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Objective: This study aimed to identify phenotypic clinical features associated with acute

kidney injury (AKI) to predict non-recovery from AKI at hospital discharge using electronic

health record data.

Methods: Data for hospitalized patients in the AKI Recovery Evaluation Study were

derived from a large healthcare delivery system in Taiwan between January 2011 and

December 2017. Living patients with AKI non-recovery were used to derive and validate

multiple predictive models. In total, 64 candidates variables, such as demographic

characteristics, comorbidities, healthcare services utilization, laboratory values, and

nephrotoxic medication use, were measured within 1 year before the index admission

and during hospitalization for AKI.

Results: Among the top 20 important features in the predictive model, 8 features

had a positive effect on AKI non-recovery prediction: AKI during hospitalization, serum

creatinine (SCr) level at admission, receipt of dialysis during hospitalization, baseline

comorbidity of cancer, AKI at admission, baseline lymphocyte count, baseline potassium,

and low-density lipoprotein cholesterol levels. The predicted AKI non-recovery risk model

using the eXtreme Gradient Boosting (XGBoost) algorithm achieved an area under the

receiver operating characteristic (AUROC) curve statistic of 0.807, discrimination with a

sensitivity of 0.724, and a specificity of 0.738 in the temporal validation cohort.

Conclusion: The machine learning model approach can accurately predict AKI

non-recovery using routinely collected health data in clinical practice. These results

suggest that multifactorial risk factors are involved in AKI non-recovery, requiring

patient-centered risk assessments and promotion of post-discharge AKI care to prevent

AKI complications.

Keywords: acute kidney injury, kidney function recovery, machine learning, risk prediction, interpretability,

electronic health records—EHR

INTRODUCTION

Acute kidney injury (AKI) is associated with increased worsening long-term outcomes and direct
medical costs (1–4). The recovery rate at hospital discharge or within 90 days from AKI ranges
from 39.3 to 76.2% (5–7) and the recovery rate (free from dialysis therapy) of patients with AKI
requiring dialysis at 90 and 365 days after dialysis initiation ranges from 47.7 to 56.6% (8). Timing
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of kidney function recovery after an AKI episode is associated
with an increased risk of onset and long-term progression of
chronic kidney disease and can affect survival rates (6–10). There
is a need to improve the risk prediction for AKI non-recovery,
and the predictive model may serve as a risk stratification tool to
assist in the development of an appropriate post-AKI care plan at
a time of hospital discharge.

Risk predictive models of AKI non-recovery using traditional
statistical methods have achieved a C-statistic or area under
the receiver operating characteristic curve (AUROC) of 0.61–
0.76 in the validation models (11–13). The variance in AKI
non-recovery predictive performance may be associated with
heterogeneous AKI cohort, the definition of AKI recovery, and
variable length of follow-up. A recent study suggested that
clinical experts have selected features that can successfully predict
AKI non-recovery within 7 days with an AUROC of 0.879 in the
multi-center hospitalized cohort (14). These models tended to
focus on patients with AKI undergoing dialysis or with critical
illnesses. Machine learning approach using routinely collected
health data in practice has demonstrated a promise for predicting
AKI development in outpatient (15) or inpatient settings (16,
17). Currently, there is not a single validated machine learning
model to identify the risk predictors of AKI non-recovery to
establish supporting strategies for post-discharge AKI care. This
study aimed to develop and validate a machine learning model
for predicting AKI non-recovery at hospital discharge for the
development of targeted interventions to prevent long-term
adverse kidney outcomes.

METHODS

Study Population
We used electronic health record data from the AKI Recovery
Evaluation Study for a hospitalized adult cohort between January
1, 2010, and December 31, 2017, from the network of Chang
Gung Memorial Hospitals in Taiwan. This study used the Chang
Gung Research Database described in previous articles (18).
Briefly, the adult hospitalized cohort from the AKI Recovery
Evaluation Study included hospitalized patients who had an
AKI episode at admission (index_AKI) and/or during the
hospitalization (hospital-acquired AKI, HA_AKI) for analyzing
the kidney function recovery after AKI exposure (as shown in
Supplementary Material and Supplementary Table 1).

