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Peripheral arterial disease (PAD) is an atherosclerotic disorder of non-coronary arteries

that is associated with vascular stenosis and/or occlusion. PAD affecting the lower

extremities is characterized by a variety of health-related consequences, including

lifestyle-limiting intermittent claudication, ulceration of the limbs and/or feet, increased

risk for lower extremity amputation, and increased mortality. The diagnosis of lower

extremity PAD is typically established by using non-invasive tests such as the

ankle-brachial index, toe-brachial index, duplex ultrasound, and/or angiography imaging

studies. While these common diagnostic tools provide hemodynamic and anatomical

vascular assessments, the potential for non-invasive physiological assessment of

the lower extremities has more recently emerged through the use of magnetic

resonance- and nuclear medicine-based approaches, which can provide insight into

the functional consequences of PAD-related limb ischemia. This perspectives article

specifically highlights and discusses the emerging applications of clinical nuclear

medicine techniques for molecular imaging investigations in the setting of lower

extremity PAD.

Keywords: peripheral arterial disease (PAD), positron emission tomography (PET), single photon emission

computed tomography (SPECT), computed tomography, molecular imaging

INTRODUCTION

Peripheral arterial disease (PAD) is an atherosclerotic disease affecting non-coronary arteries
that is associated with vascular stenosis and/or occlusion. Lower extremity PAD is defined as an
atherosclerotic obstruction affecting arterial inflow at any vascular site from the aortoiliac segments
to the pedal arteries. This atherosclerotic condition negatively impacts lower extremity functional
capacity and quality of life by reducing blood flow, perfusion, and oxygen delivery to skeletal muscle
of the calves and feet, as well as through resulting in reductions in calf muscle area and increases
in fatty infiltration of muscle and muscle fibrosis (1). Furthermore, PAD of the lower extremities
is associated with increased morbidity and mortality, with PAD now representing the third leading
cause of atherosclerotic morbidity, ranking only behind coronary artery disease and stroke (2).
More than 12 million Americans (3) and >230 million people worldwide (2) are estimated to
have PAD; however, PAD continues to be largely underdiagnosed and undertreated (4) due to a
lack of screening in the general population (5). Therefore, accurate, non-invasive tools are critical
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for screening, diagnosing, and monitoring PAD patients to
improve risk stratification, facilitate treatment options, and better
quantify responses to treatment.

Standard non-invasive clinical tools such as the ankle-brachial
index (ABI), toe-brachial index (TBI) are common for screening
patients with suspected PAD and for evaluating patients during
clinic visits; however, ABI and TBI are arterial hemodynamic
measures that can be misleading in the setting of medial
calcification and incompressible vessels, which often occurs in
the setting of diabetes mellitus (DM). Duplex ultrasound can
also be utilized to detect the presence of arterial obstruction, but
it also is limited in its application by only offering assessment
of arterial patency and flow. Computed tomography (CT) and
magnetic resonance (MR) angiographic approaches exist for
assessing patients with PAD, however, these methods also only
evaluate arterial patency. Catheter-based angiography continues
to be the gold standard for diagnosing PAD, but requires arterial
catheterization, only evaluates arterial patency, and is only
recommended for patients who are undergoing endovascular
revascularization procedures (6).

Compared with other more established clinical PAD
imaging tools that primarily measure vascular anatomy and
hemodynamics, the nuclear imaging modalities of single
photon emission computed tomography (SPECT) and positron
emission tomography (PET) may offer unique insight into PAD
pathophysiology and play an important role in the non-invasive
evaluation of both lower extremity arteries and skeletal muscle
in the setting of PAD. Historically, nuclear imaging of lower
extremity skeletal muscle perfusion first emerged in the 1940s
(7, 8), with very little incremental change or application of
nuclear imaging in the setting of PAD until several decades
later following the clinical integration of scintigraphy imaging
(9, 10). However, the last decade has seen an emergence of
new applications and methods for using nuclear imaging
modalities to quantify lower extremity pathophysiology in
PAD. While novel MR- (11–15) and ultrasound-based (16, 17)
imaging approaches have also emerged in recent years that offer
physiological evaluation of lower extremity skeletal muscle,
these techniques are beyond the scope of this article. This
perspectives article will discuss current advances and emerging
applications of clinical nuclear imaging modalities in recent
years in the setting of lower extremity PAD, with particular focus
on perfusion imaging and molecular imaging of atherosclerosis
and vascular inflammation.

