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INTRODUCTION

The increasing prevalence of non-alcoholic fatty liver disease (NAFLD), as well as its advanced
stage non-alcoholic steatohepatitis (NASH) with the progression of liver inflammation and cell
death with or without hepatic fibrosis, brings a heavy burden to public health (1). Non-alcoholic
fatty liver disease is commonly associated with the incidence of obesity and diabetes (2, 3). In the
United States, the prevalence of obesity raised from 30.5 to 42.4% from years 1999–2000 to years
2017–2018 as the Centers for Disease Control and Prevention (CDC) reported, and the prevalence
of severe obesity also increased from 4.7 to 9.2% at this period. Recently, a new nomenclature of
NAFLD, metabolic associated fatty liver disease (MAFLD), was recommended, which is thought
to be more accurate to reflect the clinical pathogenesis of this disease with metabolic dysfunction
(4, 5). There is no appropriate treatment for NAFLD up to date, except for early prevention via
change of lifestyle (2, 6). Understanding the cellular and molecular pathogenesis of NAFLD and its
relative advanced liver disease is helpful to define new potential targets for treatment.

Hepatic immunity plays a critical role in the pathogenesis of liver diseases (7, 8), including
NAFLD, NASH, and end-stage of liver disease. Both hepatic innate and adaptive immune cells,
as well as their interaction, orchestrate the progression of NAFLD and NASH (9). For example,
the accumulation of activated hepatic B cells driven by gut microbiota impacted liver inflammation
and fibrosis via modulating both intrahepatic innate and adaptive immunity during the progression
of NASH (10). New functions of special types of T cells are reported to be associated with
the progression of NAFLD and hepatocellular carcinoma (HCC) defined by the single-cell RNA
sequencing (sRNA-seq) technology (11, 12). Here, we mainly focus on the latest investigation of
the function of special types of T cells in NAFLD and NAFLD-related primary liver cancer.

FACTORS CAUSING NAFLD AND NAFLD-RELATED HCC
PROGRESSION

Non-alcoholic fatty liver disease is an increasing factor that induces the development of HCC (13).
The pathogenesis of NAFLD-related HCC progression remains to be clarified. The causing factors
such as genetic factor (e.g., the genetic variant I148M of rs738409 in patatin-like phospholipase
domain containing 3, PNPLA3) and epigenetic factors (e.g., histone deacetylase) for NAFLD and
NASH may result in liver fibrosis and cirrhosis, and finally leading to the development of HCC
(14–17). In addition, several other factors including environmental factors have been identified
to be associated with NAFLD-related HCC progression (18), such as lipid metabolism (19),
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and dysregulation of gut microbiota (20). For example,
dysregulation of lipid metabolism in NAFLD induced hepatic
accumulation of linoleic acid and subsequent loss of CD4+

T cells due to an increase of reactive oxygen species (ROS)
(21), resulting in an increased incidence of HCC. Clinical
trial studies also showed that anti-programmed death-1 (PD-
1) or anti-programmed death-ligand 1 (PD-L1) treatment
decreased the overall survival (OS) of human patients with
NASH-induced HCC compared to non-NASH-induced HCC
patients (22). Cellular mechanism study demonstrated that
stimulation with gut microbial extracts from NAFLD-related
HCC subjects can increase the frequency of regulatory T cells
(Tregs) and decrease the frequency of CD8+ T cells in human
peripheral blood mononuclear cells (PBMCs), compared to
treatment with bacterial extracts from non-NAFLD subjects
(20), which indicates an important role of gut microbiota in
modulating immunity in HCC microenvironment. In addition,
peripheral PBMCs showed an immunosuppressive phenotype in
human patients with NAFLD-related HCC compared to non-
NAFLD and NAFLD-cirrhosis patients (20). Independent of
these discussed causing factors for liver disease, T cells play an
important role in the progression of NAFLD and NAFLD-related
HCC. Thus, it is critically important to delicate the function of
each subtype of T cells in NAFLD-HCC progression.

