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Objective: To derive and validate a multivariate risk score for the prediction of respiratory

failure after extubation.

Patients and methods: We performed a retrospective cohort study of adult patients

admitted to the intensive care unit from January 1, 2006, to December 31, 2015, who

received mechanical ventilation for ≥48 h. Extubation failure was defined as the need for

reintubation within 72 h after extubation. Multivariate logistic regression model coefficient

estimates generated the Re-Intubation Summation Calculation (RISC) score.

Results: The 6,161 included patients were randomly divided into 2 sets: derivation

(n = 3,080) and validation (n = 3,081). Predictors of extubation failure in the derivation

set included body mass index <18.5 kg/m2 [odds ratio (OR), 1.91; 95% CI, 1.12–3.26;

P = 0.02], threshold of GlasgowComa Scale of at least 10 (OR, 1.68; 95%CI, 1.31–2.16;

P < 0.001), mean airway pressure at 1min of spontaneous breathing trial <10 cmH2O

(OR, 2.11; 95% CI, 1.68–2.66; P < 0.001), fluid balance ≥1,500mL 24 h preceding

extubation (OR, 2.36; 95% CI, 1.87–2.96; P < 0.001), and total mechanical ventilation

days ≥5 (OR, 3.94; 95% CI 3.04–5.11; P < 0.001). The C-index for the derivation and

validation sets were 0.72 (95% CI, 0.70–0.75) and 0.72 (95% CI, 0.69–0.75). Multivariate

logistic regression demonstrated that an increase of 1 in RISC score increased odds of

extubation failure 1.6-fold (OR, 1.58; 95% CI, 1.47–1.69; P < 0.001).

Conclusion: RISC predicts extubation failure in mechanically ventilated patients

in the intensive care unit using several clinically relevant variables available in the

electronic medical record but requires a larger validation cohort before widespread

clinical implementation.

Keywords: critical care medicine, extubation failure, intensive care unit, mechanical ventilation, reintubation,

predictive modeling, prediction scale
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INTRODUCTION

Before extubating a mechanically ventilated patient, intensivists
must evaluate the patient’s risk of extubation failure (EF). This
decision is usually based on the results of a rapid shallow
breathing index (RSBI), which is most often assessed during
the readiness evaluation to identify patients who may proceed
with the spontaneous breathing trial (SBT), with either a T-piece
or low-level pressure support (1–3). The RSBI is the ratio of
respiratory frequency to tidal volume and is a commonly used
weaning predictor (1–3). This method is not 100% predictive
of extubation success (ES) by 72 h. The decision-making behind
extubation is critically important, as failed extubation occurs in
10–20% of intensive care unit (ICU) patients (4, 5) and both
delayed extubation as well as early extubation are associated with
worse outcomes. Extubation delay is associated with ventilator-
associated pneumonia (6, 7), increased length of stay, increased
risk for downstream tracheostomy (8, 9) and increased mortality
in brain-injured patients (8). Extubation failure after planned
extubation is associated with adverse outcomes including
increased hospital mortality, prolonged hospital stay, higher
costs, and greater need for tracheotomy and transfer to post-acute
care (10–13).

While there are numerous ventilator weaning predictors and
types of SBTs (14, 15), there is a paucity of data on risk factors that
predict EF prior to removal of the endotracheal tube. Predicting
factors for ES and EF include amount of endotracheal secretions
(8, 16, 17), cough strength (16, 18, 19), and mental status prior to
extubation after a successful SBT (16, 20). Patients with moderate
or abundant secretions have been 3–8 times more likely to fail
extubation than those with few to no secretions (8, 19). Coplin
et al. (16) stated that the Glasgow coma scale (GCS) score alone
did not predict extubation outcome in brain-injured patients
and should not be used to exclude extubation; however, other
investigators reported that impaired mental status did predict
EF (21, 22). Moreover, patients who fail extubation often retain
carbon dioxide because of an imbalance among respiratory
muscle strength and imposed load (1, 23–25). Patients extubated
while developing hypercapnia (PaCO2 >45 mmHg) during a
successful SBT may also have an increased risk of mortality due
to respiratory failure compared to those who do not develop
hypercapnia during SBT (2).

Therefore, we hypothesized that recurrent respiratory
failure requiring reintubation after initial extubation could
be estimated using a composite score of known risk factors
available in the electronic medical record (EMR). Our main
objective was to derive a simple clinical prediction tool
using a multivariate model and validate the Re-Intubation
Scale Calculation (RISC) score to predict respiratory failure
requiring reintubation.

