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Anti-citrullinated protein antibodies (ACPAs) are autoantibodies commonly observed

in patients with rheumatoid arthritis (RA). Currently, most of the mechanisms of

ACPA formation and bone destruction are well-understood, however, some unknown

mechanisms still exist. There have been many new advances in ACPA-related clinical

applications and targeted therapies. However, the existence of different ACPA subtypes

is a limitation of targeted therapy. Herein, we present an overview of the process of ACPA

generation, the underlying pathogenesis, and relevant clinical application and prospects.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic erosive disease that can lead to joint deformity and loss
of function. Anti-citrullinated protein antibodies (ACPAs) are autoantibodies against citrullinated
peptides and proteins. The specificity of anti-cyclic citrullinated peptides (anti-CCP), which belong
to ACPAs, is 88–98%. Therefore, ACPAs may be reliable markers for the early diagnosis of RA (1).
Furthermore, they can predict the possibility of bone erosion in RA patients since ACPAs aremainly
seen in RA, while citrullination is seen in many diseases (2). The citrullination process, how ACPAs
damage joints, and if ACPAs can be used as therapeutic targets for RA, remain to be elucidated. This
review will describe the process of ACPA generation, discuss the pathophysiological mechanisms
underlying ACPAs action, and summarize the research progress in ACPA-based diagnosis, disease
evaluation, and targeted therapy.

ACPA GENERATION

Protein Citrullination
Citrullination is mediated by peptidyl-arginine deiminase (PAD), which converts arginine to
citrulline. It is a physiological post translational modification involved in brain development,
apoptosis, epidermal differentiation, and chromatin regulation. In some cases, including RA,
multiple sclerosis, and Alzheimer’s disease, citrullination can be over represented (3). Proteins
that are usually citrullinated include type II collagen, fibrinogen, α-enolase, filaggrin, histones,
and vimentin (4). Citrullinated proteins are primarily produced by two subtypes of PADs, PAD2
and PAD4. PAD2 and PAD4 are usually found in neutrophils and monocytes (5). Physiologically,
the function of PADs is limited (such as oxidizing environment present extracellular or transient
nanomolar changes in intracellular calcium), and redundant citrullinated proteins are degraded.
However, membranolytic damage caused by host perforin (in the joint) and bacterial pore-
forming proteins (in extra-articular sites like gut and lungs) can induce PADs activation and
hypercitrullination. These processes finally cause the superfluous production of ACPAs (6).
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Calcium ions (Ca2+) are essential for PAD activation, but the
intracellular calcium concentration in normal cells is much lower
than that required for PAD activation. High Ca2+ concentration
can occur locally in cells or in extreme conditions like apoptosis
or necrosis (3). PADs are activated during cell death when PADs
leak out of cells into the extracellular matrix or extracellular Ca2+

enters into cells (7). Accumulated citrullinated proteins have
increased immunogenicity and are converted into autoantigens
(8). Additionally, not all citrullination processes trigger ACPAs
production. ACPAs are more likely to be produced in the
presence of external environmental stimuli or autoimmune
dysfunction (9).

The Emergence of ACPAs
ACPAs are produced against various citrullinated protein
antigens, including fibrinogen, vimentin, type II collagen, α-
enolase, filaggrin, and histone (10). Smoking, silica exposure, and
some air pollutants can lead to molecular changes in the lung and
bronchoalveolar lavage fluid, resulting in increased expression of
citrullinated proteins and/or peptides. Neutrophil extracellular
traps (NETs) are extracellular fiber networks mainly composed
of neutrophil DNA, which allow neutrophils to kill extracellular
pathogens and minimize host cell damage (11). In patients with
RA, NETs contain citrullinated vimentin and α-enolase, which
can also stimulate autoantibody production (12).

Neutrophils and ACPAs interact through self-continuation.
Excessive NETs formation can contribute to the production
of deiminated antigens including citH2A and citH2B histones.
When NETs release a large amount of citrullinated antigens
to drive ACPA production, the immune complexes containing
ACPAs can form more NETs. Then, the immune complexes
interact with the FCγ receptor (FCγR) on other neutrophils,
releasing degrading enzymes and reactive oxygen species, ACPAs
and citrullination promote programmed cell death, leading to
autoantigen release (13–15) (Figure 1). In RA patients’ peripheral
blood, ACPAs stimulate neutrophils to release PAD enzymes.
Upon PAD4 activation, locally released citrullinated histones
enhance the generation of highly mutated clonal B cells resulting
in the generation of ACPAs (16).