FUNCTION OF T CELLS IN NAFLD AND
NAFLD-RELATED HCC

Function of CD8+ T Cells in NAFLD
LIGHT (tumor necrosis factor superfamily member 14,
TNFSF14) expression in activated CD8+ T cells induced by
feeding a choline-deficient high-fat diet (CD-HFD) promoted
NASH and HCC progression in mice via interacting with
lymphotoxin-β receptor (LTβR) in hepatocytes (23). CD8+ T
cells were also increased in the livers of obese human patients
with NASH and cirrhosis, which was positively correlated
with hepatic stellate cell (HSC) activation, evidenced by the
increased expression of α-smooth muscle actin (α-SMA)
(24). In contrast, depletion of CD8+ T cells significantly
reduced liver inflammation and HSC activation. A 3.5-
fold increase of CD8+ T cells with high expression of
cytotoxic interleukin (IL)-10 can also be found in obese
mice while feeding a western diet (WD) compared to the
chow diet (24). High expression of IL-10 may promote
the progression of HCC (25). Another study also showed
that impairing CD8+ T cell activation in mineralocorticoid
receptor (MR)-deficient mice decreased liver steatosis in a
methionine-choline deficient diet (MCD)-induced NASH
model (26). Tumor development altered fatty acid partitioning
in the fatty liver via inhibiting prolyl hydroxylase domain
(PHD)3 expression, which results in function loss of cytotoxic
CD8+ T cells and impaired anti-tumor function (27).
Therefore, enhancing or reversing the role of CD8+ T cells
in NAFLD may inhibit NAFLD-HCC progression. Here, we
summarize some specific subpopulations of CD8+ T cells in
NAFLD-related HCC.

Function of CD8+ T Cells in
NAFLD-Related HCC
PD1+CD8+ T Cells
Preclinical study showed that immunotherapy with anti-PD1
treatment increased the prevalence of exhausted PD1+CD8+ T
cells with high mRNA expression of C-X-C motif chemokine
receptor 6 (CXCR6) and tumor necrosis factor-alpha (TNF-α)
in the liver of NASH mice, which was associated with impaired
immune surveillance and increased incidence of NASH to HCC
progression (22). Similar phenotypic and functional PD1+CD8+

T cells were found in livers from humans with NAFLD/NASH
in this report. In addition, both anti-CD8 or anti-TNF plus
anti-PD1 antibody treatments can ameliorate liver damage and
inflammation and reduce HCC incidence compared to anti-PD1
treatment alone.

CXCR6+CD8+ T Cells
Liver-resident CXCR6+CD8+ T cells were increased in NASH
mice fed a CD-HFD, and those CD8+ T cells expressed
low activity of the Forkhead box protein O1 (FOXO1)
transcription factor caused by high expression of IL-15 (28).
In addition, the level of hepatic acetate was increased in
NASH mice, which can cause auto-aggressive liver CXCR6+

CD8+ T cells to damage hepatocytes, resulting in liver injury.
Furthermore, CXCR6+CD8+ T cells were also shown to increase
in human NAFLD/NASH livers, as well as hepatic expression of
CXCR6 (28).

Prf1nullCD8+ T Cells
Perforin (Prf)-deficient mice on an MCD showed an increased
accumulation and activation of CD8+ T cells expressing
proinflammatory cytokines (e.g., interferon-gamma, or IFN-γ)
compared to wild-type (WT) mice, but not CD4+ T cells (29).
The increased IFN-γ levels are closely associated with liver
dysfunction in human patients, including liver fibrosis, cirrhosis,
and HCC (30). In contrast, an increase of cell proliferation
antigen Ki67+CD8+ T cells producing IFN-γ in response to
sorafenib treatment was associated with improved OS and
progression-free survival (31).

Function of CD4+ T Cells in NAFLD
Dysregulation of hepatic lipid metabolism in human NAFLD
patients and mouse models induced a reduction of liver CD4+

T cells (21, 32). Fatty liver impairs the immunotherapeutic
effects (33), such as RNA vaccine (e.g., M30-RNA vaccine) and
antibody-mediated therapy [e.g., anti-OX40 (CD134) antibody].
Feeding a high-fat and high-calorie diet caused the proliferation
of human CD4+ central and effector memory T cells in
immunodeficient mice engrafted with human immune cells (HIL
mice) compared to that in mice fed with a chow diet, which
was associated with a significant increase of pro-inflammatory
cytokines, such as IL-17A and IFN-γ (34). In addition, in vivo
depletion of human CD4+ T cells in those mice can attenuate
hepatic inflammation and fibrosis. In summary, these results
show that CD4+ T cells play diverse roles in the development of
NAFLD, liver fibrosis, and HCC. Thus, clarifying the function of
each type of CD4+ T cell is necessary.
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FIGURE 1 | The important role of T cells in the pathogenesis of NAFLD and NAFLD-related HCC and potential treatment options. (A) Some important subtypes of T

cells and molecules in the pathogenesis of NAFLD and NAFLD-related HCC. For example, Th17+CD4+, CD25+Foxp3+CD4+, and α4β7 integrin-positive CD4+ T cells

increase in the progression of NAFLD, while PD1+CD8+ and CXCR6+CD8+ increase in NAFLD-HCC progression. The change of T cell population is associated with

an increase of cytokines such as IL-17a and IFN-γ which accompany the progression of NAFLD. (B) The potential treatment options for NAFLD and NAFLD-related