IMAGING OF LOWER EXTREMITY
SKELETAL MUSCLE PERFUSION

Impairment of lower extremity skeletal muscle perfusion is
a hallmark of PAD and a primary contributor to functional
decrements that are common for many patients with PAD.
Severe perfusion abnormalities can lead to the onset of critical
limb ischemia (CLI), the severe manifestation of PAD, which
is characterized by a high risk for non-healing wounds, lower
extremity amputation, and death (3). While perfusion deficits
are a known contributor to symptom severity and morbidity

and mortality in PAD, an ongoing clinical challenge is the lack
of a validated vascular test for detecting and monitoring these
common perfusion abnormalities. Indeed, this challenge was
recently highlighted in a scientific statement by the American
Heart Association (3). The establishment of an accurate non-
invasive approach for quantifying regional lower extremity
muscle perfusion in both the calves and the feet could greatly
facilitate diagnosis of PAD and CLI, clinical decisionmaking, and
monitoring of responses to treatments directed at wound healing
and limb salvage.

Recently published nuclear imaging studies in the last
3 years focused on evaluating lower extremity perfusion
in PAD patients have demonstrated the utility of hybrid
SPECT/CT imaging for non-invasively detecting abnormalities
in microvascular perfusion within the feet of diabetic patients
with CLI. Specifically, SPECT/CT imaging with technetium-
99m (99mTc)-tetrofosmin, a standard myocardial perfusion
radionuclide that is retained based on mitochondrial membrane
potential and tissue viability (18), has been shown to allow for
evaluation of relative perfusion defects within specific vascular
territories, or angiosomes, of the feet (19). Additionally, this
approach has revealed utility for detecting resting differences
in regional foot perfusion between CLI patients and healthy
control subjects (19), assessing tissue viability that corresponds
with the subsequent level of amputation (20), and quantifying
regional improvements in relative perfusion within the foot
that occurs in response to endovascular revascularization (21,
22). Most recently and importantly, perfusion imaging of
the feet using SPECT/CT imaging has also demonstrated
prognostic value for predicting risk for lower extremity
amputation in patients with CLI who underwent endovascular
revascularization for limb salvage, where patients who were high
perfusion responders to revascularization experienced greater
limb salvage success compared to those who were categorized
as low perfusion responders (Figure 1) (22). Along with three-
dimensional SPECT perfusion imaging showing promising
results for evaluating resting perfusion and the response
to revascularization in patients with CLI, two-dimensional
scintigraphy imaging studies have also been used in recent years
to evaluate the response to angiogenesis-promoting cell therapies
in the setting of CLI, where resting uptake of 99mTc-tetrofosmin
significantly increased 4 weeks after transplantation of bone
marrow mononuclear cells in the calves and feet (23).

Beyond the application of nuclear imaging of perfusion in
the setting of CLI, other research teams have also demonstrated
that SPECT-derived measures of resting calf muscle perfusion
may possess prognostic value for predicting risk for major
cardiovascular adverse events in the PAD patient population (24).
Additionally, 99mTc-tetrofosmin SPECT/CT perfusion imaging
of the calves has recently been shown to significantly correlate
with both exercise capacity and cardiovascular fitness in non-
PAD clinical populations, thus suggesting that nuclear imaging
of calf muscle perfusion could serve as a non-invasive correlate
for investigating lower extremity physiological adaptations to
exercise training programs in the setting of PAD (25). The
latter study may be of particular relevance for the PAD
community considering the 2017 approval for national coverage
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FIGURE 1 | SPECT/CT imaging of the perfusion response to lower extremity revascularization in patients with CLTI. Non-invasive imaging identified differential

