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Background: Artificial intelligence (AI) has great potential to detect fungal keratitis using

in vivo confocal microscopy images, but its clinical value remains unclarified. A major

limitation of its clinical utility is the lack of explainability and interpretability.

Methods: An explainable AI (XAI) system based on Gradient-weighted Class Activation

Mapping (Grad-CAM) and Guided Grad-CAM was established. In this randomized

controlled trial, nine ophthalmologists (three expert ophthalmologists, three competent

ophthalmologists, and three novice ophthalmologists) read images in each of the

conditions: unassisted, AI-assisted, or XAI-assisted. In unassisted condition, only the

original IVCM images were shown to the readers. AI assistance comprised a histogram

of model prediction probability. For XAI assistance, explanatory maps were additionally

shown. The accuracy, sensitivity, and specificity were calculated against an adjudicated

reference standard. Moreover, the time spent was measured.

Results: Both forms of algorithmic assistance increased the accuracy and sensitivity

of competent and novice ophthalmologists significantly without reducing specificity. The

improvement was more pronounced in XAI-assisted condition than that in AI-assisted

condition. Time spent with XAI assistance was not significantly different from that

without assistance.

Conclusion: AI has shown great promise in improving the accuracy of ophthalmologists.

The inexperienced readers are more likely to benefit from the XAI system. With better

interpretability and explainability, XAI-assistance can boost ophthalmologist performance

beyond what is achievable by the reader alone or with black-box AI assistance.
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INTRODUCTION

Fungal keratitis (FK) is one of the most common causes of
cornea-derived blindness (1) but the diagnosis and treatment of
this disease remain difficult (2, 3). Corneal smears and cultures
are the gold standard for diagnosing FK (4). However, culture
routinely takes several days before the results are available. In
vivo confocal microscopy (IVCM) is a useful method for the
diagnosis of FK, which allows non-invasive and in vivo detection
of even subtle changes in the living cornea (5, 6). IVCM shows
a variety of cellular changes in cornea suffering from FK (7)
and foremost among these is the presence of hyphae, which
is considered the specific manifestation of filamentous fungi
infection (8, 9). Correct and prompt monitoring of the fungal
hyphae in IVCM images contributes to make a diagnosis of FK
as early as possible and optimize the appropriate management
of patients (10). Manual analysis of the IVCM images, however,
is extremely labor-intensive, time consuming, and is heavily
dependent on observer experience (11).

Recent advances in deep learning (DL) promise to improve
diagnostic accuracy, thereby improving the quality of patient
care. In our previous study, DL-based models were successfully
developed to detect FK in IVCM images with high accuracy
(12, 13). However, the impact of these methods in clinical settings
remains unclarified. A major shortcoming in the application
of the DL technology to artificial intelligence (AI)-assisted
medical care is the inability to interpret the model decision.
From a clinical perspective, interpretability and explainability is
essential for gaining clinicians’ trust, for establishing a robust
decision-making system, and to help overcome regulatory issues.
However, DL models conceal the rationale for their conclusions,
and therefore lack an understandable medical explanation to
support their decision-making process, which seriously restricts
its clinical application.

Explainable AI (XAI) is an important title and an active
research direction in the field of medical AI research (14). A
straightforward and effective strategy is to generate meaningful
heatmaps that visualizes which pixel regions of an input
image are important for the decision made by the DL model.
Toward this objective, many approaches have been proposed
for the explainable analysis of medical images, including
dimension reduction, feature importance, attention mechanism,
knowledge distillation and surrogate representations (15–22).
Among these methods, Class Activation Mapping (CAM) offers
a valid approach by performing global average pooling on
the convolutional feature maps and mapping back the weights
of the classification output to the convolutional layer (23).
However, CAM requires altering the network architecture and
re-training the network, which limits its application in different
kinds of networks. Gradient-weighted Class Activation Mapping
(Grad-CAM) is a generalization of CAM (24). Grad-CAM
computes the neuron importance weights by performing global
average pooling on gradients via backpropagation, enables the
creation of class-discriminative visual explanations from much
more complex networks. Inspired by this, researches have been
proposed to build XAI modules to determine the most predictive
lesion areas in computed tomography images (25). However,

XAI approaches have not been validated in the analysis of
IVCM images.

