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Aim: The purpose of this work was to develop and evaluate magnetic resonance imaging

(MRI)-based radiomics for differentiation of orbital cavernous hemangioma (OCH) and

orbital schwannoma (OSC).

Methods: Fifty-eight patients (40 OCH and 18 OSC, confirmed pathohistologically)

screened out from 216 consecutive patients who presented between 2015 and 2020

were divided into a training group (28 OCH and 12 OSC) and a validation group (12 OCH

and 6 OSC). Radiomics features were extracted from T1-weighted imaging (T1WI) and

T2-weighted imaging (T2WI). T-tests, the least absolute shrinkage and selection operator

(LASSO), and principal components analysis (PCA) were used to select features for use

in the classification models. A logistic regression (LR) model, support vector machine

(SVM) model, decision tree (DT) model, and random forest (RF) model were constructed

to differentiate OCH from OSC. The models were evaluated according to their accuracy

and the area under the receiver operator characteristic (ROC) curve (AUC).

Results: Six features from T1WI, five features from T2WI, and eight features from

combined T1WI and T2WI were finally selected for building the classification models.

The models using T2WI features showed superior performance on the validation data

than those using T1WI features, especially the LR model and SVM model, which

showed accuracy of 93% (85–100%) and 92%, respectively, The SVM model showed

high accuracy of 93% (91–96%) on the combined feature group with an AUC of 98%

(97–99%). The DT and RF models did not perform as well as the SVM model.

Conclusion: Radiomics analysis using an SVM model achieved an accuracy of 93% for

distinguishing OCH and OSC, which may be helpful for clinical diagnosis.

Keywords: orbit, radiomics, cavernous hemangioma, schwannoma, machine learning

INTRODUCTION

Orbital cavernous hemangioma (OCH) is a common primary tumor representing ∼8% of all
orbital lesions (1). Patients with OCH typically show slow-moving progression and painless
proptosis, although some suffer from disturbance in vision and visual fields (2). Though having
a similar clinical manifestation to OCH (3), orbital schwannoma (OSC) accounts for <1% of

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.795038
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.795038&domain=pdf&date_stamp=2021-12-16
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ruiliwei@smmu.edu.cn
mailto:benben0606@139.com
https://doi.org/10.3389/fmed.2021.795038
https://www.frontiersin.org/articles/10.3389/fmed.2021.795038/full


Chen et al. Radiomics for Differentiating Orbital Tumors

FIGURE 1 | The recruitment of patients and design of this study. OCH, orbital cavernous hemangioma; OSC, orbital schwannoma.
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orbital lesions. However, the prognosis and therapeutic strategies
for the two tumors are always different. Observation is a possible
choice for those patients newly diagnosed with OCH, but surgical
intervention is often needed for OSC patients, as OSC typically
shows progressive growth (4, 5). Therefore, it is necessary to
identify the two tumors (3, 6, 7).

Because of their similar clinical features, the identification of
OCH and OSC can be clinically challenging. Several imaging
studies attempted to clarify the differences between them (8–10),
indicating that OCH has a more regular shape than OSC,
and that markedly homogeneous hyperintense signal on T2-
weighted magnetic resonance imaging (MRI) favors OCH rather
than OSC. Furthermore, the contrast enhancement on dynamic
contrast-enhanced MRI may also be helpful for distinguishing
the two tumors; OCH shows “progressive” enhancement starting
from a small point or portion, with the contrast media later filling
up the tumor, whereas OSC shows enhancement starting from
a wide area, with heterogeneous or homogeneous enhancement
occurring later (8). However, these findings may not always
work well in the clinic, with some images being indistinguishable
and dividing opinion with an absence of objective evidence.
Therefore, an objective identification method would be preferred
by the clinician.