perfusion responses to peripheral balloon angioplasty in (A) a patient with a low perfusion response who underwent amputation within one month, and (B) a patient

who had a high relative perfusion response and remained amputation-free for one year after intervention. Adapted from Chou et al. (22). For a complete description of

perfusion imaging methodology, please refer to Chou et al. (22).

of supervised exercise therapy for symptomatic PAD by the
Centers for Medicare and Medicaid Services (26). Furthermore,
this study highlighted the feasibility and practicality of additional
perfusion imaging of the lower extremities in patients already
undergoing clinically-indicated myocardial perfusion imaging,
where quantitative assessment of calf muscle perfusion reserve
was achieved without the need for additional radionuclide
injections, additional stress testing, or additional time in clinic
(25). Thus, patients could undergo simultaneous screening of
lower extremity perfusion at the time of cardiac imaging, which
could potentially allow for early identification of perfusion
abnormalities in asymptomatic/undiagnosed PAD patients.

While several noteworthy developments have been made in
the past decade using SPECT- and scintigraphy-based perfusion
imaging methods for the PAD patient population, interestingly,
similar advancements have not been made with regard to
PET perfusion imaging of lower extremity muscle perfusion in
PAD aside from a small number of studies published in past
decades that used oxygen-15 (15O)-water to assess calf muscle
perfusion (27–29). 15O-water, which is a freely diffusible and
metabolically inert radionuclide that represents the gold standard
for quantitative perfusion (30), has specifically demonstrated its
potential for providing absolute measures of lower extremity
muscle perfusion (i.e., ml/min/g) (27), which has not been

previously shown using other PET radioisotopes or SPECT
imaging techniques. Thus, the opportunities for growth and
application of PET-based perfusion methodologies is apparent
and could ultimately enable enhanced quantitative evaluation of
skeletal muscle perfusion in the setting of PAD.

MOLECULAR IMAGING OF PERIPHERAL
ARTERY INFLAMMATION AND
ATHEROSCLEROSIS

PET imaging of arterial inflammation and atherosclerosis has
also garnered attention in the cardiology community in the past
decade, with a large majority of published studies focusing on
the application of fluorine-18 (18F)-fluorodeoxyglucose (FDG)
and 18F-sodium fluoride (NaF) for molecular imaging of
inflammation and atherosclerotic disease progression in the
carotid arteries, coronary arteries, and aorta (31). 18F-FDG in
particular continues to be one of the most widely used PET-
based approaches for assessing arterial inflammation due to it
being a glucose analog that possesses an affinity for metabolically
active macrophages that are present in inflamed atherosclerotic
plaques (32–34). Despite the overwhelming existing body of
literature focused on PET imaging of various arterial networks, to
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date, PET imaging of inflammation and atherosclerosis remains
relatively understudied in the setting of lower extremity PAD.
In non-PAD patient populations, 18F-FDG PET/CT imaging has
been found to be useful for evaluating vascular inflammation
in the lower extremities, and these PET-derived measures
significantly correlate with measures of peripheral vascular
stiffness (35). Additionally, serial 18F-FDG PET/CT has shown
utility for non-invasively detecting statin-induced reductions
in inflammation within the femoral arteries of patients with
dyslipidemia (36). However, only a limited number of recent
studies have specifically evaluated the utility of 18F-FDG PET
as a tool for quantifying arterial inflammation in patients
with PAD. One recent study by Jiang et al. (37) applied
serial 18F-FDG PET/CT imaging in PAD patients before and
after sonodynamic therapy to the femoropopliteal artery, which
demonstrated that PET/CT imaging could detect and quantify
therapeutic reductions in arterial inflammation in the setting
of PAD. Another recent study focused on evaluating the utility
of a combined 18F-FDG PET and MR imaging approach for
simultaneous assessment of both plaque morphology and arterial
inflammation in a small sample size of PAD patients, but did
not find any significant correlations between 18F-FDG arterial
uptake and histological measures of arterial inflammation (38).
Thus, ongoing work focused on targeted imaging of arterial
inflammation in the setting of PAD is warranted to fully elucidate
the potential role of PET imaging as a non-invasive biomarker of
PAD-induced inflammation.

