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Purpose: The purpose of this study was to investigate the feasibility of Single-Photon

Emission Computed Tomography/Computed Tomography (SPECT/CT) image-based

radiomics in differentiating bone metastases from benign bone lesions in patients

with tumors.

Methods: A total of 192 lesions from 132 patients (134 in the training group, 58 in the

validation group) diagnosed with vertebral bone metastases or benign bone lesions were

enrolled. All images were evaluated and diagnosed independently by two physicians with

more than 20 years of diagnostic experience for qualitative classification, the images were

imported into MaZda software in Bitmap (BMP) format for feature extraction. All radiomics

features were selected by least absolute shrinkage and selection operator (LASSO)

regression and 10-fold cross-validation algorithms after the process of normalization and

correlation analysis. Based on these selected features, two models were established:

The CT model and SPECT model (radiomics features were derived from CT and SPECT

images, respectively). In addition, a combination model (ComModel) combined CT and

SPECT features was developed in order to better evaluate the predictive performance of

radiomics models. Subsequently, the diagnostic performance between each model was

separately evaluated by a confusion matrix.

Results: There were 12, 13, and 18 features contained within the CT, SPECT,

and ComModel, respectively. The constructed radiomics models based on SPECT/CT

images to discriminate between bone metastases and benign bone lesions not only had

high diagnostic efficacy in the training group (AUC of 0.894, 0.914, 0.951 for CT model,

SPECT model, and ComModel, respectively), but also performed well in the validation

group (AUC; 0.844, 0.871, 0.926). The AUC value of the human experts was 0.849

and 0.839 in the training and validation groups, respectively. Furthermore, both SPECT

model and ComModel show higher classification performance than human experts in

the training group (P = 0.021 and P = 0.001, respectively) and the validation group
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(P = 0.037 and P = 0.007, respectively). All models showed better diagnostic accuracy

than human experts in the training group and the validation group.

Conclusion: Radiomics derived from SPECT/CT images could effectively discriminate

between bone metastases and benign bone lesions. This technique may be a new

non-invasive way to help prevent unnecessary delays in diagnosis and a potential

contribution in disease staging and treatment planning.

Keywords: radiomics, bone metastases, benign bone lesions, SPECT/CT, diagnosis

1. INTRODUCTION

Bone metastases were a common event in cancer evolution.
Studies had shown that nearly 70% of cancer patients had
metastases at autopsy, and 80% of the primary tumors were a
prostate, breast, and lung cancers, bone-related events associated
with bone metastases which can seriously affect patients’ quality
of life (1). Among patients with primary tumors with bone
metastases or benign bone diseases, the early diagnosis was
important for individualized patient treatment as treatment
options vary widely (2). Although bone biopsy was the gold
standard for identifying benign and malignant lesions, it was not
widely used in clinical diagnosis and treatment because of the
invasive procedure. A noninvasive method to distinguish bone
metastases from benign bone lesions was urgently needed.

99mTc-labeled methylene diphosphonate (99mTc-MDP)
whole-body scan (WBS) was frequently used in patients with
bone lesions and had high sensitivity but low specificity. The
radioactive tracer 99mTc-MDP was deposited in the bone by
chemisorption and ion exchange, the abnormal uptake of
the tracer reflected the osteogenic activity and local blood
flow of the lesion (3). Single-Photon Emission Computed
Tomography/Computed Tomography (SPECT/CT) combined
anatomic and metabolic functions to improve the accuracy
of anatomic localization of lesions and the specificity of bone
imaging (4, 5). However, several researchers had indicated that
bone metastases and benign bone lesions had similar imaging
features, particularly for patients with already known cancer
(6–8), it remained difficult to discriminate bone metastases and
benign bone lesions as studies had shown that 14.3% of patients
still had an equivocal diagnosis after SPECT/CT examination
(9, 10). Moreover, SPECT/CT diagnosis mainly depended on
physicians’ personal experience, which inevitably had subjective
factors, and it was difficult to quantify the intensity, uniformity,
and heterogeneity of lesion distribution (11).