HCC include change of lifestyle, cells or bacteria-mediated therapy such as adoptive transfer of T cells, medicines or vaccines such as microRNA-mediated therapy.

α4β7+ CD4+ T Cells
Recruitment of integrin α4β7+ CD4+ T cells to the liver was
associated with NASH progression in F11r−/− mice fed with
WD, which was correlated with higher expression of its ligand
mucosal addressin cell adhesion molecule 1 (MAdCAM-1) (35).
Blocking integrin α4β7 prevented migration of CD4+ T cells,
resulting in a significant decrease in liver inflammation and
fibrosis. In addition, ablating β7 integrin or MAdCAM-1, as well
as β7 integrin deficiency, can reduce concanavalin A (ConA)-
induced hepatitis in mice, indicating the role of β7 integrin in
liver injury (36).

Th17+ Cells
In the progression of NAFLD to NASH, hepatic IL-17+CD4+

T (Th17) cells were significantly increased, and the ratio of
Th17 or Th2 to CD4+CD45RA+CD25++ resting Tregs (rTregs)
was elevated in peripheral blood (37). Imbalance of hepatic
Th17/Treg cells was also shown in NAFLD mice fed a HFD
(38). The increased frequency of IL-17+ cells in total CD4+ T
cells in NASH patients was positively correlated with a higher
level of serum concentration of blood endotoxin (LPS) compared
to either healthy subjects or non-alcohol fatty liver (NAFL)
patients (39).

Treg Cells
The interaction of Foxp3+CD25+CD4+ T cells (Tregs) with
other immune cells and hepatocytes plays a critical role in
liver homeostasis and pathogenesis. Hepatocytes can engulf
CD4+ T cells, preferable for Tregs, during liver inflammation to

control T cell population, known as enclysis (40). The frequency
of CD25+CD45+CD4+ T cells was increased in PBMCs of
human NAFLD patients with advanced liver fibrosis, while the
PD1+CD4+ T cells were decreased (41), which were significantly
and negatively correlated with the ratio of serum fatty acid
composition (44, 45).

Moreover, there are other subtypes of T cells that were found
to be associated with the progression of NAFLD, such as Vδ2 T
cells (42) and γδ T cells (43).

Function of CD4+ T Cells in
NAFLD-Related HCC
Treg Cells
Transcription factor Foxp3 can suppress glycolysis and induce
oxidative phosphorylation to change metabolic profiles of
Tregs to survive in low-glucose and high lactate environments
(44). The proliferation of Tregs can suppress the function of
cytotoxic CD8+ T cells against liver tumor cells, resulting in
the progression of HCC both in mouse models and in human
patients (45). A high ratio of effector CD4+ T cells/Treg showed
a good prognostic for human HCC (31).

Th17 Cells
Th17 cells and the expression of IL-17a were positively
associated with human fatty liver-associated HCC (46). In
vitro study showed that macrophages are required to mediate
IL-17 expression in naive CD4+ T cells through LPS/Toll-
like receptor 4 (TLR4) signaling. Furthermore, intra-tumoral
infiltration of Th17 cells promoted tumor growth via promoting
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angiogenesis and predicted a poor OS in HCC patients (47). In
addition to inducing angiogenic factors (e.g., vascular endothelial
growth factor/VEGF and prostaglandin E2/PGE2), Th17 cells
can activate oncogenic IL-6/Stat3 signaling to enhance tumor
growth (48).

