Treatment Protocol for
COVID-19 Patients (Trial Version 8) (17). The exclusion criteria
for the study were younger than 18 years, pregnant, length of
stay <24 h, insufficient medical information, a history of severe
comorbidities requiring surgical operation including, but not
limited to, multiple trauma, a severe infection that required
debridement, amputation or laparotomy, and patients who were
classified again as COVID positive after RNA for SARS-CoV-2
was detected following their discharge from hospital.

Anticoagulation Exposure
AC treatment was defined as receiving either UFH, LMWH,
Fondaparinux sodium, Argatroban, or direct-acting oral
anticoagulants (DOACs) (mainly Rivaroxaban). The initiation
of AC treatment was decided by the bedside physicians. Possible
reasons for AC treatment were extracted from electronic case
files. Immortal time is a gap period between exposure and
initiation of follow-up (20). We carried out a Cox proportional
hazards model with a time-dependent manner for the drug
exposure in this study.

Outcomes, Definitions, and Data Collection
The primary outcome of this study was in-hospital
mortality. The safety endpoints included bleeding events
and thrombocytopenia. Major bleeding was defined according
to the International Society on Thrombosis and Haemostasis
(ISTH) statement (21) as those that resulted in death, were
life-threatening, caused chronic sequelae, or consumed major
healthcare resources. Hemorrhage that did not fit the criteria
for the ISTH definition of major bleeding but required medical
intervention was classified as clinically relevant non-major
bleeding (CRNMB) (22). Other bleeding events which did not
meet the criteria of either major bleeding or CRNMB, including
bloody sputum, positive fecal occult blood test/gastric occult
blood test and microscopic hematuria, were reported separately.
Thrombocytopenia was defined as a platelet count <100 ×

109/L (23).
The CURB-65 score (21, 24), ARDS (18, 25, 26), and

quick sequential organ failure assessment (qSOFA) (27) were
defined according to the literature, while the COVID-19
clinical classification was made according to the Diagnosis and
Treatment Protocol for COVID-19 Patients (Trial Version 8)
(17). The detailed definition of ARDS and COVID-19 clinical
classification is shown in Supplementary Table 1.

All the characteristics and clinical information of the patients
were obtained from electronic medical and nursing record
systems. This data included age, gender, current smoking history,
comorbidities, laboratory results at admission, CURB-65 score
and qSOFA score at admission, ARDS classification (18) and
COVID-19 clinical classification at admission and during the
hospital stay, antiviral therapies and other treatments during
hospitalization, the level of oxygen therapy at admission, and
the most intense level of oxygen therapy during hospitalization.

Variables with missing data >20% were excluded from this
analysis. Multiple imputations were conducted to address the
presence of missing values.

Unsupervised Clustering
For this work, we used the K-Medoids clustering algorithm to
partition our data into subclasses in an unsupervised manner.
The K-Medoids algorithm randomly selects K samples in the
training data as themedoids. The remaining samples are assigned
to each subclass based on the pairwise dissimilarities. The
sample, which is more similar to the medoid, is assigned to the
corresponding subclass. Next, the medoids are updated based
on the new results of subgrouping. These two steps are iterated
multiple times until there is no change in the assignments. In
particular, we used the Partitioning Around Medoids (PAM),
which is the most common implementation of K-Medoids. For
the dissimilarity measure, we adopted the Manhattan distance
because it has better performance than the Euclidean distance for
the data containing both binary and category variables (28).

A total of 25 variables representing the patients’ clinical
characteristics were used as input features in the unsupervised
learning method, which included demographic features,
comorbidities, vital signs, biomarkers, and oxygen therapy types
at admission and during the hospital stay. Each patient in our
database was presented as a vector with 25 dimensions. To
prepare each patient’s case as a vector for modeling training,
we converted the binary variable as (0, 1), with the category
variable represented by the corresponding categorical index.
Normalization of the numerical variables was performed. After
the normalization, we made sure that each numerical variable
had a normal distribution.

Two prominent probabilistic model selection methods:
Bayesian information criterion (BIC) and Akaike information
criterion (AIC) were used to determine the optimal number of
clusters in this work. In general, the measurement of AIC and
BIC scores are similar. BIC penalizes the complexity of the model
more than AIC (29).

Statistical Analysis
To minimize bias caused by the non-random allocation of
potentially confounding covariates between the AC and non-
AC groups, we adopted PSM methods (30). Propensity score
(PS) was calculated using a logistic regression model, adjusted
for the following covariates: level of oxygen therapy, clinical
classification, high-sensitivity C reactive protein (hs-CRP), D-
dimer levels, platelets count, CURB-65 score for the severity
of pneumonia (31) at hospital admission, and the highest level
of oxygen therapy during hospitalization. The match ratio was
set at 1 to 3 and the maximum allowable distance (caliper)
at 0.1 (32). To detect the selective bias potentially caused by
this PSM, inverse probability of treatment weighting analysis
(IPTW) was carried out based on the same variates used in PSM
modeling (33).

Continuous variables were expressed as medians and
interquartile ranges (IQR) and compared using the Mann-
Whitney U test or Kruskal-Wallis H test. Categorical variables
were compared using the Pearson χ2 test, continuity correction,
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or Fisher’s exact test, as appropriate. Differences between clusters
identified by unsupervised machine learning were judged by
two-tailed Bonferroni correction post hoc tests, with a P-value
< (0.05/6) considered statistically significant. A Kaplan-Meier
curve was used to analyze survival during hospitalization,
with the data stratified according to AC treatment and PAM
clustering subphenotypes.

Univariate and multivariate Cox proportional hazards
regression was used to determine the risk factors for in-hospital
mortality in the PS matched cohort. Residual imbalanced
variates were included in the multivariate Cox proportional
hazards regression for the PSM cohort. Cox regression analysis
with IPTW adjusted covariates of important demographic
characteristics as well as variates associated with outcomes either
reported previously (34–36) or by general clinic consensus,
which included age, gender, platelets count, PT, D-dimer, total
bilirubin, lactate dehydrogenase, urea and hs-CRP. Competing
risk model analyses were carried out using Fine-Gray tests, which
considered death as a competing event for the safety endpoints,
including bleeding events and thrombocytopenia. Sensitivity
analyses were carried out according to the AC exposure
duration, type and dosage in the full cohort. In subgroups
analysis among PS matched cohort, univariate and multivariate
logistic regression analysis was used to explore the association
of outcomes and AC treatment. Residual imbalanced variates
were included in the multivariate logistic regression here. The
interaction effect between AC treatment and subgroups was also
analyzed by logistic regression.