This study was approved by the Institutional Review Board
of Chang Gung Memorial Foundation at Taipei, Taiwan, which
approved a waiver of patient consent due to the retrospective
nature of the study and use of de-identified data (permit
number: 201901312B0C502). All datasets used in this study
were de-identified prior to being transferred to the study
investigators. The study followed the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement and recommendations for
reporting machine learning analyses in the clinical research for
reporting predictive model development and validation (19, 20).

Study Outcomes
The outcome of AKI non-recovery was defined as a serum
creatinine (SCr) value obtained close to the date of discharge

(during the index hospitalization or within 3 days following
discharge) >1.5-fold of the baseline SCr value (within 3 months
before AKI hospitalization) (21). Patients without SCr data
during their hospital stay and within 3 days post-AKI discharge
(it is common to have the first follow-up visit in outpatient
setting) and who died during the hospitalization were excluded
from the analysis. Details of pre-hospitalization baseline SCr
value are presented in Supplementary Material/Definition of the
AKI cohort section.

Candidate Features and Imputation of
Missing Data
Primarily, 64 candidate predictor features were available prior
to and during the index hospitalization for AKI based on
a review of the literature and clinical experience (as shown
in the Supplementary Material/Candidate features section).
These predictor features were patient demographic and clinical
characteristics, laboratory results, nephrotoxic medication, and
healthcare services utilization in pre-hospitalization and during
the hospitalization. To increase the generalizability of the
predictive model for both critical and non-critical ill hospitalized
patients, absence of laboratory results was determined by the
groups of patients with and without the use of intensive care
units (ICUs) services to fill in the missing feature’s values with
the medians of the corresponding feature in the group to obtain
the best model performance and maintain both sensitivity and
specificity above 70% (Supplementary Material/Missing data
imputation section/Supplementary Tables 1, 3).

Feature Selection
The recursive feature elimination based on the random forest
was employed to determine the number of features that should
be included during model training from all candidate features
(n = 63) by constructing the same model repeatedly using
caret package in R and random forest as a basic model. The
result indicated that the model with 20 features can achieve the
best performance (Supplementary Figure 1). We used XGBoost
to train the model and determine the 20 most important
features (Table 1). Details of feature selection are presented
in the Supplementary Material/Feature selection. This was to
reduce the model complexity and prevent the final predictive
model from overfitting that enables clinical applications. The
distribution of each variable between recovery and non-recovery
AKI groups was compared with chi-square test for categorical
data and independent t-test was for means of continuous data.

The selected 20 features were further trained in stepwise
logistic regression and four machine learning classification
algorithms, such as adaptive least absolute shrinkage and
selection operator (LASSO), random forest, eXtreme Gradient
Boosting (XGBoost), and Light Gradient Boosting Machine
(LightGBM) (Figure 1; Supplementary Table 4).

Development and Validation of the
Predictive Model
A five-fold cross-validation was used to confirm the combination
of features and the final model for the outcome predictive
model. The predictive performance of model discrimination was
analyzed with the AUROC. The cut-off point was determined
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TABLE 1 | Top 20 important features for predicting acute kidney injury (AKI) non-recovery.

Selected features Derivation cohort Temporal validation cohort

N (n = 8,600) Recovery (n = 4,729) Non-Recovery (n = 3,871) P value N

(n= 2,866)

Recovery (n = 1,580) Non-recovery (n = 1,286) P value

Age at index date, mean (SD) 8,600 66.53 (15.05) 64.39 (16.09) <0.0001 2,866 67.08 (15.35) 64.20 (15.92) <0.0001

HA-AKI, n (%) 1,257 356 (7.53) 901 (23.28) <0.0001 406 124 (7.85) 282 (21.93) <0.0001

Index AKI stage at index admission, n

(%)

<0.0001 <0.0001

Stage 2 1,384 586 (12.39) 798 (20.61) 524 217

(13.73)

307 (23.87)

