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Application of deep learning on histopathological whole slide images (WSIs) holds

promise of improving diagnostic efficiency and reproducibility but is largely dependent

on the ability to write computer code or purchase commercial solutions. We present

a code-free pipeline utilizing free-to-use, open-source software (QuPath, DeepMIB,

and FastPathology) for creating and deploying deep learning-based segmentation

models for computational pathology. We demonstrate the pipeline on a use case of

separating epithelium from stroma in colonic mucosa. A dataset of 251 annotated

WSIs, comprising 140 hematoxylin-eosin (HE)-stained and 111 CD3 immunostained

colon biopsy WSIs, were developed through active learning using the pipeline. On

a hold-out test set of 36 HE and 21 CD3-stained WSIs a mean intersection over

union score of 95.5 and 95.3% was achieved on epithelium segmentation. We

demonstrate pathologist-level segmentation accuracy and clinical acceptable runtime

performance and show that pathologists without programming experience can create

near state-of-the-art segmentation solutions for histopathological WSIs using only

free-to-use software. The study further demonstrates the strength of open-source

solutions in its ability to create generalizable, open pipelines, of which trained models

and predictions can seamlessly be exported in open formats and thereby used in external

solutions. All scripts, trainedmodels, a video tutorial, and the full dataset of 251WSIs with

∼31 k epithelium annotations aremade openly available at https://github.com/andreped/

NoCodeSeg to accelerate research in the field.
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INTRODUCTION

Visual evaluation of histopathological whole slide images
(WSIs) is the gold standard for diagnosing an array of medical
conditions ranging from cancer subtyping and staging to
inflammatory and infectious diseases. The increasing shortage of
pathologists, in combination with continually increasing biopsy
load and lack of reproducibility for several common diagnoses
between pathologists, calls for the application of novel methods
to improve both diagnostic efficiency and reproducibility (1–5).
Application of deep learning-based methods to histopathological
WSIs holds promise of improving diagnostic efficiency and
reproducibility, but is largely dependent on the ability to
write computer code or buy commercial solutions. The
introduction of large-scale digitization of histopathological
WSIs has moved several pathology departments away from
manual microscopy diagnostics to diagnosing digitized
WSIs on computer screens (6). The successful application
of deep learning-based classification and segmentation
of WSIs holds great promise for a continually increasing
introduction of computer assisted diagnostics for pathologists,
possibly alleviating both pathologist workload and increasing
reproducibility (7, 8). Many current solutions are either
commercial software with limited transparency of the applied
algorithms, limited export/import capability for other software,
and limited availability for diagnostic departments with strained
budgets. Existing commercial solutions include software such
as Visiopharm,1 Halo AI,2 and Aiforia,3 but also, open-source
alternatives such as MONAI-Label,4 H-AI-L, QuickAnnotator
(9–12), and ZeroCostDL4Mic (12). These open-source solutions,
however, either lack a full annotation, training and visualization
pipeline, require some degree of programming experience, or
use commercial servers. This calls for the development and use
of open-source solutions that enable transparency of the image
analysis pipelines, the possibility of exporting and importing
results and data between applications and use of local data
without the requirement of uploading restricted images to
commercial serves.

The open-source software QuPath is a user-friendly solution
for WSI analysis (13). Its tools offer means for tumor
identification and biomarker evaluation using conventional non-
deep learning-based machine learning methods with possibilities
of batch-processing and scripting, as well as communication with
auxiliary image analysis applications such as ImageJ. However, no
deep learning-based image segmentation functionality exists for
QuPath to date, except for the possibility of calling the StarDist
nucleus segmentation method (14) from a customizable script in
the latest 0.3.x release.