SPSS version 26.0 software (IBM Corp., Armonk, New York,
USA) and SAS version 9.4 (SAS Institute Inc. Cary, NC, USA)
were used for the statistical analyses and PS matching. The
Kaplan-Meier survival plot and forest plot were constructed
using GraphPad Prism version 4.0 software (GraphPad Software
Inc., La Jolla, CA, USA). All tests were two-tailed, with a P < 0.05
considered statistically significant.

RESULTS

Clinical Characteristics of the Patients at
Presentation
Two thousand four hundred and sixty nine confirmed COVID-
19 patients admitted to Tongji Hospital between Jan 25 and
Mar 23, 2020, were consecutively and unselectively reviewed.
After excluding 197 patients who did meet study exclusion
criteria, a total of 2,272 patients were identified for IPTW
analysis and sensitivity analyses. In PSM modeling, 78 patients
who received AC treatment for <7 days were not included
for matching. Finally, PS matching yielded 165 patients in the
AC group (patients who received AC for 7 days or longer)
and 393 in the non-AC group (patients who did not receive
AC) (Figure 1). Detailed AC treatment type, dosage, duration,
time of initiation from admission and possible reasons for AC
treatment were shown in Supplementary Figure 1. In the PS
matched cohort, compared to the non-AC group, patients in
the AC group were older (69 years, interquartile range [IQR]
60–78 vs. 65 years, IQR 53–71 years, P < 0.001) and had

more comorbidities at admission (75.2% vs. 58.5%, P < 0.001,
Table 1).

Primary and Secondary Outcomes
In the PS matched cohort, univariate Cox proportional hazard
regression analysis showed a significantly lower probability of
in-hospital death in the AC treatment group compared to that
in the non-AC treatment group (hazard ratio [HR] = 0.450;
95% confidence interval [CI], 0.278 to 0.727; P < 0.001). Since
there were still residual imbalances between AC and non-AC
groups, multivariate Cox proportional hazard regression was
carried out by adjusting imbalance covariates, including age,
smoking, comorbidities, white blood cells, lactate dehydrogenase,
urea, D-dimer, antiviral therapy, intravenous immunoglobulin,
and oxygen therapy during hospitalization. Multivariate Cox
analysis showed that AC treatment was associated with a lower
probability of in-hospital mortality (adjusted HR = 0.249, 95%
CI 0.143 to 0.436, P < 0.001, Table 2). To explore the immortal
time bias, a further Cox proportional hazards model with a time-
dependent manner for AC exposure was carried out in this study.
This showed that the AC treatment was still associated with a
lower probability of in-hospital death risk in the PS matched
cohort (adjusted HR = 0.531, 95% CI 0.301 to 0.935, P = 0.028,
Figure 2).

To detect the selective bias caused by PSM, IPTW analysis
was performed in the full cohort including 2,272 patients.
Multivariate Cox analysis again showed that AC treatment was
associated with a lower probability of in-hospital mortality by
comparing patients without AC treatment and patients with AC
treatment for 7 days or longer (adjusted HR = 0.164; 95% CI:
0.104 to 0.260, P < 0.001). Sensitivity analyses were carried out
according to the AC exposure duration, type and dosage in the
full cohort. Duration of AC therapy <7 days was not associated
with lower in-hospital mortality (adjusted HR = 1.018; 95% CI:
0.742 to 1.399, P = 0.910). In addition, AC treatment in all
various dosages and types remained consistently associated with
lower mortality (Table 3).

Secondary outcomes included bleeding events and
thrombocytopenia. By adjusting baseline covariates and
time-dependent AC exposure, it was revealed that AC treatment
was associated with higher risk of total bleeding events (adjusted
HR = 3.187, 95% CI, 1.846 to 5.504, P < 0.001), CRNMB
(adjusted HR = 3.713 95% CI, 1.446 to 9.532, P = 0.006) and
microscopic hematuria (adjusted HR = 2.624, 95% CI, 1.280
to 5.380, P = 0.008), but not associated with major bleeding
(P = 1.000) and thrombocytopenia (adjusted HR = 2.167, 95%
CI, 0.750 to 6.263, P = 0.153) (Table 2). Considering death
as a competing event, a competing risk model analysis using
the Fine-Gray test was conducted to explore the association
between AC and bleeding events or thrombocytopenia. Finally,
the AC group had no significantly higher risk of bleeding events
(Fine-Gray test, P = 0.500) or thrombocytopenia (Fine-Gray
test, P = 0.911) than the non-AC group when using death as a
competing event in the model.

Clinical Subgroup Stratification
In-hospital mortality between the AC and the non-AC groups
was compared in individuals stratified according to ARDS
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FIGURE 1 | Flow diagram of the study. COVID-19, Coronavirus Disease 2019; AC, anticoagulation; hs-CRP, high sensitivity C-reactive protein; PS, propensity score.

classification, COVID-19 clinical classification, and D-dimer
levels at both hospital admission and during hospitalization.
At hospital admission, AC treatment was associated with lower
in-hospital mortality in subgroups of mild ARDS (adjusted
odds ratio [OR] = 0.005, 95% CI, 0.000–0.174, P = 0.004),
severe COVID-19 cases (adjusted OR = 0.076, 95% CI,
0.024–0.236, P < 0.001) and patients with a D-dimer level
≥0.5µg/mL (adjusted OR = 0.042, 95% CI, 0.003–0.603,
P = 0.020). During the hospital stay, AC treatment was
associated with lower in-hospital mortality among patients

who developed to severe ARDS (adjusted OR = 0.046,
95% CI, 0.013–0.157, P < 0.001) or critical COVID-19
(adjusted OR = 0.095, 95% CI, 0.034–0.266, P < 0.001)
(Figure 3).

The interaction effect between AC treatment and
the subgroups was also analyzed by logistic regression
(Supplementary Table 2). An interaction effect was observed
between the subgroups identified by ARDS at admission (P <

0.001) or clinical classification at admission (P < 0.001) and
AC treatment.
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FIGURE 2 | Cumulative probability of death in COVID-19 patients with and without AC treatment. Patients with AC treatment had a lower probability of in-hospital

mortality than those without AC treatment (adjusted* HR = 0.531, 95% CI: 0.301–0.935, P = 0.0283). *Adjusted for time-dependent AC exposure and baseline

covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy, intravenous immunoglobulin,

convalescent plasma therapy, and oxygen therapy in hospitalization. HR, hazard ratio; CI, confidence interval; AC, anticoagulation.