Radiomics convert digital images into mineable data through
automated or semi-automatic and high-throughput methods.
Radiomics could analyze the heterogeneity of tumors as a
whole through hundreds of quantitative features and also
analyze the quantitative relationship between tumor biological
features and imaging features, which could construct models for
tumor diagnosis, efficacy evaluation and prediction, and provide
valuable references for clinical treatment of tumors (12, 13).
The current research on radiomics mainly focused on CT and
MRI (14–16). The pathological mechanism of bone metastasis
was based on the disruption of the metabolic balance between

osteoclasts and osteoblasts by the molecular action of cancer
cells. In contrast, the benign bone disease showed inflammation
and tissue remodeling of the periosteal cartilage tissue. Different
osteoblastic and osteolytic mechanisms had the potential to cause
different heterogeneity and distribution of radioactive tracer
(17, 18). Furthermore, different from the anatomical information
of the lesion provided by traditional imaging, SPECT/CT
radiomics combined the anatomical information and metabolic
information of the lesion to quantify the tumor heterogeneity,
which had the potential to improve the diagnostic performance.

To the best of our knowledge, there were few studies related
to bone diseases based on radiomics of SPECT/CT images.
Therefore, the purpose of this study was to investigate the
feasibility of SPECT/CT image-based radiomics in differentiating
and improving diagnostic performance for bone metastases from
benign bone lesions in patients with tumors.

2. MATERIALS AND METHODS

2.1. Patients
Participants between January 2019 and October 2020 were
enrolled in this study according to the following inclusion
criteria: 1) Patients a had history of the primary tumor; 2) Patients
received SPECT/CT for further diagnosis because of abnormal
uptake of vertebral radioactive tracer in 99mTc-MDP WBS; 3)
Complete pathological, imaging, or clinical follow-up records
and diagnosed with bone metastases or benign bone lesions;
4) At least one lesion in the spine and larger than 1 cm. In
addition, the exclusion criteria included the following: 1) The
shape of the lesion was irregular and difficult to delineate; 2)
Abnormal uptake of radioactive tracer in SPECT images without
lesions in CT images; 3) Had undergone surgery or medical
treatment. The enrolled patients were randomly divided into the
training and validation groups at the ratio of 7:3. The details of
the participant’s selection process were shown in Figure 1. This
retrospective study was approved by the hospital ethics review
committee and the requirement for informed patient consent
was waived.

2.2. Image Acquisition
All the acquisition procedures were completed on SPECT/CT
scanner equipped with a high resolution low energy parallel hole
collimator (GE Healthcare Discovery NM/CT670 pro, USA).
WBS was acquired within 2–5 h after intravenous administration
of 15–25 mCi 99mTc-MDP (Beijing Atomic Hi-tech Co., LTD,
China), then SPECT/CT was performed immediately for further
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FIGURE 1 | The inclusion and exclusion criteria of our study.

diagnosis if a suspicious lesion was found on the WBS. The
SPECT acquisition parameters were as follows: double probe
parallel acquisition, rotation 180 respectively, 15 s per frame, and
a 128×128 matrix. CT scan parameters are as follows: 120 KV, 80
mA, window width of 15%, the pitch of 1.25, and slice thickness
of 2.5 mm. The image reconstruction program was carried out
in the XELERIS workstation (GE Medical Systems, USA), and
the image fusion program was carried out in the procedure of
Volumetrix MI Evolution Bone.

2.3. Image Analysis and Human Expert’s
Qualitative Classification
After summarizing all the clinical information available for
diagnosis, we concluded that the diagnostic criteria for this study
were based on either pathological biopsy, follow-up imaging, or
progression of the clinical course. All images were evaluated and
diagnosed independently by two human experts (AJT and JY)
with more than 20 years of diagnostic experience for qualitative
classification. The human experts made the diagnosis without
being provided with clinical information but were informed that
the lesion was either bone metastasis or benign bone lesion.
The diagnostic results of the human experts were evaluated by
weighted kappa statistics for interobserver agreement. The main
criteria for the human expert’s qualitative classification of bone
metastases were osteolytic, osteoblastic, and mixed bone changes

on SPECT/CT images and abnormal uptake of 99mTc-MDP in the
corresponding area.