Function of Double-Negative T Cells in
NAFLD-Related HCC
Double-negative T cells (DNT) defined by T-cell receptor
(TCR)αβ+CD3+CD4−CD8− T cells and consisting of 1–
3% of peripheral T lymphocytes in mice and humans have
been shown to play multiple roles in immune responses
(49). Adoptive transfer of CD4+ T cells converted DNT was
shown to reduce liver inflammation and fat accumulation
inducing factors for NASH, by suppressing the infiltration of
Th17 cells and M1 macrophages (8). Double-negative T cells
can also inhibit the function of effector CD4+ T cells by
impairing glucose metabolism and inhibiting mTOR signaling
and the expression of inflammatory cytokines IL-17a and IFN-
γ (50). Furthermore, DNT was shown to be higher in non-
tumor-infiltrating lymphocytes compared to tumor-infiltrating
lymphocytes in human HCC (51).

POTENTIAL TREATMENT OPTIONS FOR
NAFLD-RELATED HCC BY TARGETING ON
T CELLS

Currently, there are some approved first- and second-line
treatment options for HCC, which may be also applied in
NAFLD-related HCC treatment. In 2008, sorafenib, a multi-
kinase inhibitor against VEGF receptor (VEGFR), platelet-
derived growth factor receptor (PDGFR), and RAF kinases
(serine/threonine protein kinases), is the first approved systemic
therapy by the U.S. FDA for patients with unresectable HCC
(52). In 2018, lenvatinib, a multiple kinase inhibitor against
the VEGFR1, VEGFR2, and VEGFR3 kinases, was approved by
FDA for systemic treatment for unresectable advanced HCC
(53). In 2020, PD-L1 inhibitor atezolizumab was approved by
FDA in combination with bevacizumab (anti-VEGF monoclonal
antibody) for adult patients with unresectable locally advanced or
metastatic HCC without prior systemic therapy (54). In addition,
there are some combined treatments such as nivolumab (anti-
PD-1 monoclonal antibody) and ipilimumab (anti-cytotoxic T-
lymphocyte-associated protein 4/CTLA4 monoclonal antibody)
that may approve the outcomes (55). Here, we also review some
treatment options by targeting T cells (Figure 1).

T Cell-Mediated Treatment
A clinical trial shows that treatment with sorafenib, a protein
kinase inhibitor, can increase Ki67+CD8+ T cells producing IFN-
γ to improve progression-free survival and OS of human HCC
patients (31). The VEGF/VEGFR signaling was involved in this
effect, evidenced by improved sorafenib in combination with
VEGFR antagonism (31).

A decrease of Tregs in visceral adipose tissue (VAT) is
positively associated with NASH progression (56). Adoptively

transfer (ACT) of Tregs from spleens of healthy mice to mice
with diet-induced hepatic steatosis promoted liver steatosis
with an increase of Tregs in VAT and a decrease of Th1
cells in various tissues (57). Adoptively transfer of Tregs did
not impact other metabolic and histologic changes. Recently,
a phase I clinical trial showed the initial safety profile and
effect of chimeric antigen receptor (CAR)-glypican-3 (GPC3) T-
cell therapy for patients with advanced HCC (58). Those CAR
T cells include a humanized anti-GPC3 single-chain variable
fragment, CD8α hinge domain, CD8α transmembrane domain,
CD28 intracellular domain, and CD3ζ intracellular signaling
domain. There are some recruiting clinical trials for investigating
GPC3-targeted CAR-T Cell for treating HCC, such as trials
NCT03198546 and NCT04121273.

Gut Microbiota-Mediated Therapy
Gut microbiota has been shown to play vital roles in human
liver diseases (59), through modulating secondary bile acids
(BAs), activating TLRs, and influencing the function of
immune checkpoint inhibitors (ICIs). For example, gut
microbial extracts from NAFLD-HCC patients dramatically
suppressed CD8+ T cells and B cells in PBMCs from
non-NAFLD healthy people compared to bacterial extract
from non-NAFLD controls, but significantly increased the
proliferation of CD3+CD4+CD25+Foxp3+ Tregs, inducing
an immunosuppressive phenomenon (20). Fecal microbiota
transplantation (FMT) from proper donors can restore
gut microbiota disorder and ameliorate D-galactosamine-
induced liver injury in BALB/c mice, via downregulating
the expression of IL-17a, TNF-α, and transforming growth
factor-β (TGF-β) and upregulating the expression of IL-10 and
IL-22 (60).