PAM Clustering Analysis
The Optimal Number of Clustering Determination
BIC and AIC scores were used to automatically select the best
number of clusters K for our model. As shown in Figure 4, we
tried to find the optimal K by conducting an exhaustive search
of the possible K values. By and large, the results from AIC
and BIC are proportional. BIC score suggests that four clusters
are optimal. For the AIC score, a shape “elbow point” is also
indicated at four, after four the decrease is becoming notably
smaller. Even though a better fitness of the datamight be achieved
by increasing the number of clusters, an additional cost will
be needed including the over-fitting issue and the complexity
of interpreting clinically plausible subgroups. Therefore, four
clusters were selected to be optimal in this work.

Clinical Features of Patients’ Subgroups
The clinical features of the four clusters are shown in Tables 4,
5 and Figure 5. Patients in clusters 1 and 2 were non-critical
cases. Patients in clusters 1 and 2 had no ARDS at admission
then developed mild ARDS during the hospital stay. They
mainly needed nasal cannula oxygenation at admission as well
as during hospitalization. Within these non-critical clusters,
cluster 1 was characterized by the youngest age (51 years, IQR
39–63) and had the least number of comorbidities (0, IQR
0–1). Compared to clusters 1 and 2, clusters 3 and 4 were
critical cases. In laboratory testing results at admission, both
clusters 3 and 4 had significantly higher neutrophils count, lower
lymphocytes and platelets count, higher lactate dehydrogenase
and hs-CRP, higher urea and creatinine, elevated prothrombin
time and D-dimer. In vital signs, clusters 3 and 4 had significantly
lower peripheral blood oxygen saturation and respiratory rate
at admission. Either at admission or during the hospital stay,

both clusters 3 and 4 had significantly more severe levels of
ARDS and need a higher level of oxygen therapy. Notably,
cluster 4 exhibited as the most critical sub-phenotype. Compared
to cluster 3, patients in cluster 4 had significantly excessive
inflammation (elevated white blood cells, neutrophils and lactate
dehydrogenase), organ dysfunction (higher total bilirubin and
urea), severe coagulopathy (elevated prothrombin time and D-
dimer), unstable hemodynamics (higher rate of vasopressor
use) and neurologic dysfunction (disturbance of consciousness).
Compared to the other three clusters, cluster 4 had severe ARDS
either at admission or during the hospital stay. As a result, cluster
4 also needed the highest level of oxygen therapy accordingly.

AC Treatment and Outcomes in Different Patients

Clusters
In the non-critical cluster (clusters 1 and 2), we found no
significantly lower in-hospital death risk associated with AC
treatment (Figure 6). In cluster 3, patients who received AC
treatment had a significantly lower in-hospital mortality than
those who did not receive this treatment (adjusted OR = 0.027,
95% CI, 0.005 to 0.134, P < 0.001). However, patients in cluster
4, who had elevated inflammation biomarkers and even severe
multi-organ dysfunction, did not benefit from AC treatment. For
safety endpoint, AC treatment was not associated with increasing
bleeding events (Figure 6). In addition, the interaction effect was
found between the AC treatment and sub-phenotypes identified
by PAM clustering (P < 0.001, Supplementary Table 2).

DISCUSSION

COVID-19 infections have affected patients globally. The ISTH
pointed out that COVID-19 patients develop a clinically
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TABLE 1 | Patients Baseline Characteristics and Treatments in propensity score matched cohort.

No. (%)

Total (n = 558) AC treatment (n = 165) Non-AC treatment (n = 393) P-value

Age, median (IQR), years 66 (56, 73) 69 (60, 78) 65 (53, 71) <0.001

Gender

Male 307 (55.0) 91 (55.2) 216 (55.0) 0.967

Female 251 (45.0) 74 (44.8) 177 (450)

Current smoking 40 (7.2) 18 (10.9) 22 (5.6) 0.026

Comorbidities 354 (63.4) 124 (75.2) 230 (58.5) <0.001

Diabetes 118 (21.1) 41 (24.8) 77 (19.6) 0.165

Hypertension 247 (44.3) 90 (54.5) 157 (39.9) 0.002

Cardiovascular disease 71 (12.7) 31 (18.8) 40 (10.2) 0.005

CODP 45 (8.1) 20 (12.1) 25 (6.4) 0.023

Chronic kidney disease 19 (3.4) 6 (3.6) 13 (3.3) 0.845

Chronic liver disease 18 (3.2) 4 (2.4) 14 (3.6) 0.487

Autoimmune disease 8 (1.4) 2 (1.2) 6 (1.5) 1.000

Immunosuppression 2 (0.4) 0 (0) 2 (0.5) 1.000

Malignancy 21 (3.8) 3 (1.8) 18 (4.6) 0.118

Oxygen therapy at admission

Without oxygen inhalation 100 (17.9) 25 (15.2) 75 (19.1) 0.206

Nasal cannula 375 (67.2) 110 (66.7) 265 (67.4)

Face mask with reservivor bag 46 (8.2) 20 (12.1) 26 (6.6)

High-flow nasal cannula 4 (0.7) 2 (1.2) 2 (0.5)

Non-invasive ventilation(bi-level) 20 (3.6) 4 (2.4) 16 (4.1)

Invasive mechanical ventilation 13 (2.3) 4 (2.4) 9 (2.3)

ARDS at admission

No ARDS 331 (59.3) 85 (51.5) 246 (62.6) 0.067

Mild 120 (21.5) 45 (27.3) 75 (19.1)

Moderate 71 (12.7) 25 (15.2) 46 (11.7)

Severe 36 (6.5) 10 (6.1) 26 (6.6)

Clinical classification at admission

Moderate 62 (11.1) 18 (10.9) 44 (11.2) 0.537

Severe 459 (82.3) 139 (84.2) 320 (81.4)

Critical 37 (6.6) 8 (4.8) 29 (7.4)

CURB-65 score at admission 1 (0, 2) 1 (0, 2) 1 (0, 1) 0.099

qSOFA score at admission 0 (0, 1) 0 (0, 1) 0 (0, 1) 0.608

Initial laboratory parameters, median (IQR)

White blood cells, ×109/L 6.29 (4.89, 8.58) 7.15 (5.40, 9.57) 5.97 (4.60, 8.02) <0.001

Neutrophils, ×109/L 4.71 (3.12, 7.04) 5.65 (4.06, 7.78) 4.24 (2.90,6.37) <0.001

Lymphocytes, ×109/L 0.90 (0.60, 1.31) 0.84 (0.60, 1.15) 0.94 (0.61, 1.34) 0.060

Platelets, ×109/L 217.0 (153.0, 291.3) 209.0 (143.5, 278.0) 219.0 (159.0, 293.0) 0.129