Abbreviations: ARDS, acute respiratory distress syndrome; AUC, area under

the curve; EF, extubation failure; ES, extubation success; FOUR, Full Outline of

UnResponsiveness; GCS, Glasgow coma scale; ICU, intensive care unit;MAP,mean

airway pressure; OR, odds ratio; RISC, Reintubation Scale Calculation; RSBI, rapid

shallow breathing index; SBT, spontaneous breathing trial.

METHODS

Study Population
We performed a retrospective cohort study to develop and
validate the RISC score. Our study population included critically
ill adults who were on mechanical ventilation for ≥48 h during
their stay in a medical, surgical, or mixed ICU between January
1, 2006, and December 31, 2015 (Figure 1). The study was
approved by the Mayo Clinic Institutional Review Board for
the use of existing medical records of patients with prior
research authorization.

Inclusion Criteria
We gathered data for patients who met the following criteria:
age ≥18 years; intubation and mechanical ventilation for ≥48 h;
adequate oxygenation, suggested by PaO2 >60 mmHg at fraction
of inspired oxygen of ≤0.4 with an extrinsic positive end-
expiratory pressure (PEEP) <7 cmH2O; successful SBT of 60min
and treating physician approval for extubation; cardiovascular
stability (i.e., absence of active myocardial ischemia, heart rate
<130 beats per min, absence of vasopressor use, and dopamine
or dobutamine <5 mcg/kg/min); body temperature between
36◦C and 38◦C; serum hemoglobin ≥8 g/dL; adequate coughing
during suctioning and suction frequency of no more than every
2 h; and baseline cough observed by airway care score during
suctioning (8). We excluded patients with missing baseline
variables, those who failed SBT, those with tracheostomies, and
those who withdrew all support or received comfort care support
after extubation.

Outcome Classification
Patients were grouped by ES or EF. ES was defined as the
ability to maintain spontaneous unassisted respiration for ≥72 h
after extubation. EF was defined as reintubation within 72 h
after extubation.

Data Collection
We collected data retrospectively by using Mayo Clinic ICU
DataMart and Unified Data Platform, which are extensive data
repositories that contain a near real time standardized replica
of Mayo Clinic’s EMR. These databases contain patient clinical
information along with their laboratory test results, respiratory
therapy notes, mechanical ventilation data, medications, vital
sign flowsheets, and other clinical and pathological information
from sources within the institution and have been previously
validated (26). ICU Datamart stored validated ICU ventilator
data at 15-min intervals and 2min intervals in a surgical setting.
The validation of ventilator data was done by the respiratory
therapist and recorded in EMR.

Patient data collected included age, Acute Physiology
and Chronic Health Evaluation score, mechanical ventilation
duration, history of chronic comorbidities, hemoglobin and
blood chemistries, arterial blood gas values within 1 h after onset
of SBT, date and time of extubation, use of drugs (e.g., paralytics,
systemic corticosteroids, etc.) during mechanical ventilation,
negative inspiratory pressure measured prior to SBT, and GCS
score assessed by the patient’s nurse at the time of extubation.
The airway care score (8) was recorded if available. Additionally,
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FIGURE 1 | Flowchart of study participants. ICU, intensive care unit; SBT, spontaneous breathing trial.

we collected data on respiratory variables including minute
ventilation, respiratory rate, tidal volume, and at 1, 30, and
60min during the SBT. We also collected RSBI recorded at 1min
(RSBI1), 30min (RSBI30), and 60min (RSBI60) during the SBT.
We evaluated 2 pre-defined variables: (1) the RSBI30 to RSBI1
ratio as a percentage reflecting the change of RSBI from baseline
to 30min and (2) the RSBI60 to RSBI1 ratio as a percentage
reflecting the change of RSBI from baseline to 60 min.