2.4. Lesion Segmentation and Feature
Extraction
All images were imported into MaZda software (version 4.6,
www.eletel.p.lodz.pl) in BMP format for feature extraction,
and at most two lesions were taken from each patient if the
number of eligible lesions on the vertebral body was greater
than three. MaZda software had been reported in previous
studies to be available for radiomics image feature extraction,
and it was confirmed that the radiomic features extracted by
MaZda software satisfied the criteria of the Image Biomarker
Standardization Initiative (IBSI) (19, 20). Before extracting
features, images were normalized by using the method of µ ±

3σ (µ is the average value of the image gray value, σ is the SD
of the image gray value) to reduce the influence of brightness
and contrast on the gray value of the image. Two physicians
(MYC and JNZ) with 5 years of diagnostic experience checked
the area of abnormal uptake of 99mTc-MDP as Region of Interest
(ROI) without knowing the clear diagnosis of the lesion. The ROI
was delineated on the largest cross-section of the lesion in CT
and SPECT images using 2D texture sketching mode and then
copied to corresponding images as needed. If the location of the
lesion changes due to respiratory movement, the ROI was fine-
tuned to ensure that the ROI is roughly in the same position. To
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ensure consistency in outlining ROI between the two physicians
and to maintain stability and reproducibility of the features,
30 lesions were randomly selected for secondary outlining.
Features can be divided into the following categories: gray-
level histogram, gray-level absolute gradient (GrM), gray-level
run-length matrix (GLRLM), gray-level co-occurrence matrix
(GLCM), autoregressive model (ARM), and wavelet. Detailed
information about radiomics features had been explained in
previous research (21). Altogether 279 radiomics parameters
were included in 6 common feature groups.

2.5. Feature Selection and Model
Establishment
All features were normalized using the method of Z-score
(value of feature subtract the mean value and divided by
the SD) before selection. We calculate inter-texture correlation
by the method of Pearson correlation and remove features
with a correlation coefficient greater than 0.9 to achieve data
stability and repeatability as well as to eliminate the effect of
multicollinearity. In our study, if the correlation coefficient
between two features is greater than 0.9, the average absolute
correlation between this feature is correlation coefficient and the
remaining features was compared, and the feature coefficient
with the larger correlation was removed. The least absolute
shrinkage and selection operator (LASSO) regression was
performed on the training group for further data selection. Then
the features were selected by 10-fold cross-validation based on
the criteria of binomial deviance minimization. For the final
selected non-zero features, we constructed a classification model
by the method of multiple logistic regression. Based on these
selected features, two models were established: The CT model
(texture parameters were derived from CT images only) and
SPECT model (texture parameters were derived from SPECT
images only). In addition, a combination model (ComModel)
combined with CT and SPECT features was developed in order
to better evaluate the predictive value of radiomics models. The
flowchart of our study was shown in Figure 2.

2.6. Diagnostic Efficacy of Models and
Comparison
The diagnostic efficacy of all models was evaluated by the area
under the curve (AUC) of the receiver operating characteristic
(ROC). The confusion matrix was used to calculate the overall
accuracy of the models as well as the sensitivity, specificity,
negative predictive value, and positive predictive value of each
model. The DeLong test was used to compare the diagnostic
efficacy between each model. Calibration curves and Brier score
were used to evaluate the calibration of the categorical prediction
models and the good of fitness. In addition, decision curve
analysis (DCA) was used to evaluate the clinical benefit of the
categorical prediction models.

2.7. Statistical Analysis
Descriptive data were represented as the mean ± SEM.
Continuous variables were compared between groups of bone
metastatic and benign bone lesions with the Independent-
Samples t-Test or the Mann Whitney U-test for non-normal
distribution. Categorical variables between the two groups were
assessed using the chi-square test or the Fisher exact test and
weighted Kappa statistics were used to evaluate the interobserver
agreement. All feature screening, model construction, and
evaluation of the radiomics model diagnostic efficacy were
performed in R software (version 4.1.1) and Python (version
3.8.1). Other statistical analyses of clinical data were performed
with IBM SPSS (version 21.0) and MedCalc software (version
20.0), and P < 0.05 was considered as statistically significant.