Total bilirubin, mmol/L 9.6 (7.2, 13.7) 10.7 (7.0, 14.8) 9.4 (7.2, 13.1) 0.072

Lactate dehydrogenase, U/L 321.0 (237.0, 450.3) 357.0 (262.5, 468.0) 313.0 (228.0, 434.5) 0.002

Urea, mmol/L 5.0 (3.6, 7.0) 5.2 (4.1, 7.4) 4.8 (3.4, 6.8) 0.019

hs-CRP, mg/L 43.6 (13.0, 102.0) 50.9 (1.0, 112.7) 36.9 (10.6, 99.0) 0.009

Prothrombin time, s 14.0 (13.4, 15.0) 14.1 (13.5, 15.2) 14.0 (13.4, 14.9) 0.142

D-dimer, mg/mL 1.36 (0.58, 2.98) 2.22 (1.11, 6.21) 1.11 (0.56, 2.58) <0.001

Creatine 72 (58, 89) 74 (59, 90) 71 (58, 89) 0.707

Antiviral therapy 522 (93.5) 162 (98.2) 360 (91.6) 0.004

Other treatments

Intravenous immunoglobulin 186 (33.3) 82 (49.7) 104 (26.5) <0.001

Corticosteroid 276 (49.5) 107 (64.8) 169 (43.0) <0.001

Convalescent plasma 22 (3.9) 15 (9.1) 7 (1.8) <0.001

(Continued)
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TABLE 1 | Continued

No. (%)

Total (n = 558) AC treatment (n = 165) Non-AC treatment (n = 393) P-value

Oxygen therapy in hospitalization

Without oxygen inhalation 6 (1.1) 1 (0.6) 5 (1.3) <0.001

Nasal cannula 328 (58.8) 85 (51.5) 243 (61.8)

Face mask with reservivor bag 43 (7.7) 15 (9.1) 28 (7.1)

High-flow nasal cannula 25 (4.5) 8 (4.8) 17 (4.3)

Non-invasive ventilation(bi-level) 79 (14.2) 15 (9.1) 64 (16.3)

Invasive mechanical ventilation 72 (12.9) 36 (21.8) 36 (9.2)

ECMO 5 (0.9) 5 (3.0) 0 (0)

Variables represented the poorest value of the first day at admission. AC, anticoagulation; IQR, interquartile range; COPD, Chronic obstructive pulmonary disease; ARDS, acute respiratory

distress syndrome; qSOFA, quick sequential organ failure assessment; hs-CRP, high sensitive C reacting protein; ECMO, extracorporeal membrane oxygenation.

TABLE 2 | Primary and secondary outcomes of PS matched cohort.

No. (%)

Total

(n = 558)

AC group

(n = 165)

Non-AC group

(n = 393)

Crude HR

(95% CI)

Adjusted* HR

(95% CI)

Adjusted* HR for

time-dependent AC exposure

(95% CI)

Primary outcomes

In-hospital mortality 107 (19.2) 23 (13.9) 84 (21.4) 0.450 (0.278–0.727) 0.249 (0.143–0.436) 0.531 (0.301–0.935)

Secondary outcomes

Bleeding events 121 (21.7) 42 (25.5) 79 (20.1) 0.673 (0.460–0.984) 0.675 (0.413–1.104) 3.187 (1.846–5.504)

Major bleeding 4 (0.7) 0 (0) 4 (1.0) 0.017 (0–58.149) – –

CRNMB 32 (5.7) 17 (10.3) 15 (3.8) 1.339 (0.663–2.705) 1.149 (0.465–2.839) 3.713 (1.446–9.532)

Bloody sputum 9 (1.6) 3 (1.8) 6 (1.5) 0.628 (0.155–2.544) 0.201 (0.008–4.896) 0.958 (0.051–18.063)

Positive FOBT/GOBT 5 (0.9) 4 (2.4) 1 (0.3) 4.011 (0.447–35.976) – –

Microscopic hematuria 80 (14.3) 25 (15.2) 55 (14.0) 0.597 (0.370–0.965) 0.443 (0.232–0.846) 2.624 (1.280–5.380)

Thrombocytopenia 79 (14.2) 25 (15.2) 54 (13.8) 0.608 (0.372–0.993) 0.665 (0.334–1.327) 2.167 (0.750–6.263)

*Adjusted for baseline covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy, intravenous immunoglobulin,

convalescent plasma therapy, and oxygen therapy in hospitalization. PS, propensity score; AC, anticoagulation; HR, hazard ratio; CI, confidence interval; CRNMB, clinically relevant

non-major bleeding; FOBT, fecal occult blood test; GOBT, gastric occult blood test.

TABLE 3 | Hazard ratio for in-hospital mortality in the full cohort by AC treatment duration, dosage and type in sensitivity analyses.

No. of in-hospital

death/total no. (%)

Crude HR (95% CI) Adjusted* HR (95% CI) Adjusted* HR for IPTW

model# (95% CI)

Non-AC treatment 91/2002 (4.5) Reference Reference Reference

Duration

AC treatment <7 days 44/78 (56.4) 13.600 (9.482–19.507) 3.424 (2.242–5.230) 1.018 (0.742–1.399)

AC treatment for 7 days or longer 38/192 (19.8) 2.881 (1.943–4.272) 0.864 (0.560–1.335) 0.164 (0.104–0.260)

Dosage

Low dose thromboprophylaxis 43/176 (24.4) 4.354 (3.020–6.277) 1.387 (0.923–2.085) 0.498 (0.329–0.754)

Intermediate dose thromboprophylaxis 21/55 (38.2) 6.702 (4.153–10.816) 1.492 (0.870–2.560) 0.349 (0.224–0.545)

Therapeutic dose anticoagulation 18/39 (46.2) 6.959 (4.131–11.723) 1.575 (0.905–2.742) 0.225 (0.132–0.384)

Type

LMWH 80/262 (30.5) 5.120 (3.878–7.162) 1.432 (1.004–2.043) 0.382 (0.271–0.537)

Non-LMWH 2/8 (25.0) 3.590 (0.866–14.884) 2.029 (0.482–8.538) 0.094 (0.019–0.466)

*Adjusted for baseline covariates including age, gender, levels of platelets count, prothrombin time, D-dimer, total bilirubin, lactate dehydrogenase, urea, and high-sensitivity C

reactive protein.
#Covariates in IPTW model: level of oxygen therapy, clinical classification, high-sensitivity C reactive protein and D-dimer levels, Platelet count at admission, CURB-65 score at hospital

admission, and the highest level of oxygen therapy during hospitalization.