Radiomics, a promising and rapidly growing discipline, can
be defined as the quantification of the phenotypic features of a
lesion from medical images. It involves the extraction of a large

FIGURE 2 | Example images of OCH and OSC. Top left is a T1-weighted image of a patient with OCH, top right is a T2-weighted image of the same patient. Bottom

left is a T1-weighted image of a patient with OSC, bottom right is a T2-weighted image of the same patient.

number of quantitative features from medical images and their
subsequent analysis to support clinical decision-making (11–13).
It can overcome some of the limitations of subjective analysis
with the human eye, squeezing out more information from
each image (14). Radiomics approaches are currently becoming
more and more popular in clinical auxiliary diagnosis and
prognosis (15–17).

However, to the best of our knowledge, there is no published
study using radiomics to distinguish OCH from OSC. In this
study, we applied radiomics analysis to the differentiation of the
two tumors and evaluated the results.

SUBJECTS AND METHODS

Patients
Two hundred and sixteen consecutive patients diagnosed with
OCH or OSC between 2015 and 2020 were identified in
the electronic medical record system (EMR) of Shanghai
Changzheng Hospital. All patients were retrospectively recruited
and signed informed consent before this study.

The inclusion criteria were: (1) patients newly diagnosed
with OCH or OSC with biopsy confirmation; (2) tumor
involving the eye of only one side; (3) complete and clear
MRI data collected on scanners of the same model; (4) no
surgical or other therapy prior to MRI scanning. Patients
with incomplete MRI or with imaging of insufficient

Frontiers in Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 795038

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Radiomics for Differentiating Orbital Tumors

quality were excluded. Figure 1 summarizes the patient
recruitment process.

MRI Pre-processing
The DICOM format MRI of all included patients were acquired
from the picture archiving and communication system of
Shanghai Changzheng Hospital. The MRI examinations were
performed on a 3.0-T scanner [Achieva 3.0T (TX) DS MR
system, Philips Healthcare] with heart of FreeWave, an advanced
modular 32-channel digital data acquisition system, and high-
resolution head coil. Pre-contrast turbo spin-echo (TSE) T1-
weighted imaging (T1WI) and T2-weighted imaging (T2WI)
with fat suppression were acquired. The parameters were set as
follows, for T1WI, the repetition time (TR) was 470ms, echo
time (TE) 12ms, 16 slicers with thickness of 3mm and a gap
of 0.3mm, 200–400mm field of view (FOA), the flip angle (FA)
was 90◦ and the number of signal acquisition (NSA) was 1; for
T2WI, the driven equilibrium technology was used and the TR
3,000ms, TE 80ms, 16 slicers with thickness of 4mm and a gap of
0.4mm, 200–400mm FOA, FA 90◦ and NSA was 2. To compare
the efficiency of the different sequences, radiomics analyses were
performed separately on the T1WI, T2WI, and combined (T1WI
+ T2WI) sequences. For each sequence, ∼70% (28 OCH and 12
OSC) of the acquisitions were selected as the training data and
the remaining 30% formed the validation data.

First, MRI bias was corrected using the N4ITK MRI bias
correction (18), then all images were horizontally mirrored.
Regions of interest (ROIs) were then outlined on each slice by
an ophthalmologist and a radiologist using the free open-source
software package 3D Slicer version 4.11(https://download.slicer.
org/). The ROIs for each patient were outlined separately in the
original images and mirror images, to reduce bias. The intraclass
correlation coefficients (ICCs) between the two researchers were
calculated for all extracted features to determine the reliability of
the ROIs.

Feature Extraction and Selection
The feature extraction was performed for all selected
MRIs and their corresponding ROI masks using Python
3.7 (https://www.python.org/downloads/release/python-
3711/) with Official default parameters (http://www.radiomics.
io/pyradiomicsnotebook.html). The features included first
order features, shape features, gray level co-occurrence matrix
(GLCM), gray level dependence matrix (GLDM), gray level
run length matrix (GLRLM), gray level size zone matrix
(GLSZM), and neighboring gray tone difference matrix
(NGTDM). These features are defined in the Results section.
Zero-mean normalization was applied to these quantitative
features following deletion of null values and features stored as
string type.