Stage 3 3,961 2,595 (54.87) 1,366 (35.29) 1,205 780

(49.37)

425 (33.05)

Chalrson comorbidity index (<1 year

before index admission), n (%)

Chronic kidney disease 2,774 2,062 (43.60) 712 (18.39) <0.0001 893 648 (41.01) 245 (19.05) <0.0001

Cancer 2,332 951 (20.11) 1,381 (35.68) <0.0001 784 331 (20.95) 453 (35.23) <0.0001

Baseline laboratory results (< = 7

days before index admission), mean

(SD)

Index_SCr, mg/dL 8,600 4.65 (3.19) 2.96 (2.25) <0.0001 2,866 4.23 (3.07) 2.89 (2.26) <0.0001

Baseline_SCr, mg/dL 8,600 3.29 (2.91) 1.30 (1.13) <0.0001 2,866 2.91 (2.69) 1.26 (1.13) <0.0001

Blood urea nitrogen (BUN), mg/dL 5,965 46.15 (30.19) 26.58 (20.69) <0.0001 1,938 43.17 (30.39) 26.14 (20.80) <0.0001

Potassium (K), mEq/L 6,559 4.25 (0.82) 4.07 (0.72) <0.0001 2,081 4.26 (0.80) 4.00 (0.67) <0.0001

Low density lipoprotein cholesterol

(LDL), mg/dL

2,820 98.11 (31.86) 100.70 (31.20) 0.0351 1,080 99.06 (31.63) 96.00 (31.35) 0.1215

Serum uric acid (SUA), mg/dL 3,444 7.49 (2.30) 6.82 (2.41) <0.0001 1,183 6.87 (2.33) 6.49 (2.52) 0.0093

Calcium (Ca), mg/dL 4,260 8.68 (0.77) 8.54 (0.70) <0.0001 1,362 8.63 (0.74) 8.55 (0.76) 0.0548

C-reactive protein (CRP), mg/L 5,161 82.13 (81.26) 83.47 (78.11) 0.5495 1,840 79.99 (80.73) 84.96 (79.61) 0.1907

Albumin, g/dL 5,283 3.16 (0.65) 2.93 (0.67) <0.0001 1,665 3.22 (0.65) 2.96 (0.66) <0.0001

Erythrocyte sedimentation rate

(ESR), mm/hr

305 50.11 (30.20) 42.06 (31.18) 0.0249 78 50.08 (33.40) 41.28 (31.09) 0.2317

White blood cell (WBC)x109/L 7,760 9.30 (4.75) 8.98 (5.11) 0.0042 2,594 9.36 (4.81) 9.31 (5.21) 0.7851

Lymphocyte count (LPC), % 7,573 14.78 (9.69) 15.32 (11.59) 0.0297 2,565 14.48 (9.71) 15.38 (11.29) 0.0339

Neutrophil count (NPC),% 7,557 74.95 (12.67) 73.18 (14.88) <0.0001 2,552 76.02 (12.24) 73.97 (14.20) 0.0001

Use of health service

Number of outpatient visits< = 3

months before index date, mean

(SD)

7,723 5.79 (6.54) 5.06 (4.16) <0.0001 2,607 4.90 (4.63) 5.03 (4.08) 0.4551

Dialysis during the hospitalization, n

(%)

1,718 993 (21.00) 1397 (36.09) <0.0001 453 276 (7.47) 177 (13.76) <0.0001

p: chi-square test was performed for categorical data and independent t-test was for means of continuous data between recovery and non-recovery AKI groups.
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FIGURE 1 | Study analysis flow. LR, logistic regression; LASSO, least absolute

shrinkage and selection operator; XGBoost, eXtreme Gradient Boosting;

LightGBM, Light Gradient Boosting Machine.

based on the best Youden index (22), to determine sensitivity
and specificity in the final model. The patients hospitalized from
2016 to 2017 were considered as the temporal validation cohort
to validate the predictive performance and generalization of the
best final predictive models (Table 2).