Various noxious agents have a potential to activate toll-
like receptors, which belong to pattern recognition receptors
(expressed mainly by cells of the innate immune system, such
as macrophages). Then, the triggered innate immune response
activate Ca2+-mediated PAD of granulocytes and macrophages
(17). Furthermore, Damage-associated molecular patterns
(DAMP) have been shown to induce NETs production through
pattern recognition receptors (18). Citrullinated histones and
their immune complexes have been reported to function as
DAMP in RA. The cell apoptosis induced by pathogen associated
molecular pattern (PAMP) and DAMP can also lead to an

Abbreviations: ACPAs, anti-citrullinated protein antibodies; RA, rheumatoid

arthritis; anti-CCP, anti-cyclic citrullinated peptide; PAD, peptidyl arginine

deiminase; NETs, neutrophil extracellular traps; FCγR, Fc gamma receptor; CCP,

cyclic citrullinated peptide; CIA, collagen-induced arthritis; ERK, extracellular

signal regulated kinase; JNK, c-Jun N-terminal kinase; RF, rheumatoid factor;

DMARDs, disease-modifying antirheumatic drugs; PAD4, peptidyl arginine

deiminase type 4; CNBz, carboxyl-p-nitrobenzyl.

FIGURE 1 | Interaction of ACPA and neutrophils.

unlimited influx of Ca2+ (Figure 2) (19–22). Then, those Ca2+

activate PADs.
In the presence of a susceptible major histocompatibility

complex (MHC), different citrullinated proteins appear in
different MHC molecular backgrounds to activate T cells.
They promote B cell maturation and activation, leading to the
consecutive production of ACPAs. Immunoglobulin G (IgG) is
the primary type of ACPA (23). Different types of autoantigens
and antibodies make ACPAs specific, and they appear in different
individuals before the onset of the disease, carrying out systemic
diffusion and epitope spreading. This process leads to a mix
of ACPAs and an increase in the ACPA titer (24, 25), making
targeted therapy incredibly difficult.

When using CCP to detect ACPAs, almost all ACPAs react.
Because of non-cyclic citrullinated peptides, the term ACPA
is broader than anti-CCP antibody (26). Anti-CCP antibodies
are able to recognize citrullinated fibrinogen and citrullinated
myelin basic protein. Moreover, antibodies specific for these
two antigens are largely crossreactive, but the crossreactivity is
incomplete (27, 28).

RA patients’ sera react diversely with the different citrullinated
peptides. 29.08% of sera react with vimentin, 37.59% with alpha-
enolase, 31.21% with fibrin, 29.97% with type II collagen and
28.37% with filaggrin. These citrullinated peptides have also been
found to have high specificity for RA. Moreover, RA Patients’
sera with various reactivities to one ormore citrullinated peptides
do not present difference in disease severity (29). In a study of
pre-clinical RA cases, the prevalence of ACPA subtypes varies.
Histone 2A is 5.5%. Histone 2B is 8.6%. Vimentin is 14.9%.
Fibrinogen is 17.7%. Biglycan is 4.7%. In addition, two or more
ACPA subtypes were present in 15.7% of pre-RA cases (30).
These researches proves that ACPAs are heterogeneous and react
differently to different citrullinated proteins.

ACPAS AND BONE DESTRUCTION IN RA

The ACPA Immune Response
The ACPA immune response can be divided into two stages,
namely, the “first hit” and the “second hit.” The serumACPA titer
increases, and the immune response begins before the onset of
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FIGURE 2 | PAMP or DAMP in PADs activation. TLR, toll-like receptors; PAMP, pathogen associated molecular pattern; DAMP, Damage-associated molecular

patterns; ER, Endoplasmic reticulum; ROS, reactive oxygen species.

RA. The initial break of tolerance that leads to the production
of low level and low activity ACPA (“the first hit”) is often
caused by environmental changes or some genetic background
that is linked to RA susceptibility. It can last for many years
without causing any symptoms (31). After some additional
arthritogenic triggers, citrulline-specific B cells may receive T
cell help, inducing an inflammatory autoimmune response (“the
second hit”) (32). Then, ACPA levels increase, antibody diversity
expands, and the ACPA response matures (13).