3. RESULTS

3.1. Basic Patient Information
A total of 192 lesions from 132 patients were enrolled in this
study, which included 79 patients who were classified as bone
metastasis (46 men, 33 women), while the remaining 53 patients
were classified as benign bone lesions (32 men, 21 women).
Among all of the basic clinical factors for patients in the training

FIGURE 2 | The flowchart of our study.
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TABLE 1 | Basic information for patients in the training and validation cohorts.

The training cohort The validation cohort

Bone metastases Benign lesions P Bone metastases Benign lesions P

Gender 0.461 0.653

Female 19 10 13 11

Male 35 26 11 7

Age 59.13 ± 11.4 61.35 ± 12.32 0.508 58.46 ± 10.97 60.45 ± 11.65 0.632

Range 30–72 35–79 35–67 34–78

Lesion form 0.839 0.801

Osteolytic 8 4 4 1

Osteoblastic 53 24 23 11

Mixed 33 12 14 5

Confirmed 0.658 0.896

Biopsy 18 9 9 4

Follow-up 76 31 32 13

P < 0.05 was considered to be statistically significant.

and validation cohorts, including gender, age, lesion form, and
methods of lesions confirmation showed no significant difference
between bone metastases and benign bone lesion (all P > 0.05).
The basic information of the patient was detailed in Table 1. The
primary malignancies of the 132 patients were as follows: breast
cancer, n= 27; lung cancer, n= 50; prostate cancer, n= 25; colon
cancer, n = 5; renal carcinoma, n = 5; thyroid cancer, n = 5;
stomach cancer, n = 4; cervical cancer, n = 3; hepatocellular
cancer, n = 3; pancreatic cancer, n = 2; nasopharyngeal cancer,
n = 2; ureteral cancer, n = 1. The diagnosis of the 53 patients
with benign lesions is as follows: degenerative lesions, n = 23;
fractures, n= 15; osteoarthritis, n= 8; spinal tuberculosis, n= 7.

3.2. Prediction Models Building and
Validation
After correlation analysis between feature groups and elimination
of features with a correlation greater than 0.9, 203, and 234
features were obtained from CT and SPECT images in the
training group, respectively, and then the lasso algorithm and
10-fold cross-validation were used to classify bone metastases
and benign bone lesions, and finally, 12, 13, and 18 features
were obtained based on CT images and SPECT images
for construction of classification models, respectively, the
selected features were shown in Supplementary Tables A,B. The
specific process of LASSO screening features was illustrated
as detailed in Figure 3. The details of the selected features
obtained were demonstrated with boxplots and heatmaps in
Supplementary Figures S1–S4. In the training group, the CT
model, the SPECT model, and the ComModel obtained high
AUC values of 0.894 (95%CI: 0.829–0.941), 0.914 (95%CI:
0.853–0.956), and 0.951 (95%CI: 0.899–0.981), respectively.
ComModel have better predictive performance than CT and
SPECT and there was no statistical difference between the three
models after DeLong test (P = 0.622 between SPECT model
and CT model, P = 0.193 between SPECT and ComModel
model, P = 0.072 between ComModel and CT model). In

the validation group, ComModel (0.926; 95% CI: 0.827–0.978)
indicted better predictive performance than SPECT model
(0.871; 95% CI:0.757–0.945) and significant increase than CT
model (0.844; 95% CI: 0.725–0.026) (P = 0.063 and P = 0.024,
respectively). In addition, SPECTmodel also demonstrated better
predictive performance than the CT model (P = 0.042).