Application of deep learning approaches to biological imaging
during recent years has significantly boosted our capabilities
to segment structures of interest from collected images and

1https://visiopharm.com/visiopharm-digital-image-analysis-software-features/

ai-features/
2https://indicalab.com/halo-ai/
3https://www.aiforia.com/
4https://github.com/Project-MONAI/MONAILabel/

make them ready for visualization and quantitative analysis
(15). Despite the potential quality of generated results, use of
deep learning in routine research projects is still quite limited.
This limitation is mostly due to a relatively high threshold
barrier that is hard to overcome by researchers without extensive
knowledge of computer science and programming experience.
The typical deep learning workflows require knowledge of
deep learning architectures, Python programming abilities, and
general experience with multiple software installations. The
code-free solution DeepMIB was published to help with all these
aspects andwith a hope tomake deep learning available to a wider
community of biological researchers (16). DeepMIB is a user-
friendly software package that was designed to provide a smooth
experience for training of convolutional neural networks (CNN)
for segmentation of light and electron microscopy datasets. It
is suitable for anyone with only very basic knowledge of deep
learning and does not require computer programming skills.

DeepMIB comes bundled with Microscopy Image Browser
(17), which is a free, open-source software package for image
processing, segmentation, and quantification of microscopy
datasets. Both packages are written with MATLAB, they are
easy to install, and can be used either under the MATLAB
environment or as a stand-alone application on Windows,
macOS, or Linux.

Image segmentation in DeepMIB is organized as a step-by-
step workflow, which starts with selection of a CNN architecture
[2D or 3D, U-Net (18) or SegNet (19)], and definition of the most
central training hyperparameters. The provided architectures
are efficient and are shown to generate generalizable models
even with sparse training data (20). To extend the training
base, DeepMIB comes with multiple (19 for 2D, and five for
3D) augmentation filters that can be individually configured,
previewed, and tuned to fulfill the needs of a specific project.
The resulting CNNmodels can be used to predict images directly
in DeepMIB or be exported to ONNX format. DeepMIB further
provides the ability to test the performance of the trained model
on an unseen test set with ground truth labels and evaluate the
network performance using multiple metrics, such as accuracy
(ACC), dice similarity coefficient (DSC) and intersection over
union (IoU). The MIB software is openly available on GitHub.5

Multiple studies propose deep learning solutions for
computational pathology (8). However, only some make their
trained models openly available; even if they were, using them
generally requires programming experience. In digital pathology,
this is especially challenging due to the large image sizes of up to
200,000 × 100,000 color pixels, which makes it computationally
demanding to deploy models and visualize the predictions
with the WSI. Although MIB is able to run inference on the
WSI level, the browser is not suitable for displaying such large
images, only supports semantic segmentation models, and does
not have a streamlined algorithm to exclude prediction on
background glass areas. This slows viewing speed, versatility, and
prediction runtime. FastPathology (21) was developed to offer a
user friendly direct WSI prediction viewer to pathologists. The
software is free, open-source, and focused on high-performance

5https://github.com/Ajaxels/MIB2
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computing to minimize memory usage and runtime. The
software is based on the C++ library FAST (22, 23).

FastPathology enables the user to deploy deep learning
methods directly from the Graphical User Interface (GUI).
The software includes a rapid, pyramidal viewer for visualizing
WSIs and supports overlays of segmentations. New models
can be imported without implementation, by defining a FAST
text pipeline that contains information about the model and
how it should be handled. The software supports various
inference engines i.e., TensorRT, OpenVINO, and TensorFlow
(24). TensorRT enables the fastest graphical processing unit
(GPU) inference, whereas OpenVINO is among the fastest
central processing unit (CPU) alternatives. The recommended
format is ONNX, as both OpenVINO and TensorRT support it.
FastPathology is openly available on GitHub,6 including trained
models and test data.

Here we present a pipeline for developing and deploying
high performance deep segmentation models for WSIs using
three software packages, each specialized in different parts of the
workflow (Figure 1). QuPath is efficient for quick annotations
of WSIs, DeepMIB provides capabilities for training CNNs
without programming, and FastPathology for efficient inference
and visualization of full resolution model predictions with the
WSI. The proposed pipeline is demonstrated on a use case
of segmentation of colon epithelium and is shown to produce
models that perform at a clinical acceptable accuracy and
runtime level.