Furthermore, HLA-DRB1 encode shared epitope that is
highly associated with the development of ACPA-positive
RA. It includes DRB1∗0401, DRB1∗0409, DRB1∗ 0404, and
DRB1∗0101. Young-onset RA (≤40 years old) is often associated
with DRB1∗0401 and DRB1∗0404, while late-onset RA (≥60
years old) is associated with the presence of DRB1∗0101. Patients
with shared epitopes usually have increased levels of HLA-
DR on B cells, which interact with T cell receptors (17). The
HLA-DRB1∗13 alleles have a protective effect on the transition
fromACPA-positive autoimmunity to ACPA-positive RA and are
associated with lower ACPA levels (33).

In the process of antigen presentation, HLA shared epitopes
are presented to T cells, which promote B cell proliferation
induced by citrullinated peptides. Then, the ACPA reactions
expand, resulting in the “second hit,” in which T cells promote
the expression of ACPAs in B cells. A wide range of somatic high-
frequency mutations, epitope spreading, antibody titer increase,
class conversion, and recombination occur. The increase in the
ACPA serum titer, the broadening of the antigen recognition
pattern, and the glycosylation of the ACPA Fc segment all provide
evidence. T cells assist B cells in expressing ACPAs and trigger the
expansion of the ACPA response before arthritis onset (34).

ACPA Pathogenicity and Induction of B
Cell Immune Tolerance
During the ACPA immune response, glycosylation can affect the
stability and biological activity of antibodies (35). Glycosylation
can be observed in the variable regions of the heavy and light
chains (31). In general, 15–25% of IgG antibodies contain Fab

glycan, whereas over 90% of ACPA-IgG molecules carry Fab
glycan (36). ACPA-IgG can also be glycosylated in the tail of
Fc and this is related to their pathogenicity. ACPA variable
region glycosylation is related to B-cell tolerance and survival.
The acquisition of variable domain glycans could enable ACPA-
expressing B cells to breach tolerance (31). ACPA-IgG are highly
and extensively glycosylated in the variable domain. In addition,
the relationship between variable region polysaccharides and the
development of ACPAs requires further study (34).

Almost all (>90%) ACPA-IgG molecules contain N-glycans
in their variable regions. However, only a few variable N-
glycosylation sites (defined by the common sequence asn-x-
ser) encoded by region genes can accommodate this glycan.
In contrast to ACPA-IgG, ACPA-IgM does not show enhanced
glycosylation in the variable region. T cells are essential for the
selection and expansion of ACPA-expressing B cells, possibly
by facilitating the introduction of N-glycosylation sites in the
ACPA-IgG variable region. This T cell–B cell interaction also
mediates the increased usage of isotypes and epitope spreading
observed before disease onset. Acquisition of N-glycans in the
ACPA variable domain is a process that requires repeated T

cell–dependent B cell hypermutation events, potentially as a

result of multiple hits that occur with varying kinetics (37). The
introduction of ACPA Fab glycans is likely the result of somatic
hypermutation during maturation of the ACPA response. The
introduction of N-glycans in the variable domain is dependent
on T cell help inside or outside the germinal center. However,
the role of Fab glycan in the function of ACPA-IgG remains
unclear (32).

The N-glycosylation sites are not randomly accumulated.
They are the result of a non-random process, which indicates
that ACPAs can obtain a survival advantage because of
these polysaccharides. Furthermore, ACPA-specific B cells can
circulate in the joint as memory B cells, which, then, undergo
additional germinal center passage and/or differentiate into
ACPA-secreting plasma cells (31). In addition to glycosylation,
the level of ACPA sialylation also plays an important role in
bone destruction. Reduced sialylation is a common IgG feature in
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patients with RA and in collagen-induced arthritis (CIA) mouse
models. In CIA mice, blocking activated B cell sialylation at the
gene level leads to exacerbation of arthritis. Artificial sialylated
ACPAs can weaken the activity of ACPAs and reduce the damage
of ACPAs to joints. Therefore, sialylation can be used as a
potential target for the treatment of ACPA-positive RA (38).