3.3. Diagnostic Performance Between the
CT Model, SPECT Model, ComModel, and
Human Experts
After the Kappa test, the weighted k-value of the inter-observer
agreement was 0.814 (95% CI: 0.713–0.895), indicating a good
inter-observer agreement. The AUC value of the human experts’
qualitative classification was 0.849 (95% CI: 0.775–0.907) and
0.839 (95% CI: 0.753–0.906) in the training and validation
groups, respectively. In the training group, the SPECTmodel and
the ComModel showed statistically significant differences over
the human experts (P= 0.021 and P= 0.001, respectively), while
the CT model showed no significant differences over the human
experts (P = 0.091). In the validation group, the ComModel
and SPECT model demonstrated greater diagnostic effectiveness
over the human experts (P = 0.007 and P = 0.037 respectively),
while the CTmodel showed no significant difference (P= 0.094).
As for the calibration curves, all three model’s curves were
closed to ideal curves, indicating that the models had superior
fitness and predictive ability. The calibration curve was shown
in Figure 4. ComModel has a better model fitness than the CT
model and SPECTmodel with a lower value of Brier score (0.082,
0.126, and 0.110 for ComModel, CT model and SPECT model,
respectively). In the decision curves, when the threshold was 0–
1, the ComModel always had a better overall net clinical gain
than the other models. The SPECT model also had a slightly
higher clinical gain than the human experts, and there was no
significant difference between the CT model and the human
experts. The decision curve was shown in Figure 5. The difficult
differential diagnosis of bone metastases and benign bone lesions
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FIGURE 3 | (A–F) demonstrated the specific process of least absolute shrinkage and selection operator (LASSO) regression analysis screening features for CT model,

SPECT model, and ComModel, respectively. (A,C,E) showed the process of features selection. The vertical line was plotted at the optimal λ of 0.064, 0.025, and

0.035 for CT, SPECT, and ComModel, respectively. Twelve, thirteen, and eighteen factors with non-zero coefficients were finally selected for CT, SPECT, and

ComModel, respectively. (B,D,F) showed that features selection was performed by 10-fold cross-validation with the criterion of minimum deviance.

in clinical work was demonstrated in Figures 6, 7, respectively. A
comparison of diagnostic performance between each model was
shown in Table 2. The ROC curves of all models were illustrated
in Figure 8.

4. DISCUSSION

In this study, we constructed and validated SPECT/CT image-
based radiomics model, which achieved satisfactory classification
performance and outperformed human experts’ qualitative
classification. Radiomics model had the potential to provide
additional value distinct from CT and MRI as a noninvasive and

more accessible imaging method to differentiate bone metastases
from benign bone disease and reduce unnecessary invasive
examinations and adjustments in treatment decisions.

Previous studies had indicated that bone metastases tend to
involve the pedicle rather than the vertebral body and rarely
invade the extremity bone compared to benign bone disease,
which tends to affect the small intervertebral joints (22). In a
study of characterization of 84 solitary lesions in the extremities,
Peng et al. (23) pointed out that benign bone lesions were
predominant in the proximal and distal extremity bones, whereas
bone metastases were predominant in the diaphyses extremity
bones, but there was no significant difference in osteoblast
activity between bone metastases and benign lesions (24).
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FIGURE 4 | Comparison of the calibration curve and Brier score of different models. All three model’s calibration curves were closed to ideal curves, indicating that the

models had good fitness and predictive ability. The following figure shows the distribution of the probability of diagnosis for different models.

Although SPECT/CT had significantly improved the diagnostic
efficiency of spinal lesions and could diagnose bone metastases
based on the criteria of osteolytic, osteoblastic, and mixed
bone changes on SPECT/CT images and abnormal uptake of
99mTc-MDP in the corresponding area, some benign lesions
such as fractures, degenerative changes, spinal tuberculosis, and
osteoarthritis can also show similar bone changes in CT and
abnormal uptake of radioactive tracer, furthermore, atypical
bone lesions also contributed to the challenge of differentiating
between the bone metastases and benign bone disease (25).
In addition, these traditional imaging features were assessed
through visualization and relied on the physician’s subjective
evaluation and diagnostic experience, despite that lesions were
not always typical in the clinical work.