In this study, we developed an XAI-based system to diagnose
FK using IVCM images and provided visual explanations based
on Grad-CAM and Guided Grad-CAMmethods to highlight the
relevance for the decision of individual pixel regions in the input
image. We compared the performance of ophthalmologists with
the assistance of the black-box AI model and the explainable
system, and investigated the potential of the XAI-assisted
strategy to help ophthalmologists identify the causative agent of
corneal infection.

MATERIALS AND METHODS

Study Design and Datasets
A total of 1,089 IVCM images collected from Guangxi Zhuang
Autonomous Region People’s Hospital were finally included in
the testing set in this randomized controlled trial. The images
were obtained from eyes diagnosed with fungal keratitis or
bacterial keratitis in the Department of Ophthalmology between
June 2020 and July 2021. All the infections were confirmed by
culture or biopsy. Of the 1,089 images, 522 were collected from 17
eyes with fungal keratitis and were identified as hyphae-positive,
and 567 were collected from 18 eyes with bacterial keratitis and
were identified as hyphae-negative. The images were acquired
following a standard operating procedure with IVCM (HRT
III/RCM Heidelberg Engineering, Germany). All images were
screened and the poor-quality images were excluded. This study
was conducted in compliance with the Declaration of Helsinki
and approved by the ethics committee of The People’s Hospital
of Guangxi Zhuang Autonomous Region. Informed consent was
waived because of the retrospective nature of the study and
anonymized usage of images.

All images were independently adjudicated by three corneal
specialists with over 15 years of experience. Each image was
classified as hyphae-positive or hyphae-negative. A reference
standard for each image was generated when consistent
diagnostic outcomes were achieved by the three specialists. None
of the adjudicators were included as readers in this study.

Classification Model and Visual
Explanation
The development of the DL-based diagnostic model used in this
study is described in detail in our previous study (12). Briefly,
the model was trained using the Residual Learning network-
101 convolutional neural network architecture. The training set
consisted of 2,088 IVCM images that had reference standard
labels agreed by a panel of corneal experts. The image was input
with the dimensions of 384 × 384. The classification model
was trained to output the prediction probability of negative and
positive classes.

We used Grad-CAM and Guided Grad-CAM to generate
explanationmaps (Figure 1). Grad-CAM (23) produced heatmap
that highlighted the important regions in the input image for
predicting the hyphae. In this study, the last convolutional layers
which offered the best trade-off between high-level semantics and
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FIGURE 1 | Examples of IVCM images and the corresponding explanatory maps. Original images (left), Grad-CAM (middle), and Guided Grad-CAM (right).

spatial information of the input images were used to compute
the weights. Let yp be the gradient of the score for class “hyphae-
positive”, andAk the feature map k of the last convolutional layer.
The gradient of yp with respect to Ak was computed and averaged
by performing global-average-pooled over the total number of
elements (indexed by width i and height j) to produce a weight
α
p

k
, as shown in Formula (1). The weight α

p

k
represents the

importance of the feature map k for the positive class.

α
k
p =

1

Z

∑

i,j

∂yp

∂Ak
ij

(1)

Next, a weighted combination was performed to sum the feature
maps. Consequently, the Grad-CAM heatmap was generated
by applying the ReLU (rectified linear unit) function to only
highlight pixel regions that positively contribute to the positive
decision. The formulae are described below as Formula (2).

L
p

Grad−CAM
= ReLU

(

∑

k

α
p

k
Ak

)

(2)

Although Grad-CAM localized class-discriminative image
regions, no fine-grained pixel-space details were available in the
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FIGURE 2 | The network architecture of Grad-CAM and Guided Grad-CAM. The weight α
p
k represents the importance of the feature map k for the positive class. A

weighted combination and ReLU (rectified linear unit) function were performed to generate Grad-CAM. Finally, element-wise multiplication was performed to fuse

Grad-CAM and Guided Backpropagation, thus generating high-resolution Guided Grad-CAM maps.

heatmaps. Therefore, we used Guided Grad-CAM to further
highlight the stripes on the hyphae, which provided pixel-level
explanation and help readers to quickly identify the pathogen.
Guided Grad-CAM is a combination of Grad-CAM and Guided
Backpropagation techniques (20). Guided Backpropagation
visualizes the positive gradients by suppressing the negative
gradients using ReLU layers. L

p

Grad−CAM
is unsampled to the

input image resolution and element-wise multiplication is
performed to fuse Grad-CAM and Guided Backpropagation,
thus generating high-resolution Guided Grad-CAM maps. The
network architecture is shown in Figure 2.