In this analysis, to avoid overfitting and balance the
limited samples and redundant features, we adopted
four methods to select features. After simple t-tests, the
LASSO linear regression model was applied, a model that
can avoid overfitting and is suitable for analyzing small
samples with high-dimensional features (19). However,
many features still remained after the application of
LASSO, so we then applied recursive feature elimination-
cross validation (RFE-CV), a feature selection method
that iteratively removes the least important features until
the optimal number is reached. Despite these measures,
the results were still not significant. Considering the
potential for collinearity among the features, we created
a correlation heat map, which confirmed out suspicions.
Therefore, the dimensionality reduction method of PCA
was adopted, which works by recombining a new set
of composite variables unrelated to each other from the
original features, and a few of these composite variables
were extracted to faithfully reflect the original features as
much as possible. Finally, fewer features were selected to
construct the models (six features on T1WI, five features on

TABLE 1 | Patient demographic information.

OCH (n = 40) OSC(n = 18) P-value

Gender

Female 24 (60%) 8 (44%)

Male 16 (40%) 10 (56%) 0.41

Age 49 (40–57) 47 (41–50) 0.62

Involvement

Left 20 (50%) 8 (44%)

Right 20 (50%) 10 (56%) 0.91

Intraconal 39 18

Extraconal 1 0

Tumor

Size(mm3 ) 4776.07 7602.30 0.03

Sphericity 0.70 (0.69–0.74) 0.66 (0.64–0.69) 0.11

T1WI MEAN SIGNAL INTENSITY 573.43 (358.29–765.61) 711.15 (400.96–917.29) 0.30

T2WI mean signal intensity 662.62 (574.92–769.09) 792.05 (608.97–971.64) 0.15

Tumor size was calculated based on the ROI. Tumor sphericity took values between 0 and 1, the higher the value (closer to 1), the closer to sphere the tumor. All values of tumor size,

sphericity and signal intensity were from the features extracted.
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FIGURE 3 | Diagram of the feature selection process. Images (A,E) are correlation heat maps demonstrating correlations between features. The deeper the color, the

stronger the correlation. Red indicates negative correlation and blue positive correlation. Image (B) shows the results of the LASSO regression. With increasing penalty

parameter the coefficients of the features approach zero and finally converge on an optimal solution. Image (C) shows the results of LASSO-CV. The right dotted line

(Continued)
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FIGURE 3 | indicates the standard error of the minimum mean square error (the left dotted line) and corresponds to the feature number on the top coordinate. Image

(D) shows the RFE-CV, which provided the highest score with the remaining 11 features. Images (F–H) show the results of the PCA. Ten recombined dimensions are

shown, with the first five explaining 90% of the original data [image (F)]. Image g shows the feature distributions of the first five dimensions. We finally selected the

features whose contribution was higher than average (the dotted line) on Dimension 1 and Dimension 2 [image (H)].

T2WI, eight features on T1 + T2). Statistical analysis and
plotting were performed with R (R vision 4.0.3, https://cran.r-
project.org/).

Model Construction and Evaluation
The selected features were used to build the classification models.
In this analysis, a logistic regression (LR) model, support vector
machine (SVM) model (linear kernel), random forest (RF)
model, and decision tree (DT) model were constructed. All
four models were evaluated on the validation data according to
their accuracy score and the area under the receiver operating
characteristics (ROC) curve (AUC). A nomogram was also built
to visualize a multiparametric MRI prognostication model using
radiomics features. Statistical analyses were performed using
R statistical software (R version 4.0.3). A P-value <0.05 was
considered statistically significant.

RESULTS

Patients and MRI
As shown in Figure 1, 58 patients were eventually included in our
study. From these patients, 1640 T1 or T2-weighted MR images
in DICOM format were finally selected for further analysis. The
lesions showed hypointensity on T1WI and hyperintensity on
T2WI. Figure 2 shows example MR images. The demographic
information of the included patients is shown in Table 1.