ACPA Pathogenesis
ACPAs can interact with osteocytes, chondrocytes, and immune
cells in the articular cavity to initiate an inflammatory reaction
(39). ACPAs and citrullinated protein can form immune
complexes. These immune complexes combine with C1q and
activate complement system through classical pathway (40). L.A.
Trouw et al. (41) found that ACPAs activate the complement
system in vitro via both classical and alternative pathways, and
the extent of complement activation is positive correlated with
anti-CCP antibody levels. What’s more, the immune complexes
induce the release of chemotactic factors C3a and C5a (40). In the
ACPA-containing environment, the complement system play a
vital role in inducing the pathogenesis of RA from the pre-clinical
to clinical stage (42).

ACPAs can also directly or indirectly participate in bone
destruction (39). Macrophages are activated by ACPAs through
the formation of immune complexes, which then promote
the production of pro-inflammatory cytokines and indirectly
participate in bone destruction. Resting-state macrophages are
usually located in synovial tissue. They are powerful immune
effectors that can significantly promote the inflammatory
response and joint destruction when stimulated (43, 44).
Furthermore, they can selectively activate the extracellular signal-
regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)
pathways through direct interaction between the Fab variable
region of ACPAs and citrullinated glucose regulatory protein 78,
leading to the activation of NF-κB and promotion of TNF-α
production (45, 46).

ACPAs can also directly target osteoclasts (OCs). The immune
complex formed by ACPAs and citrullinated peptide binds
with FCγR, activates OCs and promotes proinflammatory
cytokine production (39, 47). Immunocomplexes that contain
antibodies with different degrees of glycosylation can change
the differentiation and activation of OC precursors. The
glycosylation of the immunoglobin Fc of ACPAs enhances
their affinity for FCγR, and increases their ability to induce
OC activation and bone erosion (48). In RA patients, ACPAs
interacting with type II collagen can directly bind with cartilage
components and antigens on the surface of articular cartilage
(15). ACPAs cross-react with type II collagen and induce arthritis
and structural damage by activating complements, leading to
decreased proteoglycan levels and severe arthritis (49) (Figure 3).

CLINICAL APPLICATION OF ACPAS

Diagnosis, Disease Prediction, and
Assessment
ACPAs aremostly observed in patients with RA. As the specificity
of ACPAs for RA was above 90%, it was included in the 2010
ACR/EULAR RA classification standard. The presence of ACPAs

has a positive predictive value of 63% for RA progression within
1 year in individuals with recent (<1 year) arthralgia. Low
levels of ACPAs can be detected in 1–3% of healthy individuals,
and can exist for many years without causing obvious clinical
symptoms in some people (34). Murata et al. (50) found that
the ACPA titer level fluctuates in some patients. Moreover, a
weak correlation between the ACPA titer level and disease activity
was observed and fluctuation in the ACPA titer level could
predict relapse in patients with RA remission. According to Anca
Catrina’s review, when individuals reach RA diagnosis, the ACPA
repertoire remains relatively stable over time with small changes
in ACPA levels and only occasional seroconversion (13).

In asymptomatic individuals, ACPAs are not sufficient to
predict the development of RA, but the detection of ACPAs helps
to determine the diagnosis, evaluate the prognosis of patients,
and guide treatment decisions (31, 51). Serum ACPA levels are
relatively stable in the course of the disease, while rheumatoid
factor (RF) levels change. ACPA-positive B cells undergo
multiple cycles of germinal center reaction, thus accumulating
cell mutations and carrying out homotypic transformation. In
contrast, RF-positive B cells undergo a limited germinal center
response and are activated by innate immune mechanisms.
The citrulline-specific immune response can produce long-lived
plasma cells and a stable titer of ACPAs, while the RF response
can produce short-lived plasma cells and fluctuating levels of
RF (52) (Table 1). In addition, patients with strongly positive
ACPAs and RF positivity in the absence of joint symptoms may
have significant extra-articular involvement, including recurrent
scleritis, pleuropericarditis, or interstitial lung disease (53).
Moreover, high levels of ACPAs are associated with greater
susceptibility to ocular diseases (54).