Data Analysis
The main outcome of interest was EF. Categorical variables were
reported as frequency and percentage and continuous variables
as mean± standard deviation (SD) and median (25th, 75th). We
used the Wilcoxon rank sum test to compare continuous and
ordinal variables between patients with and without EF, and χ

2

or Fisher exact tests to compare categorical variable correlations.
We used odds ratios (ORs) and 95% CIs to express a variable’s
strength for independently predicting EF in multivariate logistic
regression models. Extreme outliers for variables ≥3 SD were
verified manually in EMR. If the value was not available in the
EMR, then we considered these erroneous values as missing
in the final analysis. Probable predictor variables were chosen
based on our clinical experience and information from other
studies (11, 20, 27–36). Predictor variables that were significantly
different between the success and failure groups (P ≤ 0.01)
for which no more than 5% data were missing were included
in multivariate analysis. Variable reduction was done based on
the correlation between predictors and the threshold used was

0.6. Prediction scores were developed based on the multivariate
logistic regression model coefficient estimate. The smallest
coefficient was first identified and assigned a score of 1. Then the
scores for the other variables were equal to their corresponding
model coefficients divided by this smallest coefficient and finally,
all scores were rounded to integers. We developed the RISC score
by assigning an amount to each of the risk factors based on their
model coefficients. Discrimination of the score as a continuous
variable was reported as C-index. Area under the curve (AUC)
was also reported for scores at different cutoff points. Calibration
of the score was evaluated by calibration plot comparing the
predicted and observed risk of EF within 72 h. All statistical tests
were 2-sided, with an α-level of 0.05 for statistical significance.
Analysis was done using SAS version 9.4 (SAS Institute Inc.).

RESULTS

The 6,161 patients included in our study were randomly allocated
into a derivation set (n = 3,080) and validation set (n = 3,081).
In the derivation set, patients had a mean (SD) age of 61.7 (16.6)
years, and 1,820 (59%) were men. Within 72 h, 393 patients
(12.8%) experienced EF. Similarly, in the validation set, the
mean (SD) age was 62.4 (16.6) years and 1,778 (58%) were
men.Within 72 h, 353 patients (11.5%) experienced EF (Table 1).
Patient endotracheal secretions, mechanical ventilation, and
ICU admission diagnosis data for both sets are displayed in
Appendices A–C.
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TABLE 1 | Baseline demographic and hemodynamic instability and fluid status.

Characteristic Derivation (n = 3,080) Validation (n = 3,081) Total (N = 6,161) P-value

Extubation failure 393 353 746 0.12

Age, y

Mean (SD) 61.7 (16.6) 62.4 (16.6) 62.0 (16.6) 0.08

Median (IQR) 63.4 (51.9–74.0) 64.0 (52.2–75.1) 63.8 (52.1–74.5)

Sex, No. (%)

Female

1,260 (40.9) 1,303 (42.3) 2,563 (41.6) 0.28

Male 1,820 (59.1) 1,778 (57.7) 3,598 (58.4)

BMI (kg/m2 ), No. (%)

Missing 17 21 38 0.84

<18.5 91 (3.0) 86 (2.8) 177 (2.9)

18.5–24.9 771 (25.2) 755 (24.7) 1,526 (24.9)

25.0–29.9 883 (28.8) 896 (29.3) 1,779 (29.1)

30.0–34.9 648 (21.2) 624 (20.4) 1,272 (20.8)

≥35.0 670 (21.9) 699 (22.8) 1,369 (22.4)

GCS score prior to extubation

Missing 0 0 0 0.64

Mean (SD) 9.6 (2.5) 9.6 (2.5) 9.6 (2.5)

Median (IQR) 10 (8–11) 10 (8–11) 10 (8–11)

Total RBC volume (mL) given within 24 h

prior to extubation

Missing 1 3 4 0.56

Mean (SD) 106.9 (366.6) 115.4 (402.9) 111.2 (385.2)

Total platelet volume (mL) given within 24 h

prior to extubation

Missing 1 2 3 0.14

Mean (SD) 23.9 (117.4) 27.9 (133.4) 25.9 (125.7)

Total cryoprecipitate volume (mL) given

within 24 h prior to extubation

Missing 0 2 2 0.80

Mean (SD) 3.9 (57.3) 2.4 (25.8) 3.1 (44.4)

Total urine output (mL) within 24 h prior to

extubation

Missing 0 2 2 0.37

Mean (SD) 2,315.0 (1,713.7) 2,258.9 (1,634.8) 2,287.0 (1,674.8)

Median (IQR) 2,043.5 (1,052.3–3,350.3) 2,025.0 (1,040.0–3,199.0) 2,036.0 (1,045.0–3,276.0)

Fluid balance (mL) 24 h prior to extubation

Missing 2 2 4 0.17

Mean (SD) 563.6 (2,924.4) 677.0 (2,970.5) 620.3 (2,947.9)

Median (IQR) 274.2 (−1,061.9 to 1,601.1) 374.0 (−966.7 to 1,604.1) 318.1 (−1,013.6 to 1,601.1)

BMI, body mass index; GCS, Glasgow coma scale; IQR, interquartile range; RBC, red blood cell; SD, standard deviation.