Ophthalmologist Evaluation
All IVCM images were assessed by nine ophthalmologist readers
of varying expertise as follows. The expert ophthalmologist group
consisted of three professors with over 10 years of experience
in diagnosing corneal diseases. The competent ophthalmologist
group comprised three senior ophthalmologists who had over
five years of experience in ophthalmology department. The
novice ophthalmologist group was composed of three junior
ophthalmologists who were in the third year of standardized
training for residents of ophthalmology and had been formally
trained in IVCM analysis.

Each image was assessed by each reader exactly once, in
one of the three conditions: unassisted, AI-assisted, and XAI-
assisted. For each reader, the images were equally assigned to each
condition so that the same number of images were reviewed for
each condition. The assignment of image to reading condition

was counter-balanced across groups to make sure that each
image was randomly read by one reader in each group in the
same condition, thus the reading distributed evenly across reader
groups and reading conditions.

The images were displayed in a random order. The AI
classification results were displayed for both AI-assisted andXAI-
assisted conditions, in the form of histograms showing the model
prediction probabilities of positive and negative classes. The XAI-
assisted conditions included explanatory Grad-CAM and Guided
Grad-CAM maps side by side, in addition to the classification
histogram. A screenshot of each condition is shown in Figure 3.
The participants were first presented with the original images,
and then they had to click on the “AI diagnosis” region to access
the classification histograms and explanatory maps.

Readers were masked to the etiology confirmation and
reference standard before the reading process. Detailed
instructions and guidelines were given to the readers
prior to the reading trail. Readers were asked to make a
judgment for each image (“Are there fungal hyphae?”).
They were told that classification histograms represented the
probability of AI prediction, and that the Grad-CAM and
Guided Grad-CAM highlighted class-discriminative regions in
the images.

Confusion matrices were recorded and the accuracy,
sensitivity, and specificity were calculated accordingly. The
time required for diagnosis was measured for each reader,
but the readers were not informed that the reading time was
being recorded.
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FIGURE 3 | A screenshot of unassisted, AI-assisted, and XAI-assisted conditions. The AI classification results were displayed for both AI-assisted and XAI-assisted

conditions, in the form of histograms showing the model prediction probabilities of positive and negative classes. The XAI-assisted conditions included explanatory

Grad-CAM heatmap and Guided Grad-CAM maps side by side, in addition to the classification histogram.

Statistical Analysis
Data were analyzed using SPSS (SPSS Version 11.0, IBM-SPSS
Inc., Chicago, IL, USA). The AUC of the DL-based model
was calculated and compared with the chance level (AUC
= 0.5). The statistical significance P < 0.05 was considered
statistically significant. Comparisons were made using repeated
measures analyses of variance (ANOVAs). The Bonferroni post-
hoc test was used to correct for multiple comparisons. The
significance was set at 0.05/N, where N is the number of
tests used.

RESULTS

Model Performance
The receiver-operating characteristic (ROC) curve of the DL-
based model is shown in Figure 4. The model achieved an
area under the ROC curve (AUC) of 0.983 (P < 0.001)
and accuracy, sensitivity, and specificity of 0.965, 0.936, and
0.982, respectively. Visually, Grad-CAM and Guided Grad-
CAM localized roughly the same image regions where hyphae
aggregated. With the gradients flowing back, the Grad-
CAM yielded a rough visualization result. On the contrary,

through Guided Backpropagation, we made full use of the
pixel-level information of the input image and obtained
finer visualization.

Accuracy Evaluation
The results in accuracy, sensitivity, and specificity are shown in
Table 1. The average accuracy for all readers without assistance
was 0.894 (95% confidence interval (CI) 0.888–0.899), which was
improved to 0.933 (95% CI 0.927–0.939) with AI assistance (p
< 0.001) and 0.942 (95% CI 0.933–0.951) with XAI assistance
(p < 0.001). The changes in accuracy across reading conditions
are displayed in Figure 5. For the expert ophthalmologists,
the accuracy was 0.966 (95% CI 0.955–0.977) in unassisted
condition, which was not statistically different when compared
with that in AI-assisted (0.969, 95% CI 0.958–0.979) and
XAI-assisted conditions (0.971, 95% CI 0.946–0.996). For the
competent ophthalmologists, the accuracy improved from 0.910
(95% CI 0.901–0.919) to 0.941 (95% CI 0.925–0.956) with AI
assistance (p = 0·032) and to 0.948 (95% CI 0.934–0.961) with
XAI assistance (p = 0.006). For the novice ophthalmologists,
the accuracy improved from 0.807 (95% CI 0.783–0.831) to
0.890 (95% CI 0.866–0.914) with AI assistance (p = 0.041)
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FIGURE 4 | The performance of the model alone and readers in different reading conditions. The receiver-operating characteristic (ROC) curve of the DL-based model