AC, anticoagulation; HR, hazard ratio; CI, confidence interval; IPTW, inverse probability of treatment weighting analysis; LMWH, low molecular weight heparin.
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FIGURE 3 | Subgroup analysis based on clinical stratification of in-hospital mortality between AC treatment and non-AC treatment patients. The multivariate logistic

regression analysis adjusted for baseline covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy,

intravenous immunoglobulin, convalescent plasma therapy, and oxygen therapy in hospitalization. ARDS, acute respiratory distress syndrome; AC, anticoagulation.

FIGURE 4 | Model selection and cluster visualization. The selection of the best number of clusters K is based on BIC and AIC score. K = 4 was chosen after

comparing the BIC score of models with different number of clusters by unsupervised clustering analysis. For AIC score, K = 4 is also a good choice for the trade-off

between model complexity and the fitting of the data. (A) Unsupervised clustering analysis for choosing the best number of clusters. BIC, Bayesian information

criteria; AIC, Akaike information criterion. (B) Three-dimensional visualization of clustering results. We visualize our clustering results in three-dimensional space. The

high dimensional training data was projected into three-dimensional space by using principal component analysis. PC, Principal component.
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TABLE 4 | Variables included in the PAM-based clustering model.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

(n = 144) (n = 203) (n = 158) (n = 53)

Age 51 (39, 63) abc 69 (62, 76) 67 (59, 74) 68 (63, 72) <0.001

Gender a de

Female 42 (29.2, −4.4) 156 (76.8, 11.4) 38 (24.1, −6.2) 15 (23.8, −2.6) <0.001

Male 102 (70.8, 4.4) 47 (23.2, −11.4) 120 (75.9, 6.2) 38 (71.7, 2.6)

No. of comorbidities 0 (0,1) abc 1 (0, 2) 1 (0, 2) 1 (1, 2) <0.001

Initial laboratory parameters

White blood cells, ×109/L 5.62 (4.47, 7.81) c 5.97 (4.89, 7.60) e 6.61 (4.72, 8.84) f 11.38 (8.96, 15.77) <0.001

Neutrophils, ×109/L 3.79 (2.62, 5.44) bc 4.22 (3.03, 5.71) de 5.46 (3.47, 7.74) f 10.55 (7.64, 14.68) <0.001

Lymphocytes, ×109/L 1.27 (0.90, 1.58) bc 1.06 (0.77, 1.42) de 0.61 (0.46, 0.82) 0.51 (0.36, 0.76) <0.001

Platelets, ×109/L 283 (223, 342) abc 226 (177, 296) de 161 (127, 222) 157 (102, 216) <0.001

Total bilirubin, mmol/L 8.9 (6.4, 12.1) bc 8.3 (6.4, 12.1) de 11.6 (8.3, 14.4) f 14.6 (10.6, 23.4) <0.001

Lactate dehydrogenase, U/L 258 (205, 320) bc 284 (224, 344) de 444 (333, 524) f 601 (458, 795) <0.001

Urea, mmol/L 3.95 (3.10, 5.28) bc 4.60 (3.30, 5.70) de 6.35 (4.70, 9.20) f 9.80 (6.60, 13.85) <0.001

Creatinine, µmol/L 70 (58, 82) bc 63 (54, 78) de 83 (66, 101) 91 (75, 121) <0.001

hs-CRP, mg/L 17.0 (6.7, 55.6) bc 17.0 (5.9, 43.3) de 109.8 (69.9, 162.3) 112.3 (71.4, 186.3) <0.001

Prothrombin time, s 13.7 (13.2, 14.2) bc 13.8 (13.2, 14.3) de 14.5 (13.8, 15.4) f 16.2 (15.1, 17.6) <0.001

D-dimer, mg/mL 0.91 (0.39, 2.10) bc 1.17 (0.58, 2.59) de 1.58 (0.86, 3.01) f 21.00 (2.72, 21.00) <0.001

Hemoglobin, g/L 131 (120, 141) a 119 (109, 128) de 131 (120, 141) 132 (117, 142) <0.001

At admission

Oxygen therapy bc de f

Without oxygen inhalation 32 (22.2, 1.6) 47 (23.2, 2.4) 20 (12.7, −2.0) 1 (1.9, −3.2) <0.001

Nasal cannula 105 (72.9, 1.7) 147 (72.4, 2.0) 103 (65.2, −0.6) 20 (37.7, −4.8)

Face mask with reservoir bag 3 (2.1, −3.1) 8 (3.9, −2.8) 23 (14.6, 3.4) 12 (22.6, 4.0)

High-flow nasal cannula 1 (0.7, 0) 0 (0, −1.5) 1 (0.6, −0.1) 2 (3.8, 2.8)

NIV 2 (1.4, −1.6) 0 (0, −3.4) 6 (3.8, 0.2) 12 (22.6, 7.8)

IMV 1 (0.7, −1.5) 1 (0.5, −2.2) 5 (3.2, 0.8) 6 (11.3, 4.6)

Vasopressor 0 (0, −1.9) c 0 (0, −2.4) e 2 (1.3, −0.6) f 8 (15.1, 7.7) <0.001

Disturbance of consciousness 0 (0, −3.0) c 2 (1.0, −2.9) e 6 (3.8, −0.4) f 16 (30.2, 9.8) <0.001

SpO2 97 (95, 98) bc 97 (95, 99) de 93 (86, 96) 90 (79, 96) <0.001

Respiratory rate, /min 20 (20, 22) bc 20 (20, 22) de 20 (20, 25) 25 (20, 32) <0.001

Heart rate, /min 92 (84, 105) a 86 (77, 99) d 96 (86, 109) 88 (78, 113) <0.001

MAP, mmHg 97 (90, 104) 97 (89, 106) 96 (89, 107) 99 (91, 107) 0.771

During hospitalization

Oxygen therapy bc de f

Without oxygen inhalation 4 (2.8, 2.3) 2 (1.0, −0.2) 0 (0, −1.5) 0 (0, −0.8) <0.001

Nasal cannula 121 (84.0, 7.1) 173 (85.2, 9.6) 34 (21.5, −11.2) 0 (0, −9.1)

Face mask with reservoir bag 8 (5.6, −1.1) 13 (6.4, −0.9) 22 (13.9, −0.9) 0 (0, −2.2)

High-flow nasal cannula 4 (2.8, −1.1) 6 (3.0, −1.3) 14 (8.9, 3.1) 1 (1.9, −1.0)

NIV 3 (2.1, −4.8) 1 (0.5, −7.0) 57 (36.1, 9.3) 18 (34.0, 4.3)

IMV 3 (2.1, −4.5) 8 (3.9, −4.8) 27 (17.1, 1.9) 34 (64.2, 11.7)