Predictors of EF in the derivation set included underweight
status (body mass index, <18.5 kg/m2; OR, 1.91; 95% CI, 1.12–
3.26; P = 0.02), GCS score of ≥10 (OR, 1.68; 95% CI, 1.31–
2.16; P < 0.001), mean airway pressure (MAP) closest to 1min
after SBT start within 15min <10 cmH2O (OR, 2.11; 95% CI,
1.68–2.66; P < 0.001), fluid balance of ≥1,500mL 24 h prior

to extubation (OR, 2.36; 95% CI, 1.87–2.96; P < 0.001), and

mechanical ventilation ≥5 days (OR, 3.94; 95% CI, 3.04–5.11; P
< 0.001) (Tables 2, 3). The derivation set had a C-index of 0.72

(95% CI, 0.70–0.75) (Figure 2).
Our logistic model in validation set demonstrated that as RISC

increased by 1, the odds of having EF became 1.6-fold higher
(OR, 1.58; 95% CI, 1.47–1.69; P ≤ 0.001) (Table 4). Receiving

operating curve analysis revealed the best cutoff for RISC was 4,
which demonstrated a sensitivity of 0.80 and specificity of 0.54
with AUC of 0.67 (95% CI, 0.65–0.69) (Appendix C). Calibration
plot of observed vs. predicted EF in the validation set is displayed
in Figure 3. Using the above model, the validation set had a C-
index of 0.72 (95% CI, 0.69–0.75). The RISC score ranged from 0
to 8 with a median of 4 (Figure 4).

DISCUSSION

We successfully developed a multivariable RISC score to predict
extubation failure after a successful SBT with readily available
bedside predictors. The RISC score predicts extubation failure
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TABLE 2 | SBT and MV data for derivation and validation cohort.

Characteristic Derivation (n = 3,080) Validation (n = 3,081) Total (N = 6,161) P-value

Total ventilation hours

Missing 0 1 1 0.22

Mean (SD) 192.4 (194.4) 187.8 (189.7) 189.6 (191.9)

Median (IQR) 131.4 (79.5–230.7) 127.6 (75.3–221.2) 129.0 (76.5–225.0)

Respiratory rate (breaths/min) closest to 1min after SBT start within 15 min

Missing 16 16 32 0.49

Mean (SD) 20.6 (8.0) 20.4 (7.6) 20.5 (7.8)

Median (IQR) 20.0 (15.0–25.0) 19.0 (15.0–24.4) 19.2 (15.0–25.0)

Expired VT (in ml) closest to 1min after SBT start within 15 min

Missing 123 130 253 0.34

Mean (SD) 517.9 (204.3) 512.6 (198.7) 515.3 (201.5)

Median (IQR) 489.0 (389.0–620.0) 480.0 (386.0–601.0) 480.0 (388.0–610.0)

Expired VT (in ml/kg) closest to 1min after SBT start within 15 min

Missing 123 130 253 0.06

Mean (SD) 6.4 (2.7) 6.3 (2.7) 6.4 (2.7)

Median (IQR) 6 (4.7–7.7) 5.9 (4.5–7.6) 5.9 (4.6–7.6)

RSBIa (breaths/min/L) closest to 1min after SBT start within 15 min

Missing 121 126 247 0.98

Mean (SD) 50.6 (44.3) 49.9 (41.3) 50.3 (42.9)

Median (IQR) 40.0 (26.2–61.5) 40.8 (26.4–60.6) 40.4 (26.3–60.9)

MAP (cmH2o) closest to 1min after SBT start within 15 min

Missing 31 45 76 0.75

Mean (SD) 10.7 (3.6) 10.8 (3.7) 10.8 (3.6)

Median (IQR) 10.0 (7.8–13.0) 9.9 (7.8–13.0) 9.9 (7.8–13.0)

PIP (cmH2o) closest to 1min after SBT start within 15 min

Missing 129 156 285 0.43

Mean (SD) 18.8 (6.4) 18.8 (6.2) 18.8 (6.3)

Median (IQR) 18.0 (14.6–22.0) 18.0 (15.0–22.0) 18.0 (15.0–22.0)