SHapley Additive exPlanations (SHAP) values, feature
importance, summary plot, and dependency plot were
used to explain the final predictive model (23). The Local
Interpretable Model-Agnostic Explanations (LIME) method
with four scenarios (true positive, false positive, true negative,
and false negative outcome prediction) were randomly
applied to elaborate the feature importance ranking and
marginal effect in individual patient prediction (as shown
in Supplementary Material/Interpretation of the predictive
model) (24). All experimental analyses were performed using R
(version 4.1.2; R Foundation for Statistical Computing, Vienna,
Austria) and Python software (version 3.7.3; Python Software
Foundation, Wilmington, DE, USA). The details of package,
function, and parameters used in this study are presented in
the Supplementary Material/Derivation and validation of the
predictive model section.

RESULTS

Characteristics of the Study Cohort
A total of 11,466 patients with AKI who survived at the
index hospital discharge were included in the derivation
and temporal validation cohorts (8,600 in the 2010–2015

derivation cohort and 2,866 in the 2016–2017 validation
cohort) (Supplementary Figure 1). All 63 candidate features
are reported in Supplementary Table 2. The mean age of
the study cohort ranged from 64 to 67 years in both the
derivation and validation cohorts, and male patients (>50%)
were predominantly observed in the cohorts. The mean baseline
(pre-hospitalization) SCr value was 1.3 (±1.13) mg/dl in patients
with AKI non-recovery in both the derivation and validation
cohorts. Moreover, the baseline SCr values were 2.91 (±2.69)
and 3.29 (±2.91) mg/dl in patients with AKI recovery in the
derivation and validation cohorts, respectively. The rates of
dialysis and ICU utilization during hospitalization were 19.98%
and 15.8%, 30% and 27.7% in the derivation and validation
cohorts, respectively (Supplementary Table 1).

Predicting AKI Non-recovery and Machine
Learning Algorithm Comparisons
A similar proportion of AKI non-recovery (45%) at hospital
discharge was observed in both the derivation and validation
cohorts. Moreover, the 20 features identified (Table 1) by
XGBoost to predict AKI non-recovery outcome had a higher
AUROC (0.808, SD 0.015) in the five-fold cross-validation
in the derivation models. This indicates that the selected
20 most important features to train the model can achieve
almost the same performance as that using all variables
(Supplementary Figure 1; Table 2).

In terms of prediction performance in the derivation models
with top 20 features (Table 2; Supplementary Table 3), the
AUROC values of each algorithm were closed among stepwise
logistic regression (0.787 ± 0.015), least absolute shrinkage and
selection operator (LASSO) (0.787 ± 0.016), random forest
(0.787 ± 0.015), LightGBM (0.798 ± 0.005), and XGBoost
models (0.808 ± 0.015). The model with the best prediction
performance was the XGBoost model, withmaximized sensitivity
and specificity of 0.661 (±0.037) and 0.796 (±0.05), respectively
(Table 2). When F1 score was examined, the random forest
(0.728 ± 0.027) had a slightly higher F1 score than XGBoost
model (0.723 ± 0.164) in Table 2. Based on AUROC, the
XGBoostmodel was chosen to validate its predictive performance
in the temporal validation cohort. The optimal cutoff value
was 0.471 to achieve good discriminatory power for AKI non-
recovery vs. AKI recovery outcomes with the AUROC, sensitivity,
and specificity of 0.807, 0.724, and 0.738 in the validation
cohort, respectively. In addition, precision value and F1 score
of the XGBoost model in the validation cohort were 0.692 and
0.708, respectively.

Interpretation of the Predictive Model
The mean absolute SHAP value indicates individual feature
importance in the XGBoost model (Figure 2A). Overall, eight
of the top 20 characteristics, such as AKI occurring during
hospitalization (HA_AKI), SCr level at admission (index_SCr),
receipt of AKI dialysis during hospitalization (index_DA_mod),
baseline comorbidity of cancer, AKI at admission (index_AKI),
baseline lymphocyte count (LPC%), and baseline potassium (K,
mEq/L) and low-density lipoprotein cholesterol (mg/dl) levels,
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TABLE 2 | Summary of model comparisons for predicting AKI non-recovery in the derivation cohort.