ECMO 1 (0., −0.3) 0 (0, −1.7) 4 (2.5, 2.6) 0 (0, −0.7)

Vasopressor 3 (2.1, −5.7) bc 7 (3.4, −6.6) de 43 (27.2, 3.8) f 45 (84.9, 13.5) <0.001

Lowest SpO2 95 (93, 96) bc 95 (92, 96) de 89 (77, 94) f 67 (56, 80) <0.001

Quantitative variables are expressed as medians (interquartile ranges). Categorical variables are expressed as No. (%, adjusted standardized residuals). It is considered that the difference

between the actual frequency and the expected frequency of this value is statistically significant if the absolute value of the adjusted standardized residual is >2. Bonferroni correction

for multiple comparison was used in the comparison of cluster analysis results. The letters “a” to “f” indicate a significant difference between two group, respectively (a = cluster 1 vs.

cluster 2, b = cluster 1 vs. cluster 3, c = cluster 1 vs. cluster 4, d = cluster 2 vs. cluster 3, e = cluster 2 vs. cluster 4, f = cluster 3 vs. cluster 4. PAM, partitioning around medoids;

hs-CRP, high sensitivity C-reactive protein; NIV, noninvasive ventilation (bi-level); IMV, invasive mechanical ventilation; SpO2, peripheral blood oxygen saturation; MAP, mean arterial

pressure; ECMO, extracorporeal membrane oxygenation.
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TABLE 5 | Outcome and variables not included in the PAM-based clustering model.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

(n = 144) (n = 203) (n = 158) (n = 53)

Symptoms

Fever 120 (83.3, 0.4) 159 (78.3, −1.8) 135 (85.4, 1.2) 45 (84.9, 0.5) 0.306

Cough 109 (75.7, 0.1) 145 (71.4, −1.6) 123 (77.8, 0.9) 43 (81.1, 1.0) 0.367

Expectoration 66 (45.8, 0.3) 86 (42.4, −0.8) 75 (47.5, 0.8) 22 (41.5, −0.5) 0.746

Shortness of breath 74 (51.4, −1.7) 117 (57.6, 0.1) 100 (63.3, 1.8) 29 (54.7, −0.4) 0.210

Myalgia 27 (18.8, −0.8) 38 (18.7, −1.0) 41 (25.9, 1.8) 11 (20.8, 0) 0.332

Fatigue 48 (33.3, −0.3) 68 (33.5, −0.3) 57 (36.1, 0.5) 19 (35.8, 0.2) 0.942

Diarrhea 23 (16.0, −2.2) 50 (24.6, 0.9) 39 (24.7, 0.7) 14 (26.4, 0.7) 0.177

Nausea/vomiting 17 (11.8, −0.7) 29 (14.3, 0.4) 23 (14.6, 0.5) 6 (11.3, −0.5) 0.842

At admission

FiO2 0.30 (0.27, 0.30) bc 0.30 (0.27, 0.30) de 0.36 (0.30, 0.42) f 0.51 (0.38, 0.63) <0.001

SBP, mmHg 124 (117, 136) ac 131 (121, 143) 131 (120, 146) 135 (122, 151) 0.004

DBP, mmHg 81 (76, 90) 79 (72, 87) 78 (73, 88) 80 (72, 88) 0.258

CURB-65 score 0 (0, 1) abc 1 (1, 1) de 1 (1, 2) f 2 (2, 3) <0.001

ARDS at admission bc de f

No ARDS 108 (75.0, 4.4) 170 (83.7, 8.9) 49 (31.0, −8.6) 4 (7.5, −8.1) <0.001

Mild 29 (20.1, −0.5) 26 (12.8, −3.8) 55 (34.8, 4.8) 10 (18.9, −0.5)

Moderate 5 (3.5, −3.9) 6 (3.0, −5.2) 41 (25.9, 5.9) 19 (35.8, 5.3)

Severe 2 (1.4, −2.9) 1 (0.5, −4.3) 13 (8.2, 1.1) 20 (37.7, 9.7)

Initial laboratory parameters

Hematocrit, % 38 (34, 40) a 35 (32, 38) de 37 (34, 40) 38 (34, 41) <0.001

ALT, U/L 28 (19, 48) a 20 (13, 36) d 29 (17, 47) 24 (19, 41) <0.001

AST, U/L 27 (20, 38) bc 23 (18, 34) de 40 (28, 62) 41 (26, 56) <0.001

Total protein, g/L 69.6 (66.2, 73.5) bc 68.0 (64.6, 72.7) de 65.9 (62.5, 70.5) 63.3 (60.8, 69.9) <0.001

Albumin, g/L 35.7 (31.5, 39.5) bc 34.4 (31.4, 38.3) de 31.4 (28.4, 34.2) 29.3 (26.7, 31.8) <0.001

Globulins, g/L 33.3 (29.9, 37.8) b 33.5 (30.1, 37.1) d 34.9 (31.4, 39.1) 34.8 (31.5, 39.1) 0.003

During hospitalization

Highest FiO2 0.30 (0.30, 0.36) bc 0.33 (0.30, 0.36) de 0.66 (0.45, 1.00) f 1.00 (0.70, 1.00) <0.001

ARDS during hospitalization bc de f

No ARDS 62 (43.1, 5.3) 83 (40.9, 5.9) 2 (1.3, −8.5) 0 (0, −4.6) <0.001

Mild 60 (41.7, 3.6) 80 (39.4, 3.7) 27 (17.1, −4.2) 0 (0, −5.0)

Moderate 11 (7.6, −2.1) 22 (10.8, −0.9) 35 (22.2, 4.3) 2 (3.8, −2.0)

Severe 11 (7.6, −7.1) 18 (8.9, −8.6) 94 (59.5, 9.1) 51 (96.2, 10.7)

In-hospital mortality 2 (1.4, −6.3) bc 6 (3.0, −7.4) de 52 (32.9, 5.2) f 47 (88.7, 13.5) <0.001

Survival time, days 23 (17, 34) abc 31 (18, 40) e 31 (14, 44) f 10 (6, 17) <0.001

Bleeding events 21 (14.6, −2.4) bc 31 (15.3, −2.8) de 51 (32.3, 3.8) 18 (34.0, 2.3) <0.001

Major bleeding 0 (0, −1.2) 0 (0, −1.5) 4 (2.5, 3.2) 0 (0, −0.7) 0.021

CRNMB 6 (4.2, −0.9) 7 (3.4, −1.8) 14 (8.9, 2.0) 5 (9.4, 1.2) 0.070

Bloody sputum 2 (1.4, −0.2) 2 (1.0, −0.9) 5 (3.2, 1.8) 0 (0, −1.0) 0.378

Microscopic hematuria 12 (8.3, −2.4) bc 21 (10.3, −2.0) de 34 (21.5, 3.0) 13 (24.5, 2.2) <0.001