Plateau pressure (cmH2o) closest to 1min after SBT start within 15 min

Missing 1,028 1,074 2,102 0.92

Mean (SD) 18.3 (6.2) 18.2 (5.8) 18.3 (6.0)

Median (IQR) 18.0 (14.0–21.0) 17.0 (15.0–21.0) 17 (14.0–21.0)

PEEP (cmH2o) closest to 1min after SBT start within 15 min

Missing 0 0 0 0.53

Mean (SD) 7.5 (3.2) 7.5 (3.3) 7.5 (3.2)

Median (IQR) 5 (5–10) 5 (5–10) 5 (5–10)

PS (mmH2O) closest to 1min after SBT start within 15 min

Missing 6 9 15 0.96

Mean (SD) 8.9 (4.0) 8.8 (3.5) 8.9 (3.8)

Median (IQR) 10 (5–10) 10 (5–10) 10 (5–10)

History of paralytic use, No. (%)

No 1,096 (35.6) 1,145 (37.2) 2,241 (36.4) 0.20

Yes 1,984 (64.4) 1,936 (62.8) 3,920 (63.6)

History of sedative use, No. (%)

No 202 (6.6) 232 (7.5) 434 (7.0) 0.15

Yes 2,878 (93.4) 2,849 (92.5) 5,727 (93.0)

IQR, interquartile range; MAP, mean airway pressure; MV, mechanical ventilation; PEEP, positive end–expiratory pressure; PIP, peak inspiratory pressure; PS, Pressure Support; RSBI,

rapid shallow breathing index; SBT, spontaneous breathing trial; SD, Standard deviation; VT , tidal volume.
aRSBI, respiratory rate (f) in breaths/min/ VT in L.
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TABLE 3 | Logistic regression model predicting extubation failure.

Univariable Multivariate

Variable Label OR (95% CI) P-value OR (95% CI) P-value Score

Underweight Underweight 1.97 (1.18–3.27) 0.009 1.91 (1.12–3.26) <0.02 1

GCS10 GCS score prior to CPAP mode ≥10 1.61 (1.27–2.05) <0.001 1.68 (1.31–2.16) <0.001 1

MAP10 MAP closest to 1min after SBT start within 15min <10 1.71 (1.38–2.13) <0.001 2.11 (1.68–2.66) <0.001 1

Fluid balance Fluid balance 24 h prior to extubation ≥1,500 2.30 (1.85–2.86) <0.001 2.36 (1.87–2.96) <0.001 2

Ventday 5 Total ventilation days ≥5 3.54 (2.76–4.55) <0.001 3.94 (3.04–5.11) <0.001 3

CPAP, continuous positive airway pressure; GCS, Glasgow coma scale; MAP, mean airway pressure; OR, odds ratio; SBT, spontaneous breathing trial.

FIGURE 2 | AUC receiver operating characteristic curve. AUC indicates area

under the curve.

TABLE 4 | Validation set: extubation within 72 h predicted by score.

Variable OR (95% CI) P-value C-index

RISC score 1.58 (1.47–1.69) <0.001 0.72

OR, odds ratio; RISC, Reintubation Summation Calculation.

with the best cut-off at ≥4 demonstrating a sensitivity of 0.80
and a specificity of 0.54 with AUC of 0.67. This is a modest value
to determine extubation failure. RISC score provides several
multivariate risk factors that can be externally validated in future
deep learning and machine learning predictive models. We
acknowledge this model is limited and some would argue that a
clinically useful tool should have a higher AUC; however, external
testing with larger data sets may be helpful in reproducing
these results.

Neurologic impairment was found to be a possible risk factor
for EF in our study and was validated previously in several studies

(16, 19, 37–39). Mokhlesi et al. (37) verified that a moderate GCS
score (9–12) can clinically predict reintubation, comparable to
our results. We feel this is an important finding for clinicians
caring for those patients with an “intermediate” GCS in their
decision-making for extubation. GCS is inherently limited in
finding lower cutoffs since a “V1-NT” is the subcomponent
reported in intubated patients. Moreover, its components only
grade Eyes (E1-4) and Motor (M1-6) which if maximal total 10
points (E4+M6), similar to our observed lowest cutoff. Some
suggest using the Full Outline of UnResponsiveness (FOUR)
score (40) might provide a more granular range (0–16) by
including brainstem cranial nerve findings. We reviewed our
data for FOUR score (40), but only had 228 patients, which is
statistically underpowered to detect lower limits of this coma
scale for reintubation risk. Only a future study using FOUR
score with sufficient sample size may be able to detect this
as a true reintubation risk, or in a future randomized trial in
brain-injured patients similar to the one performed by WDF,
which previously showed no difference in reintubation rates
in GCS 10 or less patients with intact brainstem protective
reflexes of cough/gag (9). We find documentation of protective
airway or cranial nerve reflexes lacking in most and/or all coma
scales, even in the FOUR score which focuses on pupillary
reflexes for the brainstem. Furthermore, the FOUR score did
not include gag/cough reflexes in the randomized trial by
Manno et al. (9).