Stepwise LR LASSO XGBoost LightGBM Random forest

Full model

AUROC 0.790 ± 0.014 0.788 ± 0.018 0.805 ± 0.019 0.801 ± 0.010 0.787 ± 0.015

Sensitivity 0.779 ± 0.065 0.654 ± 0.030 0.651 ± 0.082 0.667 ± 0.058 0.726 ± 0.072

Specificity 0.657 ± 0.061 0.779 ± 0.037 0.803 ± 0.099 0.783 ± 0.053 0.750 ± 0.081

Precision 0.652 ± 0.028 0.784 ± 0.028 0.811 ± 0.062 0.750 ± 0.009 0.784 ± 0.040

F1_score 0.708 ± 0.023 0.713 ± 0.023 0.717 ± 0.034 0.738 ± 0.013 0.751 ± 0.024

Top-20 model

AUROC 0.787 ± 0.015 0.787 ± 0.016 0.808 ± 0.015 0.798 ± 0.005 0.787 ± 0.015

Sensitivity 0.654 ± 0.032 0.657 ± 0.044 0.661 ± 0.037 0.694 ± 0.037 0.672 ± 0.064

Specificity 0.779 ± 0.049 0.775 ± 0.062 0.796 ± 0.050 0.748 ± 0.029 0.791 ± 0.063

Precision 0.785 ± 0.035 0.784 ± 0.040 0.800 ± 0.031 0.790 ± 0.007 0.800 ± 0.035

F1_score 0.713 ± 0.015 0.713 ± 0.018 0.723 ± 0.016 0.705 ± 0.016 0.728 ± 0.027

LR, logistic regression; LASSO, least absolute shrinkage and selection operator; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; and AUROC, area

under the receiver operating characteristic curve.

XGBoost with top-20 feature predictive results in the temporal validation cohort yielded an AUROC of 0.807, a sensitivity of 0.724, and a specificity of 0.738 (with the cut-off point

= 0.471).

FIGURE 2 | SHapley Additive exPlanations (SHAP) results. (A) SHAP feature importance. Eight features with deep pink color had a positive effect on AKI non-recovery

prediction, 11 features with blue color were negatively correlated with AKI non-recovery prediction (1 with neutral), and a higher mean SHAP value has a higher effect

on outcome prediction. (B) SHAP summary plot. The x-axis denotes the SHAP value for each feature, whereas the color represents the feature value (y-axis) from high

to low (deep pink to blue). SHAP, SHapley Additive exPlanations and AKI, acute kidney injury.

were sorted by decreasing importance in predicting AKI non-
recovery outcomes (with deep pink color in Figure 2A). The
summary plot (Figure 2B) shows that a low baseline SCr level
increases the importance of non-recovery prediction, whereas
a high baseline SCr level can greatly reduce the importance.
Furthermore, SHAP dependency plot (Supplementary Figure 2)

demonstrates the interaction effect of two features on AKI
recovery prediction.

The LIME visualization results of four random individual
prediction scenarios are shown in Supplementary Figure 3.
Supplementary Figures 3A–D provide an insight as to why the
model makes a correct or incorrect prediction on an individual
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patient. Scenario A (ID 2231) and scenario B (ID2388) patients
had similar characteristics. However, the scenario B patient
had a higher index_SCr (1.99 mg/dl), baseline white blood cell
(base_WBC) count (14 × 109/L), baseline calcium (base_Ca)
(> 8.5 mg/dl), and base_K (> 4.1 mEq/l) levels and a lower
baseline C-reactive protein (base_CRP) level (30.76 mg/L) than
the scenario A patient (SCr index = 0.98, WBC = 1.6×109/l,
base_Ca = 8.01 mg/dl, base_K = 3.1 mEq/l, and base_CRP
= 166.72 mg/l). Feature importance ranking for the AKI
recovery prediction is shown in Supplementary Figures 3C,D.
High baseline SCr level (>3.54 mg/dl), without HA_AKI, and
without prior cancer were the three most important features
positivity correlated with AKI recovery prediction. Compared
with the scenario C patient (a true AKI recovery prediction),
the scenario D patient (a false AKI recovery prediction case)
had a lower base_albumin (2.74 mg/dl), lower base_WBC count
(4.8×109/L), and lower SUA (5.1 mg/dl), but a higher calcium
level (8.57 mg/dl) and higher number of nephrotoxic medication
class used in outpatient setting (7 classes). These features could
contribute false AKI recovery prediction in the scenario D.