miRNA-Mediated Treatment
Overexpression of microRNA-195 (miR-195) can improve
the balance of Th17/Treg via regulating CD40 expression
in rat liver tissues, accompanying decrease of serum level
of proinflammatory cytokines (e.g., TNF-α), total cholesterol
(TC) and triglyceride (TG), liver injury markers aspartate
transaminase (AST), and alanine aminotransferase (ALT) (61).
In addition, hepatocyte-specific overexpression of miR-34a
promoted high cholesterol and fructose (HFCF) fat diet-
induced NAFLD in mice, while pharmaceutical suppression
of miR-34a can reverse NAFLD progression (62). miR-
26a can inhibit hepatic expression of IL-17 and IL-6, as
lentiviral vector delivered miR-26a treatment significantly
decreased total liver weight, liver deposition of TG, and
serum ALT concentration compared lentiviral control-treated
mice, accompanying decreased infiltration of γδ T cells,
and granulocyte-differentiation antigen-1 (Gr-1)+ cells and
CD11b+ cells (63). In addition, Escutia-Gutiérrez et al.
reported that miRNAs such as miR-21a-5p, miR-34a-5p,
miR-122-5p, and miR-103-3p were increased expression of
in livers of MAFLD/NASH (64), the potential targets for
HCC treatment.
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Chemokine or Cytokine-Mediated
Treatment
Treatment with C-C chemokine receptor (CCR)2 antagonist
inhibited tumor-infiltrating macrophage (TAMs)-mediated
immunosuppression and increased CD8+ T cells in liver
cancer (65). In addition, this antagonist improved the
therapeutic effect of sorafenib via enhancing tumor necrosis
and apoptosis. CCR5/CCL5 signaling pathway plays a critical
in the development of HCC in chronic liver disease both in
mice and humans (66–68), as a potential treatment target for
HCC. Moreover, injection of WSX1 (IL-27 receptor α) can
significantly suppress the HCC growth by suppressing PD-L1
expression on tumor cells via blocking phosphoinositide 3-
kinase delta (PI3Kδ)/protein kinase B (AKT)/glycogen synthase
kinase-3β (GSK3β) pathway to release the cytotoxic effect
of CD8+ T cells (69). Combined therapy with regorafenib
and anti-PD-1 increased the filtration and activation of
CXCR3+CD8+ T cells via increasing CXCL10 expression
in tumors, resulting in inhibition of HCC growth (70).
Therefore, modulating chemokines, chemokine receptors,
and cytokines can improve anti-tumor immunity to inhibit
tumor progression.

DISCUSSION

Obesity and NAFLD are closely linked with each other. NAFLD
patients with medium-high risk obesity with body mass index
(BMI) >35 kg/m² showed poor response to hepatitis B virus
(HBV) vaccine (71). In addition, hepatitis B surface antigen-
specific CD4+ T cells showed significantly less proliferation in
PBMCs of high-risk obesity NAFLD patients compared to that
in low-risk obesity NAFLD subjects. Fatty liver disease also is
a serious issue for obese children. Lipid metabolism is one of
the major contributing factors for NAFLD (72). Fat metabolism

modulates T cell profiles in the liver of NAFLD subjects to impact
NAFLD-HCC progression. New technologies (e.g., siRNA-seq)
improve our understanding of the pathogenesis of NAFLD.
Each subtype of T cells is shown to play different roles in
NAFLD progression, such as TCRαβ+CD3+CD4−CD8− cells
and CXCR6+CD8+ or PD1+CXCR6+CD8+ T cells. Targeting
those T cells by orchestrating gut microbiota, treatment of
miRNAs, adoptive transfer of T cells, and modulating the
expression of small molecules are potential treatment options
against NAFLD and NAFLD-HCC progression. In addition,
energy restriction is a method to reduce BMI and ameliorate fatty
liver disease, which may bring new health concerns. Supplement
of lycopene-rich tomato juice to obese children can improve
calorie-restricted regimen-induced impairment of glycolysis and
mitochondrial metabolism in T cells to enhance their immune
surveillance function (73).

T cell populations vary during the development of NAFLD-
related HCC, including the changes in subtype and function. For
example, Tregs in the early stage of NAFLD/NASH can suppress
liver inflammatory function, but in the HCC stage, they can
inhibit effector T cell function to suppress tumor progression.
Therefore, manipulation of T cell function or population is
dependent on the stage of liver disease andmicroenvironment. In
addition, proteomic analysis of NAFLD-HCC infiltrating T cells
is awaited to explore the functional proteins to modify those T
cell functions except PD-1 and CXCR6. Overall, T cells play a
critical role in metabolic fatty liver diseases to HCC progression,
and targeting them may provide a novel treatment.
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