ACPA positivity is related to poor prognosis, including
systemic extra-articular complications and joint damage.
Compared to ACPA negative patients, ACPA positive patients
are more likely to develop erosive disease, as demonstrated
using radiography and ultrasonography, especially in the
fifth metatarsophalangeal joints (60). ACPA-IgG levels are
relatively stable and rarely turn negative in all phases of RA.
The fluctuation of ACPA-IgG levels cannot reflect the activity
of RA, nor can it predict the flare of the disease (34). However,
in a longitudinal cohort study in RA patients diagnosed from
2000 onward, ACPA-positive RA was not more severe than
ACPA-negative RA in terms of the patients’ relevant outcomes,
including physical functioning and restrictions at work (61).

Efficacy Prediction
ACPA-positive and ACPA-negative RA have been shown to be
related to different genetic backgrounds. HLA shared epitopes
are more likely to induce ACPA-positive RA. HLA-DRB1∗03 is
more likely to cause ACPA-negative RA (62), which confirms that
these two diseases have different pathophysiological mechanisms
(63), such as higher disease severity and higher remission
rates. Compared with the ACPA-negative group, the bone mass
density and cortical thickness of the ACPA-positive group
were significantly decreased, while the cortical pore area was
significantly increased. The results of a systematic review of 10
studies on the role of ACPAs in predicting joint injury in RA in
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FIGURE 3 | ACPA bone destruction.

TABLE 1 | Comparison of ACPA and RF characteristics.

ACPAs RF

Antibody type (15, 55) Mainly IgG, sometimes IgA and IgM Mainly IgM, sometimes IgA

Disease relativity (56) Mostly in RA In many autoimmune diseases

N- Glycosylation (57) Extensive Limited

Germinal center

response (15)

Repetitive Limited

Somatic hypermutation (58) Extensive Limited

B cell activation (15) T cell-dependent May or may not be T cell-dependent

Plasma cell production (52) Long lived plasma cells Short lived plasma cells

Time of appearance (59) Before the onset of RA Before the onset of RA

ACPAs, anti-citrullinated protein antibodies; RF, rheumatoid factor; Ig, immunoglobulin; RA, rheumatoid arthritis.

which 3,065 patients were included (average study time was 4.7
years) showed that ACPA positivity is an important predictor of
joint erosion in patients with RA (2).

ACPA-positive RA andACPA-negative RA respond differently
to the traditional DMARD methotrexate, which can reduce the
possibility of progression from undifferentiated arthritis to RA in
ACPA-positive patients. However, there was no such reduction
in ACPA-negative patients (62). In addition, glucocorticoids play
a more significant role in disease amelioration in ACPA-positive
RA, which indicates that ACPAs may serve as a marker to guide
the treatment of early RA (64).

For RA patients with higher baseline ACPA titer, abatacept
has better efficacy than the TNF inhibitor infliximab. During
abatacept treatment, the inhibition of T cells was stronger in
ACPA-positive patients than that in ACPA-negative patients.
At 3 months, significant reductions in RF and ACPA titers
were observed in the abatacept continuous treatment group.
Furthermore, the decrease in the ACPA titer could be used as
an independent predictor of abatacept persistence at 12 months
because of sustained therapeutic response. Hence, when the

disease activity is not under control or the titer of ACPAs
continues to increase after 3 months’ of abatacept use, RA
patients should switch from abatacept to other DMARDs (65).

In RA, the reaction of ACPAs to citrullinated antigen is
called “ACPA reactivity” (66). ACPA reactivity is considered
to be related to bone destruction in RA. The ACPA reactivity
level significantly decreases in the first 3 months of DMARD
treatment, and then remains stable. Furthermore, the lower
the ACPA reactivity, the easier it is to achieve methotrexate
monotherapy remission in 6 months. After 12 and 24 months,
radiologic progression is not significantly associated with
baseline ACPA responsiveness (67).

In a Swedish clinical trial, serum samples from baseline and
3-month follow-up were available from 316 patients. DMARDs-
naive RA patients with symptoms duration < 1 year were treated
with methotrexate for 3 months, followed by randomization to
add-on therapy with either sulfasalazine and hydroxychloroquine
or infliximab in patients with a 28-joint disease activity score
(DAS28) > 3.2 at the 3-month evaluation. The proportion of
patients testing ACPA-positive declined significantly between
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0 and 24 months regarding anti citrullinated peptides derived
from vimentin, whereas anti-CCP antibody remained unaltered.
Reversion from positive at baseline to negative at 2 years is
significantly more common regarding anti citrullinated peptides
derived from vimentin compared with anti-CCP antibodies.
Moreover, anti citrullinated peptides derived from vimentin
seroreversion remained associated with less occurrence of
radiological progression (68).