Considering the limitations of traditional imaging diagnosis,
the semi-quantitative analysis of bone lesions had made

great progress in recent years. Kuji et al. (26) used the
method of conjugate gradient reconstruction with tissue zoning,
attenuation, and scatter corrections applied (CGZAS) based on
WBS image to prove that SUVmax is a reliable osteoblastic
biomarker for differentiating bone metastasis from degenerative
changes in patients with prostate cancer. In their study,
SUVmax in patients with bone metastasis was significantly
higher compared with degenerative changes (40.90 ± 33.46
vs. 16.73 ± 6.74). In addition, their study also showed
that SUVmax was related to bone disease progression. Le
et al. (27) showed that the differential of malignant bone
metastases also achieved satisfactory diagnostic performance
based on the factor of PSMA-RADS rating, SUVmax, and
SUVmax ratio of the lesion to blood pool by 68Ga-PSMA-11
PET/CT image. In fact, SUVmax only reflects the metabolic
information of the tumor within a single pixel in the image
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FIGURE 5 | Comparison of decision curve analysis (DCA) of different models. When the threshold was 0–1, the ComModel always had a better overall net clinical gain

than the other models, the SPECT model also had higher clinical gain than the human experts, and there was no significant difference between the CT model and the

human experts.

FIGURE 6 | Clinical cases SPECT/CT images of bone metastases (A) and benign bone lesions (B). The images shown are WBS image, axial CT, SPECT, fusion

image, and sagittal CT (a–e, respectively). (A) bone metastases: a 53-year-old female with an adenocarcinoma of the left lung. Wedge-like changes of the T8 vertebral

body with an abnormal concentration of radioactive tracer (arrows). (B) benign bone lesions: a 68-year-old female with breast cancer. Wedge-like changes of the L1

vertebral body with higher bone density and increased radioactive tracer distribution (arrows). It was difficult to determine whether lesions were metastasis with

conventional images only. Lesion (A) was confirmed as pathological fracture due to bone metastases by pathological examination and showed systemic bone

metastases at subsequent imaging follow-up. Lesion (B) was confirmed to be a benign compression fracture by imaging follow-up and clinical information.

and cannot quantify the spatial heterogeneity of the overall
metabolic distribution.

Compared to traditional image assessment, radiomics
was a new tool that extracted image information through

high-throughput methods to provide useful information for
disease typing and grading, gene localization, early treatment,
and prognostic assessment; Some studies had shown that
radiomics had better diagnostic performance than traditional
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FIGURE 7 | (A) bone metastases: a 76-year-old male with prostate cancer. Nodular high-density shadow on the right lower edge of the L2 vertebral body with a

concentrated radioactive tracer (arrows). (B) benign bone lesions: a 60-year-old male with prostate cancer. Nodular high-density shadow on the right upper edge of

the T12 vertebral body with increased radioactive tracer distribution (arrows). The cluster of radioactive tracer concentrations in the left rib(a), with fusion images

suggesting bone metastasis. Lesion (A) showed increased concentration of tracer and increased extent of concentration with systemic bone metastases at

subsequent imaging follow-up. Lesion (B) was confirmed not a metastasis from prostate cancer at several subsequent imaging follow-ups.

TABLE 2 | The diagnostic ability of each model for discriminating vertebral bone metastases from benign bone lesions.

AUC Accuracy Sensitivity Specificity PPV NPV

CT model

Training cohort 0.894 0.851 0.949 0.696 0.872 0.821

Validation cohort 0.844 0.828 0.648 0.925 0.853 0.792

SPECT model

Training cohort 0.914 0.866 0.885 0.821 0.885 0.839

Validation cohort 0.871 0.845 0.870 0.750 0.853 0.833

ComModel

Training cohort 0.951 0.903 0.923 0.893 0.912 0.893

Validation cohort 0.926 0.879 0.852 0.925 0.882 0.875

Human experts

Training cohort 0.849 0.836 0.821 0.857 0.821 0.857

Validation cohort 0.839 0.828 0.870 0.825 0.882 0.750

AUC, the area under the ROC curve; PPV, postive predictive value; NPV, negative predictive value.