DISCUSSION

The present study results demonstrate an explainable machine
learning model for predicting kidney function non-recovery at
hospital discharge in patients receiving inpatient AKI care from
routinely collected health record data in clinical practice. Timing
of AKI occurrence, receipt of dialysis, and SCr measurements;
comorbidity of cancer; and pre-hospitalization baseline LPC%
and K levels, which are relevant for predicting AKI non-
recovery, did not return to a level ≥50% pre-hospitalization
baseline SCr level. The SHAP and LIME methods enhance
the interpretability of machine learning models and estimate
the positive and negative contributions of each feature to the
model prediction.

A previous study has identified four selected predictors
(estimated glomerular filtration rate ≥ 30 ml/min/1.73 m2,
preadmission hemoglobin level, platelet level, and diabetes
comorbidity) of AKI recovery using stepwise logistic regression
in patients with AKI undergoing dialysis therapy, however,
failed to achieve acceptable discrimination performance (C-
statistic, 0.645) 0.1 (3). Another study identified age, sex, SCr
elevation, and urinary output as predictive factors for AKI
recovery (without kidney replacement therapy within 5 days and
SCr value <1.5 times the pre-ICU admission value) in patients
requiring critical care, with an AUROC of 0.73 (65.4–80.8%)
0.1 (1). However, these studies have generally included patients
requiring dialysis therapy in ICUs and have been limited to
severe forms of AKI. To the best of our knowledge, this is the
first study to develop an AKI recovery predictive model that
uses machine learning algorithms for patients with AKI who
were and were not admitted to ICUs. Importantly, this study
included baseline SCr values, which are commonly ignored in
previous studies assessing the risk factor for AKI recovery (25,
26). These previous studies have well-recognized limitations in
the evaluation of AKI recovery. Based on the same data, our

results showed that the XGBoost algorithm model achieved a
good predictive performance with the 20 selected features and
was reproducible in the validation cohort.

Another major contribution of this study includes its
capability to derive reliable important features and validate an
accurate AKI non-recovery predictive model based on a large
AKI cohort with broad characteristic diversity. Given the poor
outcomes among AKI survivors even in less severe AKI cases
(3, 7), these study results of AKI non-recovery predictors can
facilitate risk assessment for identifying at-risk patients for
poor kidney recovery before hospital discharge and promote
nephrology referrals for post-discharge care for patients whomay
benefit most from such interventions (27, 28).

Although the identified features should not be interpreted
as etiologic factors or causal relationships, several temporal
associations are noteworthy. These findings indicate that
HA_AKI, high index SCr, and receipt of dialysis during the
hospitalization were the three strongest predictors for non-
recovery, a result consistent with those of prior studies (6, 10, 29).
Because dialysis (intermittent and continuous hemodialysis) is
a complementary therapy for AKI (30), it may be correlated
with the severity of AKI. The fact that timing of AKI
occurrence (AKI presence at admission [index_AKI] or during
hospitalization [HA_AKI]) was also important to AKI non-
recovery prediction, indicating that kidney function returned
to the pre-hospitalization baseline level was not considered
for hospital discharge in current practice. Further research is
warranted to focus on long-term adverse outcomes among
patients with AKI non-recovery who had a small improvement
(e.g., recovery <50% baseline SCr) or worsening kidney function
(e.g., increase > peak SCr) at hospital discharge.