Positive FOBT/GOBT 1 (0.7, −0.3) 2 (1.0, 0.2) 1 (0.6, −0.4) 1 (1.9, 0.8) 0.713

Thrombocytopenia 5 (3.5, −4.3) bc 7 (3.4, −5.5) de 37 (23.4, 3.9) f 30 (56.6, 9.3) <0.001

Quantitative variables are expressed as medians (interquartile ranges). Categorical variables are expressed as No. (%, adjusted standardized residuals). It is considered that the difference

between the actual frequency and the expected frequency of this value is statistically significant if the absolute value of the adjusted standardized residual is >2. Bonferroni correction

for multiple comparison was used in the comparison of cluster analysis results. The letters “a” to “f” indicate a significant difference between two group respectively (a = cluster 1 vs.

cluster 2, b = cluster 1 vs. cluster 3, c = cluster 1 vs. cluster 4, d = cluster 2 vs. cluster 3, e = cluster 2 vs. cluster 4, f = cluster 3 vs. cluster 4. PAM, partitioning around medoids; FiO2,

fraction of inspired oxygen; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; ARDS, acute respiratory distress syndrome; ALT, Alanine aminotransferase; AST, Aspartate

aminotransferase; CRNMB, clinically relevant non-major bleeding; FOBT, fecal occult blood test; GOBT, gastric occult blood test.

significant coagulopathy, characterized by thrombocytopenia,
mildly prolonged prothrombin time, and elevated serum D-
dimer levels (27). Recent research indicates that coagulopathy is

not only common in COVID-19 patients but is also associated
with increased mortality (9). The potential mechanism for
the development of coagulopathy in COVID-19 patients may
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FIGURE 5 | Clinical characteristics and probability of death of the four clusters. Clusters 1 and 2 were non-critical cases from admission to discharge and they

showed lower probability of death. Cluster 3 had significant higher in hospital mortality and probability of death than clusters 1 and 2, but lower than that in cluster 4.

Cluster 4 had the highest in hospital mortality and probability of death, and there were significant differences with the other three clusters. (A) Clinical characteristics of

four clusters. Some of the significant clinical features are plotted for each cluster. The features are displayed by color-coded heatmap with normalized values. (B)

Comparison of probability of death between four clusters. There was statistically significant difference in the survival distribution between any two groups (P < 0.001),

except that there was no statistically significant difference in the survival distribution of cluster 1 and cluster 2 (Log-Rank test, P = 0.512 > 0.008).

be related to endothelial cell dysfunction (37) and hypoxia-
induced thrombosis (38) following a SARS-CoV-2 infection.
Because the endothelium plays an important role in regulating
hemostasis, fibrinolysis, and vessel wall permeability, endothelial
dysfunction in pulmonary microvessels may act as a trigger
for immunothrombosis, resulting in coagulopathy. Histological
analysis of pulmonary vessels in COVID-19 patients shows more
widespread thrombosis with microangiopathy compared to that
observed in patients with influenza. Based on this preliminary

evidence, AC treatment may be beneficial for COVID-19
patients by inhibiting thrombin generation and thereby reducing
mortality. The ISTH suggests that a prophylactic dose of LMWH
should be considered in all patients without contraindications.
Moreover, the Chinese Diagnosis and Treatment Protocol for
COVID-19 Patients (Version 8.0) also suggested using AC
treatment in selected patients. However, these recommendations
require additional clinical evidence to determine the association
between AC treatment and the outcome of COVID-19 patients,
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FIGURE 6 | Comparing of in-hospital mortality and bleeding events between AC treatment and non-AC treatment patients based on unsupervised machine learning.

AC, anticoagulation.

and also to clarify the indications, contradictions and optimal
duration, dose, and time to use AC. We conducted this matched
cohort study using a comprehensive source of COVID-19
patients. In general, results showed that receiving AC treatment
was associated with a decreased in-hospital mortality in these
patients. Although patients who received AC treatment exhibited
a significant increase in CRNMB and microscopic hematuria,
they had no increase in the incidence of major bleeding. A
clinical subgroup analysis was also carried out to identify patient
subgroups who receive greater benefit from AC treatment. At
hospital admission, patients of severe COVID-19 clinical cases,
patients with mild ARDS or patients who had a D-dimer level
≥0.5µg/mL weremore likely to benefit fromAC therapy. During
hospitalization, patients who developed severe ARDS or critical
COVID-19 cases were more likely to benefit from AC therapy
(Figure 3). Results of clusters identified by unsupervisedmachine
learning revealed similar results as of clinical subgroups. Critical
patients of cluster 3 could benefit from AC treatment whereas
non-critical patients in clusters 1 and 2 did not. Nevertheless, a
sub-phenotype (cluster 4) exhibited even severe multiple organ
dysfunction and excessive inflammation might not benefit from
AC therapy.

To date, several research works have investigated systemic AC
therapy in COVID-19 patients (9–13, 39). Although the results
generally suggested that AC treatment was associated with lower
mortality of COVID-19 patients, a constant instruction for clinic
application was not easy to conclude. Several possible reasons are
worth to be noted. As a retrospective cohort study, imbalance of
baseline covariates, covariates related to outcome and covariates
related to exposure assignment might lead to biased results.
Among the existing studies, some studies used propensity score
methods for reducing the effects of confounding (12, 39), some
did not (9, 10). In our study, we applied PSM which yield a
relatively balanced cohort. We also did IPTW analysis, another
propensity score method, to detect the selective bias potentially
caused by PSM in the full cohort. The results from PS matched

cohort and IPTW analysis in the full cohort both revealed that
AC treatment was associated with lower death risk.We also noted
that, without the PS method, either the crude results or baseline-
adjusted results will lead to an adverse conclusion. Immortal
time is a gap period between exposure (usually the span after
cohort follow-up) and initiation of follow-up (20). This might
cause potential immortal time bias and exaggerate the association
between the exposure and outcome. As a result, we carried out a
Cox proportional hazards model with a time-dependent manner
for the drug exposure in this study.