Another covariate of the RISC score is a MAP closest to
1min after SBT start within 15min <10 cmH2O. MAP is
dependent on peak inspiratory pressure, PEEP, and respiratory
cycle time. Our finding of low MAP leading to extubation
failure may be explained by a dyspneic patient with vigorous
efforts. Mean airway pressure is a pressure monitoring metric
used by mechanical ventilators that are closely connected to
mean alveolar pressure and depict pressures on the lung
parenchyma during ventilation (41). It’s also connected to the
oxygenation index (42). Peak inspiratory pressure, PEEP, and the
inspiratory-to-expiratory time ratio with dynamic and real-time
features are used to calculate MAP, which measures mechanical
power impacted by the ventilator mode (43). A high MAP
suggests that the patient’s mechanical energy power is greater
(43). Furthermore, MAP is a critical pressure parameter that
influences a patient’s hemodynamics. It has been established
that higher MAP causes a reduction in cardiac output in
infants during both normal and high-frequency mechanical
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FIGURE 3 | Calibration plot of observed vs. predicted extubation failure in the validation set (dots convey the apparent calibration from the original model, in which

predictions for extubation failure within 72 h are grouped into deciles (10 groups ranging from low to high likelihood) and each related to observed rates (vertical bars

reflect 95% CI for the rate); For a reference of perfect calibration, the Y = X line is displayed).

FIGURE 4 | Distribution of RISC score and the corresponding 72-h extubation failure rate (%).

ventilation (44, 45). In direct proportion to their effects on
MAP, tidal forces and PEEP raise pulmonary vascular resistance
(PVR) (46). As a result, MAP is becoming more linked to
the prognosis of patients on mechanical ventilation. A patient
that is not able to mount a high MAP may demonstrate

insufficient respiratory mechanics from possibly, diaphragmatic
weakness. Patients who are able to mount a high MAP may
have more strength in respiratory muscles, and thus mechanics,
thereby resulting in tolerance of extubation. In summary, we
argue that MAP has several strengths over other conventional
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mechanical ventilator parameters especially pressure indicators,
and it has the ability to become a major bridge factor
coupling respiratory mechanics and hemodynamics. However,
we acknowledge there are factors potentially not assessed in
this study during the transition from positive to negative
pressure physiology, stressors on cardiac physiology, and
potentially CO2 accumulation that could theoretically occur
before extubation.

Thille et al. (33) identified prolonged mechanical ventilation
(duration<1 week) prior to weaning as a strong predictor for EF,
similar to our results. We observed that underweight status was
also associated with EF and an important factor since it underlies
neuromuscular reserve. Malnutrition is reported in as much as
40% of critically ill patients, but data linking nutritional status
to ventilator weaning issues are limited (47, 48). In the acute
respiratory distress syndrome (ARDS) network trial (43); 4.7% of
patients were identified as underweight. Underweight patients,
defined as those with a body mass index <18.5 kg/m2, may
experience depressed ventilatory drive (49), limited muscle mass
(50), and weaning difficulty (51). Obesity may be associated with
a better prognosis (“obesity paradox”) for some disease states,
patients with ARDS (52) and those in the ICU in general (53, 54).
Another important covariate in EF was positive fluid balance,
as reported by Frutos-Vivar et al. (27). This is an important
finding for clinicians to review prior to extubation attempts since
diuretics could be given in future RISC-driven randomized trials
on EF. D’Orio et al. (55) reported that a positive cumulative
fluid balancemay cause increased capillary leak and extravascular
lung water and decreased lung compliance, leading to respiratory
failure, both during SBT and in the immediate post-extubation
period. Hence why restrictive fluid strategies are employed in
ARDS patients (56). In an earlier study, positive cumulative fluid
balance from hospital admission to weaning was correlated with
EF (57). Therefore, it is highly plausible that positive fluid balance
influences the respiratory outcome of patients.