The SHAP results showed that the baseline SCr value had
bidirectional effects on AKI outcome prediction (Figure 2B). It
is possible that patients with a high baseline SCr value (proxy of
poor kidney function) or less severe episode of AKI at admission
may contribute less to AKI non-recovery prediction (negative
SHAP value in Figure 2B). In contrast, patients with a low
baseline SCr value (blue color of feature value) may experience
a severe episode of AKI at admission or during hospitalization,
resulting in positive and significant effects on AKI non-recovery
prediction (positive SHAP value in Figure 2B).

Cancer is an important factor for predicting AKI non-
recovery. These results are consistent that cancer patients with
AKI non-recovery within 7 days had a greater risk of end-stage
kidney disease or death (14). We hypothesized that existing
cancer influencing AKI non-recovery may reflect higher baseline
risk of AKI progression because patients with cancer are at
high risk for infections, sepsis, tumor lysis syndrome, and
chemotherapy-associated toxicities (31, 32).

Although the relevance is low, the baseline lymphocyte count
and low-density lipoprotein cholesterol level increased, positively
predicting AKI non-recovery. Lymphocytes are associated with
the systemic inflammatory response; the proportion of baseline
LPC and its importance to AKI non-recovery prediction
are not linear. Moreover, its relevance can be associated
with hospital-acquired AKI (Supplementary Figure 2A). These
laboratory results suggested that inflammatory response at
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baseline could mediate the recovery phase of AKI (33). The
SHAP dependence plot (Supplementary Figure 2B) shows that
baseline K value > 4 mEq/L increased the prediction of
AKI non-recovery (Supplementary Figure 2B). In contrast,
patients with K > 5 mEq/L and high SCr value at admission
had a negative association with AKI non-recovery prediction,
which could be due to further medical interventions during
the inpatient stay.

Despite the increasing interest in the relative predictive
performance of different machine learning approaches, the
results of this study are significant as they contribute to
a better understanding of the effect (positive or negative
correlation) of each feature of the predictive AKI non-
recovery outcomes and a possible explanation of model’s
misclassification in the SHAP and LIME procedures. For
instance, the LIME results potentially provided an in-depth
explanation for why the scenario B patient (ID 2388), having
a similar baseline SCr level with the scenario A patient (ID
2231 with < 1.0 mg/dl), was misclassified as AKI non-recovery
(the scenario B patient recovered) in the final predictive model
(Supplementary Figures 3A,B). All SHAP and LIME results
suggested that to further perform an external validation in
different populations, a study investigating the association
between time-varying feature values (e.g., SCr trajectory)
and mechanisms of AKI non-recovery should be conducted
in the future.

This study has some limitations. First, only routinely
available clinical data in the electronic health records were
used to identify clinical phenotypes. Other data, such as urine
output, fluid status, inpatient medication use, or pathogen
variables during the hospitalization in the derivation model
that could change classification, were not assessed. Additionally,
considering the changes to the time window for AKI recovery,
the measurable candidate feature inclusions may affect the
selected features and outcome predictive performance. However,
this does not undermine the current findings but rather
highlights the need for further studies to better understand
the complex mechanisms correlated with AKI non-recovery.
Second, missing data were common for some laboratory
results included in the derivation models. Although different
approaches of data imputation were examined and the
best calibration method was used to preserve at least 70%
sensitivity and specificity, the imputed feature’s value could
bias classification. Finally, the characteristics of patient and
clinical data were derived initially from a single integrated
health system in Taiwan. Although feature distribution and
frequency were found to be generalizable in the derivation
and temporal validation cohorts, further external cohort
validation is necessary, especially using data from different
healthcare systems and more recent clinical data in academic
center cohorts.

In this study, XGBoost demonstrated good discrimination
performance for AKI non-recovery at hospital discharge. In
the temporal validated model, 20 important patients and
clinical characteristics reflect the complexity of factors affecting
the non-recovery kidney function. The eight characteristics

supporting AKI non-recovery prediction should be considered
risk predictors of adverse AKI outcome in further risk profiling
to drive the development of post-AKI care strategy for inpatients
with AKI before hospital discharge.
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