clinical in the non-invasive classification and diagnosis of
diseases. Veres et al. (28) showed that SPECT radiomics could
identify microscopic lesions in the rat liver and suggested that
the radiomics feature skewness could identify liver tumor lesions
before they exhibit altered tissue function. Carabelli et al. (29)
demonstrated that the entropy of radiomic features in SPECT
myocardial perfusion imaging (MPI) could evaluate coronary
vascular microcirculation noninvasively and suggested that the
improvement of left ventricular functional status by liraglutide
would not improve the induction of coronary microvascular
dysfunction in type 2 diabetes. The study of Rahmim et al. (30)
combined with radiomic analysis in the routine measurement of
DAT SPECT significantly improved the diagnosis of Parkinson’s
outcome and believed that radiomics were expected to become
an effective biomarker for Parkinson’s diagnosis. However,
most of these SPECT radiomics studies focus on the brain
and cardiovascular aspects, and there were few studies on
bone diseases.

Our research showed that the radiomics models constructed
based on SPECT/CT images to discriminate between bone
metastases and benign bone lesions not only had high diagnostic
efficacy in the training group, with AUC of 0.894, 0.914, and 0.951
for CT model, SPECT model, and ComModel, respectively but
also performed well in the validation group, with AUC of 0.844,
0.871, and 0.926 for CT model, SPECT model, and ComModel,
respectively. Furthermore, both SPECT model, and ComModel
showed higher classification performance than human experts,
which reflected the superiority of radiomics in non-invasive
classification for disease diagnosis. Another finding was that the
SPECT model had better diagnostic efficacy for identifying bone
metastases and benign bone lesions than the CT model. We
speculated that these SPECT images represent radioactive tracer
uptake andmetabolic information of the lesion and can detect the
lesion earlier than conventional imaging, which brings additional
value to the identification of the lesion and tissue specificity.
In addition, SPECT radiomics may have the potential to play a
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FIGURE 8 | Comparison of the diagnostic performance of different models. (A) Receiver operating characteristic for training cohort. (B) Receiver operating

characteristic for validation cohort.

crucial role in finding the optimal dose for the targeted treatment
of bone lesions with radioactive nuclides and in assessing the

effectiveness of treatment.
Our study showed that the feature of entropy and correlation,

which were both derived fromGLCM and appeared several times

in the feature extracted from CT images and SPECT images,

were closely related to the identification of lesions. GLCM

described the spatial relationship of pixels between features and

the heterogeneity of lesions, which had been reported several

times in previous studies (31, 32). Previous studies had found

that the feature of entropy and correlation was related to the

malignancy of lesions and helped to determine lymph node

metastasis (33–35). In addition, increased heterogeneity within

the images may be related to the local cellular composition,
proliferation, fibrillation, angiogenesis, and necrosis of the tumor,

as well as the impact of continued progressive invasion and
destruction of bone metastatic disease (36, 37).

For patients considering multiple lesions, we do not

automatically consider that all lesions in that patient were

metastatic or benign based on biopsy or follow-up data of

individual lesions, and the coexistence of bone metastases and
benign bone disease in multiple lesions of the spine was relatively

common in clinical work. We confirmed as metastases or

benign lesions by biopsy or follow-up data for each individual
lesion, and if the final diagnosis of the lesion was inconclusive,

the lesion was simply eliminated, although this process took
substantial time, it ensured the rigor of this study. Finally,
we excluded treated patients because a proportion of patients
will have flare phenomenon and osteoblastic reactions after

chemotherapy or radiotherapy, which could also affect the uptake
of radioactive tracer.

Our study has several limitations. First, our study had an
inherent limitation with a retrospective design, thus, losing a
large number of follow-up results, therefore, more standardized
prospective studies are needed before the method can be
used in the clinic. Second, our study is single-centered, and
therefore, no external validation was performed, which may have
some implications in terms of model stability. Third, detailed
histopathological analysis was not always possible in each case,
and we confirmed bone metastases and benign bone lesions on
the basis of pathological biopsy, radiological imaging follow-up,
and progression of the clinical course.

5. CONCLUSION

Radiomics models based on CT and SPECT images derived from
SPECT/CT can effectively discriminate between vertebral bone
metastases and benign bone disease. This technique may be a
new non-invasive way to help prevent unnecessary delays in
diagnosis and a potential contribution in disease staging and
treatment planning.
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