Periodontal Disease and ACPAs
Periodontal disease (PD) is a chronic inflammatory condition
related to aberrant microbe that affect the supporting tissues
around teeth. PD can destruct oral mineralized and non-
mineralized connective tissues. Infection of Porphyromonas
gingivalis, a periodontal pathogen, cause the activation of
peptidylarginine deiminase (PPADs) that generates citrullinated
proteins and triggers the synthesis of ACPAs. Then, the
cross-reactivity of periodontal-generated APCAs to antigens
present in the joint aggravate the inflammation associated
with RA. Besides Porphyromonas gingivalis, Actinobacillus
actinomycetemcomitansis is another periodontal pathogen. It
can activate citrullination enzymes in host neutrophils through
pore-forming toxin leukotoxin A. Exposure to leukotoxic
Actinobacillus actinomycetemcomitans was confirmed in RA
patients with PD and was positively associated with ACPA levels
(69, 70).

ACPAs concentration is much more higher among RA
patients with PD compared with RA patients or PD patients.
A significant association was found between PD and RA,
and the association was more evident in patients with more
severe periodontal disease and higher RA disease activity. In
addition, associations between cumulative IgG titer against
periodontopathogens and ACPAs presence suggest a synergistic
effect of periodontopathogens to ACPAs development (71–
73). Although Non-Surgical Periodontal Treatment has limited
effects to reduce the RA clinical scores, the periodontal status
of RA patients receiving DMARDs is better than the untreated
RA patients, and the suppression of TNF-α to treat RA may be
beneficial in PD treatment (69).

TARGETED ACPA THERAPY

Anti-citrullination Treatment
At present, some bioactive compounds have been found
to irreversibly target PAD. The earliest effective bioactive
compounds were F-amide and Cl-amidine, which irreversibly
inhibit PAD4 and citrullination by modifying the active site
of cysteine (74). Cl-amidine has been shown to reduce disease
severity in CIA mice (75). However, F-amide and Cl-amidine are
still in the stage of animal trials, and their clinical efficacy needs
further evaluation.

Since the PAD4 gene is a susceptibility gene for RA, it can
be used as a therapeutic target. It is known that PAD4 can
affect the disease severity of CIA mice and enhance collagen-
induced inflammatory responses. After PAD4 gene knockout,
the degree of arthritis in CIA mice significantly decreased,
but disease onset was not prevented. PAD4 inhibitors are

good candidates for drug development because their use is
not associated with physiological abnormalities. A novel PAD4-
selective inhibitor, GSK199, could reduce clinical disease activity
and joint destruction in CIA mice. However, it did not markedly
reduce citrullination or the number of ACPAs in joints (76, 77).

Vaccines Against Citrullinated Proteins
Various vaccines have been found effective in arthritis treatment
in animal models. Anti-cytokine vaccine IL23-K1 produce great
amounts of anti-IL23 antibodies in mice. It is also highly
protective against joint destruction and inflammation. Vacacine
RTFP-2, a RANKL-TNF-like core fusion protein, produce a
total inhibition of osteoclastogenesis in vitro. PADRE-BAFF
vaccine yield high titers of neutralizing B-cell activating factor
(BAFF) antibodies and ameliorate arthritis in rats. Vaccine CEL-
2000, constructed from a peptide of Type II collagen, limit the
progression of arthritis in CIA mice. Most importantly, the
development of “Rheumavax” has been evaluated with promising
results in a phase I RA clinical trial. Rheumavax is also the first
and only trial existing in humans (78).

Rheumavax is a novel vaccine for the treatment of RA.
It comprises dendritic cells modified by NF-κB inhibitors
exposed to four citrullinated peptide antigens. Its efficacy has
been demonstrated in animal models. The NF-κB subunit is
overexpressed in RA synovial tissues. Dendritic cells lacking NF-
κB subunits can inhibit the existing immune response in vivo
in an antigen-specific manner by inducing a suppressive CD4+

regulatory T (Treg) cell population. One month after injection,
the proportion of Treg cells increased, and the proportion of
effector T cells decreased. Inflammatory cytokines and disease
activity also decreased in patients receiving treatment (79, 80). In
an animal model of RA, inoculation with multi-epitope peptides
derived from citrullinated autoantigen promoted Treg cell
production and inhibited Th17 cell function, inducing immune
tolerance and reducing joint inflammation (81). Vaccine therapy
may be used in high-risk groups with multiple patients with
RA in the family. However, due to the diversity of citrullinated
proteins, whether the vaccines developed for certain peptides can
be used in all high-risk groups needs further study.

