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Background: There is a high incidence of acute respiratory failure (ARF) in moderate or

severe traumatic brain injury (M-STBI), worsening outcomes. This study aimed to design

a predictive model for ARF.

Methods: Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤ 12] with

a definite history of brain trauma and abnormal head on CT images, obtained from

September 2015 to May 2017, were included. Patients with age >80 years or <18

years, multiple injuries with TBI upon admission, or pregnancy (in women) were excluded.

Two models based on machine learning extreme gradient boosting (XGBoost) or logistic

regression, respectively, were developed for predicting ARF within 48 h upon admission.

These models were evaluated by out-of-sample validation. The samples were assigned

to the training and test sets at a ratio of 3:1.

Results: In total, 312 patients were analyzed including 132 (42.3%) patients who had

ARF. The GCS and the Marshall CT score, procalcitonin (PCT), and C-reactive protein

(CRP) on admission significantly predicted ARF. The novel machine learning XGBoost

model was superior to logistic regressionmodel in predicting ARF [area under the receiver

operating characteristic (AUROC) = 0.903, 95% CI, 0.834–0.966 vs. AUROC = 0.798,

95% CI, 0.697–0.899; p < 0.05].

Conclusion: The XGBoost model could better predict ARF in comparison with logistic

regression-based model. Therefore, machine learning methods could help to develop

and validate novel predictive models.

Keywords: acute respiratory failure, machine learning, XGBoost model, logistic regression, traumatic brain injury

INTRODUCTION

Acute respiratory failure (ARF) is a common pathophysiological result of pulmonary complications
[pneumonia, neurogenic pulmonary edema, and acute respiratory distress syndrome (ARDS)]
in moderate or severe traumatic brain injury (M-STBI), not only worsening outcomes, but also
extending intensive care unit (ICU) and hospital stays and increasing the cost of hospital care (1–7).
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Consequently, accurately predicting ARF risk may help to
identify cases requiring intensive airway management. This
would help to allocate resources efficiently and improve
morbidity reduction by appropriately monitoring patients at risk.

With the rapid development of software, there is increasing
use of machine learning algorithms. Especially, machine learning
methods have been applied in medicine with excellent results,
deriving predictive algorithms for multiple conditions (8–15).
While traditional predictive models employ selected parameters,
machine learning methods easily include multiple clinical
parameters (16).

Although some predictive score systems or risk calculators
have been developed by previous studies for the prediction
of pulmonary complications (3, 5, 9, 13, 17), to date, studies
assessing RF feature selection and machine learning algorithms
are rare in the M-STBI population.

We hypothesized that supervised machine learning could
help to develop models for better predicting single ARF
occurrence upon M-STBI compared with routine statistical
models. Therefore, this study aimed to utilize a machine
learning model for developing and validating an ARF predictive
model, termed extreme gradient boosting (XGBoost), which
was compared to a conventional logistic regression model
for effectiveness.

MATERIALS AND METHODS

Data Source
Model development and internal validation were based on a large
TBI database, which consists of data of patients admitted to the
department of neurosurgery in the Second Affiliated Hospital
of Fourth Military Medical University, China, from September
2015 to May 2017. This trial had approval from the Institutional
Ethics Board of the Second Affiliated Hospital of Fourth Military
Medical University (TDLL-KY-202110-09) and data reporting
followed the guidelines included in the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement (18).

Selection of Patient
Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤
12] with a definite history of brain trauma and abnormal head
on CT images, acquired from September 2015 to May 2017, were
included in this study. Patients with age >80 years or <18 years,
multiple injuries with TBI upon admission, or pregnancy (in
women) were excluded from this study.

Data Collection and Outcome Definition
The medical records of the patients were carefully collected by
three authors on separate occasions. Demographic parameters,
clinical and laboratory variables, comorbidities, imaging features,
and outcome variables were recorded. All the patients with
M-STBI underwent the procedure of arterial blood gas (ABG)
analysis within the day of admission; ABGwas repeated, if oxygen
saturation (SpO2) <93% using a nasal catheter or mask oxygen
inhalation for at least 5min after suctioning oropharyngeal
secretions. The primary endpoint of this study was ARF within

72 h of admission, which was defined as respiratory failure with
partial pressure of oxygen (pO2)<60mmHg and respiratory rate
>30 breaths/min or respiratory distress for at least 5 min (19).