Feature Extraction and Selection
A total of 107 features were selected from either T1 or T2
sequences for further analysis. These 107 features included 14
shape features, 18 first order features, 24 GLCMs, 14 GLDMs, 16
GLRLMs, 16 GLSZMs, and 5 NGTDMs. Of the above features,
the shape features mainly describe the size and shape of the ROI
and are only calculated for the non-derived image and mask, the
first order features describe the distribution of voxel intensities
within the image region defined by the mask and are computed
using common basic metrics, and the remaining features describe
texture and gray level intensity distributions with different
algorithms and complexity. The ICCs of all extracted features
were over 75%.

For the T1WI, t-tests were first employed to screen out
64 features showing a significant difference between OCH and
OSC in the training data. A correlation heat map (Figure 3A)
then revealed multicollinearity among the features, and LASSO
regression was therefore used to reduce the dimensionality of the
features. Figure 3B shows the results of the LASSO regression,
and Figure 3C the results of a LASSO-Cross validation (LASSO-
CV). Then, 13 features were filtered out and RFE-CV based on
an SVM was employed for further feature selection. Figure 3D
indicates that the cross validation score reached a peak with 11

TABLE 2 | The features selected for model construction.

Sequences Features

T1 Image_original_Maximum

shape_MajorAxisLength

shape_Maximum2DdiameterSlice

glcm_JointEnergy

gldm_DependenceEntropy

glszm_SmallAreaLowGrayLevelEmphasis

T2 shape_MajorAxisLength

shape_Maximum2DdiameterSlice

glcm_Imc1

glcm_MCC

gldm_DependenceEntropy

T1 + T2 shape_MajorAxisLength

shape_Maximum2DdiameterSlice

shape_Maximum2DdiameterColumn

shape_SurfaceVolumeRatio

glcm_DifferenceVariance

glcm_MCC

glcm_Imc2

glcm_SumSquares

Bold font indicates the universal features used for all three sequences. glcm, gray level

co-occurrence matrix; gldm, gray level dependence matrix; glszm, gray level size zone

matrix; Imc, informational measure of correlation; MCC, maximal correlation coefficient.

features. In view of the limited number of samples, PCA was then
applied to these 11 selected features to avoid overfitting due to
the large number of features. Figure 3E shows a correlation heat
map of the above 11 features and Figures 3F–H the results of the
PCA, and eventually, 6 features were selected for building the
classification models. Using similar feature reduction methods,
5 features from T2 sequences and 8 features from T1 + T2
sequences were finally selected, and these finally selected features
were listed in Table 2.

Model Building and Evaluation
Four models were built using the features described in Table 2.
Table 3 shows the accuracy and AUC of each model, and
indicates that for all models the T2WI seemed to be superior to
the T1WI, both in terms of accuracy and AUC. This table also
reveals that the SVM model showed better performance than
the other models. Using the T1 + T2 features, the SVM model
demonstrated high accuracy of 93% (95% CI: 91–96%) and an
AUC of 98% (95% CI: 97–99%). The LR model using T2 features
also showed good performance, and a nomogram of this model
is exhibited in Figure 4. The LR model had a C-index of 0.93 on
the training set and 0.96 on the validation set.
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TABLE 3 | The ACC and AUC of each model.

Sequences Models ACC AUC

T1 LR 77% (67%∼83%) 91% (84%∼97%)

SVM 86% (82%∼95%) 93% (89%∼98%)

DT 85% (82%∼92%) 97% (95%∼99%)

RF 83% (75%∼92%) 96% (94%∼98%)

T2 LR 93% (85%∼100%) 91% (89%∼92%)

SVM 92% (91%∼100%) 95% (94%∼97%)

DT 89% (83%∼92%) 97% (96%∼99%)

RF 89% (83%∼100%) 97% (94%∼100%)

T1 + T2 LR 88% (84%∼91%) 85% (84%∼86%)

SVM 93% (91%∼96%) 98% (97%∼99%)

DT 83% (79%∼87%) 96% (95%∼97%)

RF 88% (83%∼92%) 97% (95%∼98%)

Models with an ACC over 90% are marked in bold font. ACC, accuracy; AUC, area under the curve; LR, logistic regression; SVM, support vector machine; DT, decision tree; RF,

random forest.