Immunotherapy
Since ACPAs are secreted by effector B cells, B cell treatment
is expected to significantly improve the symptoms of ACPA-
positive patients. When rituximab is used to treat RA, the
ACPA levels significantly decrease. However, these levels usually
do not turn negative. In many RA patients, a relatively stable
citrullinated protein-related response exists, which may be
maintained by plasma cells residing in the bone marrow, spleen,
and synovial tissue. In a 2-year period of B-cell depletion,
autoantibodies had a significantly shorter life span than that
of physiologically protective antibodies. Hence, there might
be a therapeutic window for therapies that target plasma
cells (34, 82, 83).

Auto-reactive B cells, which are considered to play a key
role in many autoimmune diseases, can produce ACPAs. Auto-
reactive B cells can be used as targets for the treatment of ACPA-
positive RA. A synthetic CCP antigen suitable for combination
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with B cell receptors has been synthesized. After reduction by
nitroreductase, the activated CCP antigens, which are in close
proximity to the B cell surface, selectively bind to B cell receptors
and initiate cell death. Furthermore, the binding of ACPAs and
citrullinated peptide was inhibited by introducing a carboxyl-p-
nitrobenzyl (CNBz) blocking group into the side chain of the
citrulline residue. However, this method has some limitations.
The self-reactive B cells in patients with RA are polyclonal.
Therefore, the curative effects are uncertain. Moreover, these
findings are based on animal studies (84).

Targeting ACPAs
ACPAs are important in the process of bone destruction in RA.
Targeting ACPAs is expected to alleviate bone destruction and the
clinical symptoms of RA. Research shows that two kinds of chains
originating from the fibrinogen α chain can destroy the binding
of ACPAs with CCP (85). The therapeutic anti-citrullinated
protein antibodies synthesized on this basis specifically bind
citrulline at position three of histone 2A and histone 4. The
antibodies showed strong anti-inflammatory activity in CIA
mice. Therapeutic ACPAs inhibit murine and human NET
formation and bind to NETs in vitro and in vivo, potentially
initiating clearance by macrophages (86). Furthermore, citrulline
epitopes of human fibrinogen can be grafted into natural stable
peptide scaffolds, and then peptide binders can be used to directly
target and neutralize ACPAs. The peptide scavenger binds ACPAs
with high affinity, specificity, and stability (87). This method,
however, needs to be further studied in the human body.

DISCUSSION AND OUTLOOK

Many studies have been conducted on ACPA generation and
pathogenesis. Accumulated citrullinated proteins trigger ACPA
production and different types of ACPAs appear depending on
the different antigens and antibody isotypes. ACPA pathogenesis
can be divided into “two hits.” After the “second hit,” ACPA levels

markedly increase. In the ACPA immune response, glycosylation
can affect the stability and biological activity of antibodies,
enhancing ACPA pathogenicity. Moreover, ACPAs directly or
indirectly participate in bone destruction.

There are many new advances in the clinical application
and targeted therapy of ACPAs. Based on the characteristics of
ACPAs, many new ideas in diagnosis, curative effect prediction,
and related vaccines are created. However, the ACPA subtypes
differ depending on the different antigens and antibody isotypes.
Targeted therapy can only target some of them, which is a
limitation of targeted therapy. According to Sieghart et al. (23),
ACPA-IgG has a higher sensitivity (57.9%) in RA diagnosis than
ACPA-IgA (34.1%) and ACPA-IgM (28.6%). However, Chirivi et
al. (86) found that therapeutic ACPAs can inhibit NET formation
and become a potential therapy for inflammatory arthritis.
Therefore, the effect of ACPAs remains controversial. With more
exploration of ACPAs and clinical trials, new breakthroughs will
be made in the generation, pathophysiology, clinical diagnosis,
and treatment of ACPA-positive RA.
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