Predictors of ARF
Clinical and laboratory parameters recorded in the initial 48 h
after ICU admission were examined for their capabilities of
predicting ARF. For parameters measured many times, both
the maxima and minima were examined. Age, gender, GCS,
comorbidity, and imaging features including the Marshall CT
score and severity scores of lung exudations (seeTables S1, S2 for
the details of the scores) were analyzed. In addition, laboratory
data such as white blood cell (WBC) and neutrophil counts,
neutrophil–lymphocyte ratio, C reactive protein (CRP), and
procalcitonin (PCT) were included. In term of therapy, long-term
sedation (sedation duration > 48 h) was examined. For predictor
selection, the Akaike Information Criterion (AIC) was used for
minimizing the possible collinearity of parameters from a given
patient as well as overfitting (20).

This was a hypothesis-generating retrospective trial, with no
sample size estimation, but including the totality of eligible
patients in the database for statistical power maximization.

Missing Data
We aimed to reflect daily clinical routine where often not all the
data are obtainable. To make our algorithms and study realistic,
we decided not to correct for missing data, e.g., by imputation
techniques and to perform the analysis using the available data
only. While using imputation techniques to estimate missing
variables have many merits in conventional statistics, it is
less preferred in machine learning because it does not reflect
the observed reality—at best a close approximation—and adds
artificially introduced noise to the data. Moreover, there could
be significant reasons why some data are missing, which could
be linked to the outcome variable of interest. In such cases
(and in a number of other scenarios), imputation obscures
important relationships in the observed data or introduces
artificial relationships altogether, which decreases the value of
complex pattern recognition used in machine learning. For
variables with missing values, we coded the missing value as zero
and created the corresponding missing dummy (12).

Statistical Analysis
Continuous and categorical data were presented as median
[interquartile range (IQR)] and number (percentage).
Demographic characteristics between participants with and
without ARF were compared by the Mann–Whitney U test or
the chi-squared test.

The primary model of this study was the XGBoost gradient
boosted tree model. XGBoost represents a tree ensemble
technique building in a progressive fashion on the loss fromweak
decision tree base learners. It can learn rapidly and effectively
from substantial data amounts, with a flexibility allowing learning
even from missing data (21). After tuning the XGBoost model,
parameters of the XGBoost model were finally max_depth =

7, subsample = 0.94, colsample_bytree = 0.83, nrounds = 100,
learning rate (eta value)= 0.3, and gamma= 5.
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FIGURE 1 | Study flowchart.

For comparison, another model for predicting ARF
occurrence was developed based on the multivariate logistic
regression analysis.

As a comparison, a second model to predict the occurrence of
ARF was created using the multivariate logistic regression model.

For comparison, model discrimination was assessed using the
area under the receiver operating characteristic (AUROC) curve
and the optimal cutoff value was calculated by Youden index.
The confusion matrixes of the two models were created based
on the optimal cutoff values to evaluates the accuracy, sensitivity,
and specificity.

EmpowerStats (X&Y Solutions, Inc., Boston, MA, USA) and
R version 3.4.2 (http://www.R-project.org) were utilized for data
analysis. p < 0.05 was considered as statistically significant.

RESULTS

Patients
Between September 2015 and May 2017, 312 M-STBI cases
hospitalized in the non-ICU (NICU) of the Second Affiliated
Hospital of Fourth Military Medical University were examined.
There were 232 males and 80 females. Of all patients, 132 (42.3%)
patients had ARF (Figure 1). Characteristics of patients are given
in detail in Table 1.

The ARF group included more individuals with smoking
history (37.12 vs. 26.67%; p = 0.049) and chronic obstructive
pulmonary disease (COPD) history (5.30 vs. 1.11%; p = 0.029)
prior to ICU admission than the non-ARF group. Upon
admission, the minimum GCS values (6.57 ± 2.68 vs. 8.63 ±

3.27 mmol/l; p < 0.001) were lower, while the Marshall CT
scores (5.50 ± 0.95 vs. 4.70 ± 1.39; p < 0.001) and severity
scores of bilateral lung exudations (83.33 vs. 66.67%; p = 0.004)
were higher in ARF cases. ARF cases also showed elevated white
blood cell count (14.87 ± 7.14 vs. 10.96 ± 5.16; p < 0.001),
elevated neutrophil cell count (85.06 ± 9.47 vs. 78.27 ± 12.37;
p < 0.001), lower neutrophil–lymphocyte ratio (5.66 ± 5.83 vs.