In addition to 18F-FDG, 18F-NaF has more recently emerged
as a radionuclide of interest for studying the active process of
atherosclerosis. Historically, 18F-NaF was originally approved in
the 1960s and used for targeted imaging of bone remodeling
due to its high affinity for hydroxyapatite, the mineral form
of calcium apatite (39). However, in the last 10–15 years, a
large body of cardiovascular literature has emerged that has
explored the utility of 18F-NaF as a tool for quantifying the
active process of vascular microcalcification (31). As with 18F-
FDG, 18F-NaF has only recently been applied and investigated
in the setting of lower extremity PAD. Initial studies using 18F-
NaF in PAD patients approximately 10 years ago demonstrated
the feasibility of using this radionuclide for PET imaging of
the lower extremities (40) and revealed that femoral artery
uptake of 18F-NaF was strongly associated with cardiovascular
risk factors and high-risk profiles for cardiovascular events (41).
Following an ∼7 year period of time passing without a single
study published in this field, an increasing number of studies
have emerged in the last 2 years using 18F-NaF to evaluate
peripheral atherosclerosis in patients with PAD. These studies
have demonstrated that arterial uptake of 18F-NaF is significantly
higher in non-lower extremity arteries of PAD patients compared
to non-PAD patients (42) and that femoral artery 18F-NaF uptake
is significantly associated with various modifiable cardiovascular
risk factors (i.e., cholesterol, triglycerides, HbA1c) (43), thus
suggesting that 18F-NaF PET/CT imaging could be used in the
future for non-invasively monitoring the response to treatments
focused on cholesterol reduction and/or glucose management.
Pictured in Figure 2 is a representative example of 18F-NaF
PET/CT imaging in a patient with DM and CLI, which

FIGURE 2 | 18F-NaF PET/CT imaging of active microcalcification in PAD. (A)

Axial, (B) coronal, and (C) sagittal fused 18F-NaF PET/CT images acquired in a

63-year old female patient with CLTI and type 2 diabetes mellitus

demonstrates the active process of microcalcification in above- and

below-the-knee arteries. Non-contrast CT images were acquired for

attenuation correction of PET data, followed by static PET imaging of the lower

extremities 75min after intravenous administration of 18F-NaF (296 MBq). SUV,

standardized uptake value.

demonstrates the ability of 18F-NaF to detect active disease
progression in the lower extremities.

Other additional applications of 18F-NaF in the setting
of PAD over the past 2 years have demonstrated the
feasibility of using 18F-NaF PET/CT imaging to evaluate
active microcalcification of occlusive lower extremity aneurysms
(44), quantify the inflammatory response to lower extremity
balloon angioplasty and predict risk for vascular restenosis after
peripheral interventions (45), and evaluate the role of arterial
inflammation in promoting systemic vascular calcification (46).
Thus, the applications for 18F-NaF PET/CT are rapidly evolving,
with numerous future research directions on the horizon for
molecular imaging of atherosclerosis in patients with PAD.