DISCUSSION

The differentiation of OCH and OSC has long been a
clinical problem. In this study, we attempted to solve this
problem with radiomics, and the results demonstrated
the technique’s potential for differentiating between the
two disorders.

For orbital tumor patients, T1WI and T2WI are more
commonly used than contrast-enhanced MRI, especially for
those with renal failure or contrast medium allergy (20).
Therefore, our results obtained using only these two routine
sequences could be widely used and verified in clinical practice.
To explore the contributions of each single sequence and
a combined sequence (T1 + T2), we compared radiomics
features extracted from each image type. Our results showed
that the T2WI provided better accuracy than the T1WI, a
conclusion also found in some other studies (16, 21, 22).
Hopewell et al. considered that the greater contribution of
T2WI may be associated with the heterogeneous angiogenesis
of the tumor (23). It is known that ischemia, angioedema,
and avascular necrosis are more likely to be observed
on T2WI. Furthermore, the much longer echo time on
T2WI in comparison with T1WI may also be a factor
influencing the results (22). The model using both sequences
combined achieved a higher score and AUC than either of
the sequences alone, just as Han et al. observed in their
studies (16, 24).

OSC may tend to grow rapidly. Of all the selected features,
we found that the features of shape_ MajorAxisLength and
shape_Maximum2DdiameterSlice were present in all sequence
groups. The shape feature MajorAxisLength is defined as
the largest axis length of the ROI-enclosing ellipsoid, while
the shape feature Maximum2DdiameterSlice is defined as the
largest pairwise Euclidean distance between tumor surface mesh
vertices in the row-column (generally the axial) plane. As
can be seen in Figure 2, a large tumor size may be more

indicative of OSC, which may be related to the progressive
growth of OSC. Accordingly, a substantial portion of the OCH
tumors were found incidentally, whereas almost all the OSC
patients were suffering from symptoms of tumor rapid growth.
Furthermore, OCH is often found in middle age at 40–50
years, whereas OSC can present at any age (3, 25–27). OSC
may manifest heterogeneous on MRI just as a “geographic
map.” Except for the above-mentioned two shape features, the
other selected features, such as gldm_DependenceEntropy and
glcm_MCC, all implied that OSC presented with heterogenous
signal intensity. As Tanaka et al. mentioned in their studies
(8, 10, 28), OSC is more likely to present heterogeneous
than OCH.

The use of radiomics provided a number of advantages
compared with previous studies. 1) This was the first attempt
to differentiate OCH and OSC with radiomics, and it worked
well. 2) Digital features were extracted rather than qualitative
assessment through the reader’s eye, and detailed data were
provided for the analysis rather than a simple statement
such as “high signal intensity.” 3) Radiomics can make the
reading of images and the analysis automated, thereby reducing
human error. 4) Objective and repeatable results are more
valuable for the clinician than a subjective judgement. However,
there are inevitably some limitations to our study. 1) The
limited sample size due to the low incidence of the two
disorders may have led to a bias in the results, although we
restricted the number of features to avoid overfitting. 2) The
data used in this study were from a single center, which
may affect the robustness of the model. 3) The absence of
an external validation cohort because of the limited samples
could also limit the final efficiency. 4) The disproportionate
numbers of individuals with OSC and OCH is another
limitation, and might have affected the statistics and the results.
Therefore, a further multi-center analysis is needed to support
our results.
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FIGURE 4 | Results of the logistics regression model applied to T2WI. The feature data were standardized with zero-mean normalization. This nomogram is mainly

used to predict the odds of OSC rather than OCH according to the three features. The bottom images show the AUCs of the logistic regression model for the training

set (left) and validation set (right).
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