9.78 ± 10.11; p < 0.001), and higher CRP (57.10 ± 59.85 vs.
23.51 ± 31.19 mmol/l; p < 0.001) and PCT (2.54 ± 6.09 vs.
0.42 ± 1.13; p = 0.002) compared with the non-ARF group
(Table 1).

The XGBoost Model
Extreme gradient boosting had an AUROC of 0.84 in the training
set, with sensitivity and specificity of 0.71 and 0.84, respectively.
Its precision was 0.78 (95% CI: 0.72–0.83). An error rate of 0.12
was obtained, indicating a correct prediction in roughly 78% of
patients (Table 2).

In the test population, an AUROC of 0.90 was obtained for
XGBoost, which had specificity and sensitivity of 0.85 and 0.78,
respectively, indicating correct prediction of 29 of the 37 ARF
cases in the test set. Meanwhile, 8 cases were incorrectly predicted
[reflecting a precision rate of 0.82 (0.72, 0.90)]. The model had an
error rate of 0.18, indicating correct outcome prediction in>81%
of cases (Table 2).

Variables showing high predictive values were the GCS and
the Marshall CT score, PCT, and CRP on admission. The GCS
was the center factor of the XGBoost model because the gain of
the GCS was the highest among all the variables (Figure 2). Other
variables, e.g., long-term sedation and smoking history had low
prediction power (Figure 2).

Logistic Regression Model
Baseline parameters for the ARF and non-ARF groups are
shown in Table 1. Smoking and COPD history, the GCS and
the Marshall CT score on admission, severity scores of lung
exudations, long-term sedation, neutrophil cell count, WBC,
neutrophil–lymphocyte ratio, PCT, and CRP showed associations
with ARF occurrence in the univariate analysis (p < 0.05,
Table 1). In the stepwise multivariate logistic regression analysis,
bilateral lung exudations [odds ratio (OR), 3.435; 95% CI, 1.248–
9.456], the Marshall CT score (OR for each 1 score increase,
1.078; 95% CI, 1.012–1.148), long-term sedation, increasedWBC
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TABLE 1 | Baseline characteristics of patients with moderate-to-severe traumatic brain injury with or without acute respiratory failure (ARF).

Exposure Non-ARF (N = 180) ARF (N = 132) P-value

AGE 56.0 (45.8–66.0) 57.0 (49.0–66.0) 0.448

Sex (male/%) 129 (71.67%) 103 (78.03%) 0.203

Smoking 48 (26.67%) 49 (37.12%) 0.049

GCS 8.0 (6.0–11.0) 6.0 (5.0–8.0) <0.001

Marshall score 5.0 (4.0–6.0) 6.0 (5.0–6.0) <0.001

Scores of lung exudations 0.004

0 46 (25.56%) 16 (12.12%)

1 14 (7.78%) 6 (4.55%)

2 120 (66.67%) 110 (83.33%)

Comorbidity

Hypertension (n, %) 92 (51.11%) 69 (52.27%) 0.839

Diabetes 12 (6.67%) 7 (5.30%) 0.619

COPD 2 (1.11%) 7 (5.30%) 0.029

Cardiovascular disease 3 (1.67%) 7 (5.30%) 0.072

Long-term sedation 75 (41.67%) 102 (77.27%) <0.001

White cell count, ×109/L 10.3 (7.4–13.7) 13.6 (10.3–18.4) <0.001

Neutrophil cell count, % 81.3 (73.2–87.0) 87.5 (82.5–90.7) <0.001

Neutrophil-lymphocyte ratio 7.3 (3.0–11.6) 4.4 (1.4–8.0) <0.001

CRP, mg/L 6.2 (5.0–28.0) 26.9 (5.0–97.7) <0.001

Not recorded, n 104 (57.7%) 69 (52.3%)

PCT, ng/mL 0.2 (0.2–0.3) 0.3 (0.2–1.7) <0.001

Not recorded, n 96 (53.3%) 54 (40.9%)

LOH 10.0 (7.0–16.0) 17.5 (11.0–28.0) <0.001

Data are expressed as medians ± interquartile ranges and n (percentage), as appropriate.