is depicted as black line, showing the overall performance of the model alone. The performance of readers is distinguished by different shapes and colors. The shapes

represent different groups of reader (Round: expert ophthalmologists; triangle: competent ophthalmologists; square: competent ophthalmologists; pentagram: an

average of all ophthalmologists). Filled colors represent different reading conditions (blue: unassisted; red: AI-assisted; green: XAI-assisted).

and to 0.907 (95% CI 0.869–0.944) with XAI assistance (p
= 0.009).

An overview of sensitivity (True positive rate) and specificity
(1-False positive rate) is shown in Figure 4. In general,
performance in XAI-assisted condition was better than that
in AI-assisted condition, and both better than that without
assistance. The influence of reading conditions was more
prominent on sensitivity than on specificity (shown in

Figure 5). For the expert ophthalmologist group, there was
no statistical difference in sensitivity among the reading
conditions. For the competent and novice group, the sensitivity
for both forms of assistance exceeded that of unassisted reads
(competent ophthalmologist 0.887, 95% CI 0.852–0.922; novice
ophthalmologist 0.764, 95% CI 0.736–0.793), with the XAI-
assisted sensitivity (competent ophthalmologist 0.927, 95%
CI 0.891–0.964, p < 0.001; novice ophthalmologist 0.891,
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95% CI 0.849–0.933, p = 0.002) being slightly higher than
AI-assisted sensitivity (competent ophthalmologist 0.916, 95%
CI 0.894–0.937, p = 0.036; novice ophthalmologist 0.885, 95%
CI 0.847–0.923, p = 0.007). The improvement of sensitivity
was more evident in the novice ophthalmologist group than
in the competent ophthalmologist group. The specificity with
XAI assistance was significantly higher than that without
assistance in the competent (unassisted 0.930, 95% CI 910–0.950;
XAI-assisted 0.966, 95% CI 0.959–0.974; p = 0.022) and novice
ophthalmologist groups (unassisted 0.847, 95% CI 0.812–0.881;
XAI-assisted 0.921, 95% CI 0.885–0.956; p = 0.035), while no
statistically significant difference existed between AI-assisted and
unassisted conditions.

Efficiency Evaluation
On average, novice ophthalmologists spent more time per image
with AI assistance than without assistance (P = 0.040). For
novice ophthalmologists, the time spent with XAI assistance was
significantly less than with AI assistance (P = 0.045). Although
the time spent with XAI assistance tended to be higher than that
without assistance, the difference was not statistically significant
(P = 0.092). The same trends were observed for competent
and expert ophthalmologists but the differences were statistically
insignificant (shown in Figure 6).

DISCUSSION

This study evaluated the impact of visually explainable AI on
IVCM image analysis. The results showed that AI and XAI helped
improve reading accuracy, and the effect was more pronounced
for inexperienced ophthalmologists compared to experienced
ophthalmologists. The assistance of AI increased sensitivity, but
not at the expense of specificity. The addition of explanatory
maps further amplified the positive effect. Although AI assistance
prolonged the average time per image, the application of
explanatory maps reduced the prolongation.

We noted that reading without assistance was generally high
in specificity but low in sensitivity, which implied that readers
might tend to judge an image as “negative”, rather than “positive”,
in cases of ambiguous images. The missed diagnosis might
happen easily under the situations. The assistance of AI reduced
the number of false negative samples by helping readers correctly
recognize the true positives, without increasing corresponding
false-positive errors. The possible reason is that a positive model
prediction might arise the attention of readers to identify occult
lesions that otherwise would be easily overlooked.

Explanatory maps contributed to improving both sensitivity
and specificity. For the true positive samples that were correctly
predicted by the model (TP), the explanatory maps highlighted
the morphology and location of fungal hyphae, providing an
interpretable and explainable basis of AI decision-making, thus
improving the user’s trust in the model’s prediction. For the
true negative samples that were incorrectly predicted by the
model (FP), the explanatory maps displayed meaningless spatial
information, which helped the user to identify the model
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FIGURE 5 | The accuracy, sensitivity, and specificity of model alone and readers in different reading conditions.