To our knowledge, there are no comprehensive data sets
analyzing all the variables we proposed in predicting ES,
particularly with neurologic components. Most studies focus on
RSBI as a predictor in the post-operative setting (27, 37, 58).
RSBI is challenging however in patients in pain with tachypnea
and some neurologic patients with abnormal brain-disordered
breathing states. The closest study we found in the literature
similar to ours was a neonatal extubation modeling study by
Mueller et al. (54), who used artificial neural-networks, receiver
operating characteristics, and regression modeling to predict ES.
The authors looked at inspiratory to expiratory ratio, inspiratory
time,MAP, tidal volume, and SaO2. The authors found an AUC of
0.87, which is a fairly strong prediction for ES (59). Other studies
have studied ES but these have been largely focused on operating
room predictors and not global predictors (60). Rodriguez Blanco
et al. (60) studied 78 surgery patients who had adequate ejection
fraction and other standard clinical factors. This study did not
adequately characterize the respiratory variables proposed and
was of relatively small sample size. Similarly, data from a cohort
of mechanically ventilated elderly patients were prospectively
analyzed and used to develop a predictive model using a
classification and regressive tree (CART) algorithm, also known
as a decision tree to predict extubation outcome in patients

following a successful SBT (29, 30). This CART model showed
a good discrimination with an AUC of 0.94. However, calibration
wasmoderate with a substantial mismatch between predicted and
actual probabilities in the updated CART model (47).

Our study has several limitations. First, the retrospective
design limits extrapolation to prospective and individualized
patient care contexts. Retrospective studies can introduce
selection and information biases. We were also not able to
collect data on all clinical weaning predictors such as diaphragm
movement, endotracheal secretions, and hypercapnic ventilatory
response, Airway occlusion pressure in each patient. Second, our
study lacked granular data on supplemental oxygen strategies
post-extubation as recent literature supports high flow nasal
cannula combined with non-invasive in preventing re-intubation
(61, 62). Third, the study was completed at a single center
with retrospective data collection, and thus does not allow
inferences on causality derived from prospective data. Fourth,
we were not able to collect echocardiographic measurements
to be able to correlate positive fluid balance with ventricular
dysfunction. Fifth, in our model, there may be some lack
of variability using a retrospective cohort from the same
center, and thus validation and accuracy may be overestimated.
Sixth, some of the ventilator data captured in this study such
as the reporting of a plateau pressure measurement during
pressure support in a spontaneously breathing patient were from
Puritan Bennett 840 ventilators (Medtronic). These ventilators
record into the EMR what it believes are plateau pressures
in any mode, even when an adequate inspiratory pause is
absent. We have documented instances where vitals are being
recorded at greater than the 15-min standard of the time
for procedures or more while ventilator settings remained
as they were. Lastly, our multivariate covariates within our
RISC score model are generally known single risk factors of
EF in the existing literature (27, 28, 33–35, 63). Therefore,
our study should be considered with caution as exploratory
only and requires prospective and external validation of the
multivariate model before implementing into routine clinical
decision making. This is especially true given data is from
a single site that may reflect a unique culture not practiced
by others.

Despite our limitations, this study has several strengths.
A major strength is that it was done using a robust and
clean dataset derived from a previously validated database
(64). The study also included a large cohort of patients from
a large, tertiary academic hospital. To date, there are no
comprehensive data sets analyzing all the variables in predicting
ES, especially with neurological components; therefore, we feel
this study could represent the first adult human modeling
study, and by the addition of more variables, an even
more potentially accurate and precise model for predicting
ES in the future. However, we still recommend external
validation before generalizing and implementing these results as
predictive models.

CONCLUSIONS

We developed the RISC score using several practical clinical
parameters tested within a derivation and validation set. This
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model provides risk-stratification for extubation and subsequent
EF within 72 h in mechanically ventilated patients in the ICU.
Overall, we identified 5 predictors of EF readily available at the
bedside and inmany EMRs: underweight status (bodymass index
<18.5 kg/m2), GCS score ≥10, MAP closest to 1min after SBT
start within 15min <10 cmH2O, fluid balance of ≥1,500mL
24 h prior to extubation, and mechanical ventilation ≥5 days.
External validation in a larger, multicenter study is required
before clinical implementation.
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