GCS, Glasgow Coma Scale; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; PCT, procalcitonin.

TABLE 2 | The multivariate logistic regression model with stepwise variable

selection.

Variables OR (95% CL) P-value

Smoking 2.092 (0.989–4.429) 0.054

Scores of lung exudations 1 0.988 (0.158–6.172) 0.990

Scores of lung exudations 2 3.435 (1.248–9.456) 0.017

WBC 1.078 (1.012–1.148) 0.020

GCS 0.788 (0.681–0.913) 0.002

Marshall score 1.706 (1.181–2.463) 0.004

Long-term sedation 6.293 (2.908–13.621) 0.001

PCT 1.121 (0.924–1.360) 0.249

CRP 1.014 (1.004–1.025) 0.007

aPCT (not recorded) 0.540 (0.245–1.190) 0.126

WBC, white blood cell; GCS, Glasgow Coma Scale; COPD, chronic obstructive

pulmonary disease; CRP, C-reactive protein; PCT, procalcitonin.
aPCT dummy variable for missing values.

(OR for each 1 × 109/L increase, 1.076; 95% CI, 1.181–2.463),
and CRP (OR for each 1 mg/l increase, 1.014; 95% CI, 1.004–
1.025) were associated with increased probability of ARF. On the
contrary, the GCS (OR for each 1 score increase, 0.788; 95% CI,
0.681–0.913) was associated with decreased probability of ARF
(Table 2).

The multivariate regression model was created based on the
AIC-selected variables. It showed an AUROC of 0.943 in the
training cohort, with a specificity of 0.946 and a sensitivity of
0.837 (Table 3). Its error rate was 11.6%. In the test population,
AUROC was 0.792 and specificity and sensitivity were 0.913 and
0.667, respectively; its error rate approximated 15.6% (Table 3).

Model Performances
Area under the receiver operating characteristics were
determined for assessing the discriminative abilities of both the
models. XGBoost showed an elevated AUROC in comparison
with the logistic regression model (AUROC, 0.902; 95% CI,
0.834–0.966 vs. 0.789; 95% CI, 0.688–0.891, p < 0.05; Figure 3).
Tables 3, 4 describe the classification and confusion matrixes for
both the models in predicting ARF.

DISCUSSION

Prediction and timely detection of ARF in patients with M-
STBI are critical, crucially impacting M-STBI outcome (22, 23).
This study developed a machine learning-based model to predict
ARF occurrence in M-STBI, with multiple remarkable features.
First, the model included readily available and reproducible
parameters in the initial 48 h after admission. Second, after
analyzing multiple interaction patterns among variables, the
predominance of admission-related parameters (the GCS and the
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FIGURE 2 | Parameters by predictive value in the extreme gradient boosting

(XGBoost) model. To predict acute respiratory failure (ARF) following moderate

or severe traumatic brain injury, gradient boosting used various variables

based on their importance in prediction modeling. In this analysis, the Glasgow

Coma Scale (GCS) and inflammation-associated laboratory parameters upon

admission had higher values in ARF prediction than other features of patient.

TABLE 3 | Confusion matrix for machine learning.

Training

data

Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.840

0 112 28 140 Accuracy 0.782

1 22 67 89 Sensitivity 0.705

Total 134 95 229 Specificity 0.836

Test data Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.902

0 39 8 47 Accuracy 0.820

1 7 29 36 Sensitivity 0.784

Total 46 37 83 Specificity 0.848

AU-ROC, area under the receiver operating characteristic.

Marshall CT score, CRP, PCT, and long-term sedation; Figure 2)
was most significant in determining the occurrence of ARF.
Third, the novel model enhanced performance compared with
the conventional logistic regression model.

This study first investigated ARF prediction in patients with
M-STBI using machine learning methods. This new model
had accuracy and AUROC of 0.83 and 0.90, respectively. Of
greatest importance, sensitivity and specificity of 0.73 and 0.91,
respectively, were obtained in the test cohort.

First, accurate detection of ARF in critically ill individuals with
M-STBI is essential in performing intensive airway management
and making decision with respect to invasive treatments such
as tracheal intubation, invasive mechanical ventilation, and even
tracheostomy. To date, reliable tools for timely predicting ARF in

FIGURE 3 | Receiver operating characteristic curves for examining the

discriminative powers of the XGBoost and the logistic regression models.