Another key question concerns the confounders involving
various durations, dosages and types of AC treatment. In a
retrospective cohort study from the Mount Sinai Health System
(11), the duration of hospitalization (median 5 days, IQR 3–
8 days) and the course of AC treatment (median 3 days, IQR
2–7 days) were relatively short. Within the current consensus
on anticoagulant therapy for venous thromboembolism, it is
generally considered that patients with confirmed deep vein
thrombosis or pulmonary embolism need LMWH treatment for
at least 5 days followed by Dabigatran or Edoxaban (40). As a new
disease without comprehensive study until now, to determine
the optimal duration, type and dosage of AC treatment need
more evidence. In our study, we conducted a series of sensitivity
analyses to investigate the relationship between outcome and
AC treatment duration, dosage and type. We found that AC
treatment for 7 days or longer was associated with a lower
death risk while AC treatment for <7 days was not. Low dose
thromboprophylaxis, intermediate dose thromboprophylaxis
and therapeutic dose anticoagulation were all associated with
lower death risk. Although we recorded detailed AC treatment
type, the majority was LMWH (Supplementary Figure 1), we
only investigated LMWH and non-LMWH for sensitivity
analyses here. It is revealed that both LMWH and non-LMWH
treatment were associated with a lower death rate.

The heterogeneity of the research population is another
vital confounder that influences the results. In our study, we
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analyzed a full cohort of unselected patients from two designated
hospitals including mild to critical cases. In general, we found
that AC treatment was associated with low mortality, which
had a constant result with the previous studies. Furtherly, we
investigated who might benefit from AC treatment in subgroup
analyses. The stratification criteria used in our study included
the most frequently used classification of clinical severity of
the COVID-19 patients. It is well-known that hypoxia is a
core clinical manifestation and major pathophysiology change
that contributes to the death of COVID-19 patients (41–43).
The classification of both ARDS (18, 29, 44) and COVID-19
clinical severity classification (17, 45) indicates the severity of
hypoxia and accordingly, they are used frequently by clinicians
to evaluate and triage patients and to decide major treatments
(e.g., levels of oxygen therapy). As a result, we stratified
patients according to ARDS classification, COVID-19 clinical
classification, and D-dimer levels at both hospital admission
and during hospitalization. By this strategy, we found that, at
admission, severe cases of COVID-19 clinical classification, mild
ARDS cases and patients with a D-dimer level ≥0.5µg/mL may
benefit fromAC.While during the hospital stay, critical cases and
severe ARDS cases may benefit from AC. These results were in
constant with Sun et al.’ study (9) with severe cases and subgroup
analysis from Shen et al. (39) and CORIST Studies (12).

Clustering the study population may help minimize the
influence of heterogeneity on the results. The traditional way
to categorize patients is based on pre-defined standards. The
standards are usually defined by a group of experienced experts
with a strong background and prior knowledge in the medical
area. Therefore, the procedure for generating the standards
alone takes considerable effort and time. In addition, these
standards cannot easily be quickly established or updated for a
new situation in a short period, which was apparent when we
faced this new pandemic, COVID-19. Unsupervised clustering
algorithms in machine learning offer another perspective to
perform the identification of data subclasses. Unsupervised
clustering approaches can achieve more stable and robust
clustering results without any prior knowledge of the meaning of
each variable in the data. In addition, it may also identify some
intrinsic correlations between the variables which sometimes
cannot be easily noticed by human experts. Considering the
heterogeneity of COVID-19 patients, an innovative strategy was
carried out to identify subphenotype of patients who exhibited
distinct clinical characteristics and respond to certain treatment
using unsupervised learning approach (46). To this end, a four-
class PAM-based clustering model was established, representing
four distinct COVID-19 patient subphenotypes with different
clinical characteristics. In particular, clusters 1 and 2 were non-
critical cases with significantly lower mortality. Patients in these
two clusters did not benefit from AC treatment. Clusters 3 and 4
were critical cases both exhibited significant abnormal laboratory
testing results at admission and unstable vital sign. Cluster 3
had mild to moderate ARDS at admission and progressed to
severe ARDS during the hospital stay. Patients in cluster 3 can
benefit from AC treatment and had no significant increase in
bleeding events. Compared to cluster 3, cluster 4 was the most
critical cases and has the highest mortality. A novel result by the

clustering approach was that, among these most critical patients
(clusters 4), who had moderate or severe ARDS at admission and
developed severe ARDS during the hospital stay, AC treatment
was not associated with a lower death risk. Further characteristic
analysis of these clusters revealed cluster 4 was characterized
by multiple organ dysfunction and excessive inflammation. This
led us to conclude that critical COVID-19 patients with these
features cannot benefit from AC treatment. Recently, an open-
label, adaptive, multiplatform, randomized control trial was
published (14), with the researchers noting that the initial strategy
of therapeutic-dose anticoagulation did not result in a greater
probability of survival in critically ill COVID-19 patients (defined
as COVID-19 that led to the receipt of ICU-level respiratory or
cardiovascular organ support in an ICU) compared to usual-care
thromboprophylaxis. This result was different from our clinical
subgroup analysis but similar to the phenotypes of clusters 4 in
our unsupervised clustering analysis.

Analysis of safety endpoints showed that although the risk of
bleeding events, including CRNMB and microscopic hematuria,
were higher in the AC group compared to the non-AC group,
there was no significant difference in the risk of major bleeding
events or thrombocytopenia between the two groups. In brief,
the above findings suggested that the use of AC treatment for 7
days or longer in hospitalized COVID-19 patients was associated
with increased CRNMB and microscopic hematuria but not
with other bleeding events, especially major bleeding. These
key observations are consistent with those reported in recent
studies (11, 39). Although the competing risk model analysis
in this study revealed that there was no significant difference
in bleeding risk between the AC and non-AC groups when
considering death as a competitive event, the increase of CRNMB
still reminds clinicians should be more cautious when using
anticoagulation treatment.

This study had several limitations. Firstly, as a retrospective
cohort study, imbalanced confounders and selective bias may
exist. Large-scale, multicenter, randomized, controlled trials are
urgently needed to fully assess the efficacy of AC in patients with
COVID-19. Besides, our unsupervised clustering model did not
take the importance of each variable into consideration, as it
treated all the variables equally as numerical values andmeasured
the similarity between patients based on geometric distance.
However, the variables could have completely different semantic
meanings. Therefore, it is still necessary for human experts to
inspect the clustering results to make sure that the results are
explainable. Future work could be to intrinsically integrate the
importance of clinic variables into the similarity measurements
of unsupervised cluster models.

CONCLUSION

COVID-19 patients who received AC treatment for 7 days or
longer had a significantly lower in-hospital death risk but not
higher risk of major bleeding. Through the clinical subgroup
analysis, critically ill patients were more likely to benefit
from AC treatment. Specifically, the unsupervised machine
learning model revealed that, within critically ill COVID-19
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patients, patients characterized by multiple organ dysfunction
(neurologic, circulation, coagulation, kidney and liver
dysfunction) and excessive inflammation may not benefit from
AC treatment.
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