DISCUSSION

Nuclear and molecular imaging of PAD is an emerging field that
provides numerous opportunities for physiological investigation
into this traditionally underdiagnosed and undertreated disease.
Recent studies have demonstrated that SPECT/CT perfusion
imaging may enable the screening, diagnosis, and monitoring
of responses to treatment (21, 22, 25), while PET/CT imaging
may provide novel opportunities for molecular imaging of
atherosclerosis and vascular inflammation (47), which to
date, have remained relatively understudied in the setting
of lower extremity PAD. Additionally, these hybrid nuclear
imaging approaches that utilize CT can offer simultaneous
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evaluation of calcium burden in the lower extremities that
is not possible with conventional vascular imaging techniques
(20). While nuclear imaging approaches in the setting of
PAD remain exploratory in nature, these imaging techniques
could potentially assist with screening for and diagnosis
of regional perfusion abnormalities related to PAD and
severity of PAD, which could subsequently assist clinicians by
guiding targeted revascularization procedures or evaluating the
response to revascularization. Additionally, PET/CT imaging
of arterial inflammation and active atherosclerosis may assist
clinicians by detecting regions of active disease, thereby guiding
endovascular therapy or monitoring of problematic lesions.
Currently, hemodynamic tools such as ABI, TBI, and Doppler
ultrasound are a mainstay of screening for PAD due to their
relative efficiency and cost-effectiveness; however, perfusion
imaging with nuclear techniques has proven to provide further
physiological information beyond traditional hemodynamic
assessment by detecting the specific anatomical region of
underlying tissue ischemia, thus potentially setting the stage
for their use during PAD diagnosis and treatment planning.
Collectively, nuclear imaging techniques advance the non-
invasive evaluation of PAD beyond traditional means by offering
quantitative regional analysis of vascular and muscle physiology,
whereas traditional non-invasive vascular diagnostic tools have
primarily focused on hemodynamic (e.g., ABI, TBI, ultrasound)
or structural (e.g., angiography) assessments of the lower
extremities. It’s important to note that while SPECT/CT and
PET/CT imaging have demonstrated potential in PAD, the recent
emergence of PET/MR imaging may also provide additional
opportunities for partnering high-sensitivity molecular (PET)
and high-resolution structural (MR) imaging in the setting of
lower extremity PAD (38, 48).

Given the multifactorial nature of PAD-related complications,
ongoing advancements in nuclear medicine and molecular
imaging should facilitate development of novel imaging
strategies that are capable of targeting the underlying
pathophysiology associated with lower extremity PAD and
enable serial monitoring of physiological responses to medical
treatment. Specifically, advancements with cadmium zinc
telluride (CZT) SPECT systems and whole-body PET cameras
may offer new approaches for quantifying absolute perfusion of
lower extremity skeletal muscle beyond what has been previously
accomplished with conventional 15O-water PET imaging.
Expanded application of 18F-FDG and 18F-NaF to the lower
extremities, along with other developing radionuclides meant
for atherosclerosis and thrombosis targeted imaging, could
also allow for novel opportunities to investigate mechanisms

associated with PAD disease progression and non-invasively
detect occlusive peripheral thrombi (49–53). Additionally,
the use of multi-tracer imaging of different physiological
processes in the lower extremities could theoretically be achieved
with SPECT imaging of radionuclides that possess distinctly
different gamma ray energy photopeaks, or with PET imaging
by staggering injection times of short half-life radionuclides;
however, the advantages and disadvantages associated with
increased radiation exposure for patients receiving multiple
radionuclide injections in a single imaging session would
need to be carefully considered. Beyond the various clinical
investigations focused on nuclear imaging of PAD, a large
number of pre-clinical studies have been published in recent
years that also highlight ongoing developments in the field of
molecular imaging that could possess translational potential for
PAD patients. These studies have utilized large and small animal
models of atherosclerosis and hindlimb ischemia to validate
novel SPECT- and PET-based approaches directed at perfusion
(54) and angiogenesis targeted imaging (55–57), which continue
to be the primary areas of pre-clinical PAD research. Overall,
molecular imaging of lower extremity PAD remains a developing
and exciting field of research that should provide novel insight
into PAD pathophysiology and eventually expand the repertoire
of non-invasive tests available to vascular medicine specialists.
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