TABLE 4 | Confusion matrix for conventional statistics.

Training

data

Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.879

0 99 12 111 Accuracy 0.795

1 35 83 118 Sensitivity 0.874

Total 134 95 229 Specificity 0.739

Test data Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.789

0 40 13 53 Accuracy 0.771

1 6 24 30 Sensitivity 0.649

Total 46 37 83 Specificity 0.870

AUROC, area under the receiver operating characteristic.

M-STBI are lacking. In this study, we demonstrated enlightened
machine learning methods, including XGBoost, could provide
a great deal of information obtainable from databases and
promote the development and validation of better predictive
models in comparison with conventional logistic regression
techniques. The new model could help to stratify M-STBI
cases right after ICU admission. Therefore, intensive airway
management or invasive treatment could be more accurately
provided to individuals with high odds of developing ARF to
avoid long-term hypoxia, which is associated with increased
morbidity and mortality in patients with M-STBI (24, 25). On
the other hand, intensive airway management needs important
human andmaterial resources, while invasive treatment is related
to complications and high medical costs. Thus, identifying
individuals who could benefit from intensive airwaymanagement
or invasive treatment are critical. However, this analysis provided
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no high level of evidence with respect to the effectiveness of
XGBoost. Further randomized controlled trials that compare
therapies dependent on and independent of the predictive model
should comprehensively examine its effectiveness.

Second, we aimed to design amodel with easy implementation
by neurosurgery residents and staff alike. Therefore, parameters
easily available and reproducible upon admission were required
and quantitative (blood test results, the GCS score, the Marshall
CT score, etc.) and dichotomous (long-term sedation or not,
smoking status, etc.) variables were selected.

Third, the XGBoost model showed that the GCS score, PCT,
the Marshall CT score, CRP, and long-term sedation potentially
predicted ARF in patients withM-STBI. Consistent with previous
reports, the GCS score, PCT, and CRP were related to ARF in
patients with M-STBI, suggesting the extent of TBI and severity
of systematic inflammation (26–29). The GCS was center factor
in the XGBoosting model shown in Figure 2, suggesting that
the severity of brain injury was associated with ARF in patients
with M-STBI significantly. The results agreed with clinical
experience very well. However, to the best of our knowledge,
the association between the Marshall CT score and ARF has not
been confirmed. This study suggested that the Marshall CT score
potentially predicted ARF. The explanation could be that the
Marshall CT score can reflect the extent of brain injury based
on neuroimaging, so the high Marshall CT score is associated
with injury of brainstem centers of respiration or intracranial
hypertension, which causes ARF easily. Moreover, both the
logistic and XGBoost models showed that sedation (more than
48 h) was related to ARF. The results could be explained by the
fact that sedation is an important tool for reducing intracranial
pressure, which cannot be stopped until intracranial pressure
returns to normal. Intracranial hypertension and respiratory
depression caused by sedative drugs contribute to ARF (30, 31).

This study had many strengths. XGBoost modeling represents
a new method not yet applied in respiratory failure studies
of neurological critical patients. XGBoost modeling can learn
swiftly with high efficiency from important data amounts and its
high flexibility enables learning even frommissing data (21). The
XGBoost model had starkly higher predictive accuracy compared
with the generalized linear model, being capable of capturing
complex associations in data without requiring explicit high-
order interactions and non-linear functions (12). Using such
features, predictive models based on clinical and laboratory
variables, which are easily available and reproducible upon
admission, could be built. However, there were also limitations.
First, as a hypothesis-generating study, external validation of the
XGBoost model is important for confirming its usefulness. The
XGBoost model developed in this study will be applied to the
Medical Information Mart for Intensive Care (MIMIC)-IV for

external validation in the next study. Second, because this was
a retrospective study, missing data are inevitable in practice. For
missing data, variables with >70% missing values were excluded
from model construction. Thus, the sample sizes of the training
(n = 86) and test (n = 32) sets were low especially in the logistic
regression model. To some extent, missing data decreased the
performance of the model. Third, this study only explored ARF
within 48 h upon admission and a different time interval (e.g.,
>48 h following admission) was not studied.

CONCLUSION

In total, six major parameters related to ARF were screened to
develop the XGBoost model with enhanced predictive value for
ARF compared with the logistic regression model in patients
with M-STBI.
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