FIGURE 6 | The average time that readers spent on each image in different reading conditions.

misdiagnosis and therefore avoided the possible interference
caused by model errors.

In the present study, Grad-CAM and Guided Grad-CAM
help ophthalmologists determine whether the model results are
credible by highlighting the important regions that lead to model
decision. Recent studies have proposed uncertaintymeasurement
as an efficient method for the evaluation of model confidence
(26). Uncertainty measurement provides an estimation of pixel-
wise uncertainties for image segmentation results, which enables
an easy decision to accept or reject the model outcome based on a
certain uncertainty level. This provides new ideas for the research
of XAI and we are going to explore this approach in IVCM image
analysis in our future research.

The impact of AI and XAI on the accuracy was noted to vary
according to the degree of clinical experience. The inexperienced
readers may be more likely to profit from the XAI system. With
the assistance of XAI, the accuracy of novice ophthalmologist

was increased to approximately competent level, and the accuracy
of competent ophthalmologists reached close to that of expert.
Although IVCM is greatly helpful for the diagnosis of corneal
diseases, it is far from universal in many locations. One of
the reasons is the scarcity of reading ophthalmologists. The
explainable system is appropriate for teaching IVCM analysis
skills. The validated model can provide timely monitoring and
feedback to inexperienced readers, and the explanatory maps
can help quickly identify the important features as a basis for
judgment, thus help reduce study time and corresponding costs.

While AI assistance prolonged the mean reading time
per image, it was within acceptable ranges considering the
contribution of AI to the accuracy improvement. This can
be easily understood because the classification histograms
and explanatory maps were shown after the original images,
and it took more time to reflect on divergent results. The
addition of explanatory maps visualized the AI diagnostic basis,
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thus reduced the hesitation time. It should be mentioned
that the readers were not instructed to complete the reading
task as fast as possible, and were not informed that the
reading time would be used as an auxiliary evaluation index,
which might influence the results. Interestingly, although
mean time per image increased, AI still has high potential
for improving efficiency in the clinical setting given that
AI may help to rapidly screen out hyphae-positive images
from hundreds of images consecutively collected from each
eye. The effect of AI on reading efficiency deserves a
further study.

The proposed algorithm framework is general, which can
be extended to other pathogens such as Acanthamoeba
and Candida. IVCM images show Acanthamoeba cysts and
trophozoites in Acanthamoeba keratitis (27), and show spore
and pseudohyphae in Candida keratitis (28). A deep learning
model can learn either these features or novel features to predict
Acanthamoeba and Candida keratitis.

There were several limitations existed in this study. First,
this is a single-center study performed in a limited number
of readers, selection bias was inevitable. A multicenter study
with more participants is needed in the future to generate
more robust results. Second, we included a balanced number of
positives vs. negatives with a ratio of approximately 1:1, thus
the percentage of positivity in this study differed from that in
a real-world setting. The diverse prevalence might significantly
a?ect the sensitivity and specificity between datasets, thereby
reducing the generalizability of our findings. Third, IVCM images
were presented in random order in this study, but instead in
order of scanning in actual clinical settings. Randomization of
order excluded contextual information of adjacent images and so
the performance of ophthalmologists could be underestimated.
Therefore, additional studies are required to validate the role
of AI in the analysis of image sequences. Finally, this study
failed to compare the sensitivity between microbiological tests
and IVCM. In this study, the microbiological tests were used
as the gold standard. All positive images were collected from
eye with positive smear/culture of filamentous fungi and were
adjudicated by corneal specialists that hyphal structures were
present in the observation field. All negative images were
collected from eye with negative smear/culture of filamentous
fungi and were ensured that no hyphae were included in the
images. Therefore, cases with negative fungal smear/culture
and positive hyphae fundings in IVCM were not included in
the study, and the question of whether patients with negative
microbiological tests could benefit from IVCM with DL was
not addressed in this study. Despite this, the study provides
an important framework for the future researches. Further
studies will incorporate hyphae-positive images with negative

microbiological results to assess the evaluation of AI-assisted
IVCM as a means to complement microbiological tests.

CONCLUSION

AI has shown great promise in improving the accuracy of
ophthalmologists in terms of FK detection using IVCM images.
The inexperienced readers are more likely to benefit from the
XAI system. With better interpretability and explainability, XAI-
assistance can boost ophthalmologist performance beyond what
is achievable by the reader alone or with black-box AI assistance.
The present study extends our understanding of the role of AI in
medical image analysis.
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