Example Application
The human gut mucosa comprises both non-immune and
immune cells working together in a complex manner to maintain
mucosal immunity. In lamina propria there are a broad range
of different innate and adaptive immune cell subtypes that are
separated from gut content and microbiota by a single layer
of intestinal epithelial cells at the surface. These specialized
epithelial cells have a pivotal role in producing mucus and
antimicrobial factors, or immunomodulating cytokines involved
in crosstalk between the different systems, in addition to being
a physical barrier. Intermingled between the epithelial cells
resides a population of intraepithelial T lymphocytes (IEL),
many of which are unconventional T cells. These cells have the
characteristics of both innate and adaptive immunity, and they
can move and surveil the epithelium. This makes them able
to respond rapidly and diverse as an effective first line defense
against microbe invasion in addition to being important for
maintenance of mucosal homeostasis (25, 26). Dysregulation of
IELs is generally correlated to loss of mucosal barrier integrity
and is implicated in the pathogenesis of several gut disorders
like infections with bacteria, parasites and viruses, inflammatory
processes like inflammatory bowel disease, lymphocytic colitis,
and celiac disease, and possibly also tumor development (25). A
lot is still unknown about the functions and clinical significance
of the different IEL subtypes, and more research is needed (25,
27). Tools that provide objective and reproducible quantitative

6https://github.com/AICAN-Research/FAST-Pathology

data from tissue sections will open new doors in research and
allow for new questions to be posed.

For inflammatory disorders of the GI tract that involves
numerical definitions, like celiac disease or lymphocytic colitis,
quantification of IEL is part of the pathologist’s job. This can
be done by roughly giving a visual estimate, or by manual
counting of smaller areas and then make a global estimate
based on that. Looking at tissue sections, the eyes are more
easily drawn to the areas with the highest densities and could
possibly lead to an overestimation of the number of IELs.
A tool for epithelium segmentation that enables automated
quantification of IELs could serve as a calibration instrument
for pathologists. It can save pathologists from spending time and
energy on something that can be done much more objectively by
a machine. It can be of great value in research on the epithelial
immune microenvironment in inflammatory and neoplastic
disorders. In the present study, we have included both HE
and CD3 stained images to demonstrate the potential use of
this technique both for quantifying different populations of
intraepithelial immune cells with the help of immunostaining
and the potential (by further annotation and training) to quantify
e.g., intraepithelial granulocytes directly on HE stained images.
Quantification of CD3 immunostained IELs after epithelial
segmentation can be achieved with high accuracy in QuPath,
but is not demonstrated as part of this publication. Further
developing deep learning-based models for segmentation of
other important mucosal structures (e.g., lymphoid aggregates,
basal plasmacytosis, specific cell types, tumors), and for
other types of immunohistochemical evaluations to integrate
information of protein expression, cell types and tissue structure,
would vastly expand the value of this tool for research and
in diagnostics.

Here, we demonstrate a use case of automatic, deep learning-
based segmentation of colon epithelium with no requirements
for computer programming. We further publish the resulting
near pixel accurate dataset of epithelium segmentation of 140
HE stained WSIs and 111 CD3 immunostained WSIs from
colon biopsies of both healthy controls and patients with active
inflammatory bowel disease.

MATERIALS AND METHODS

Dataset of Endoscopic Colon Biopsies
Formalin fixed paraffin embedded (FFPE) biopsies of colonic
mucosa were extracted from the NTNU/St. Olavs hospital,
Trondheim University Hospital (Norway) biobank of patients
with confirmed inflammatory bowel disease or healthy controls
with gastrointestinal symptoms but no macroscopic- or
microscopic disease. Inclusion and colonoscopies were
performed at the Department of Gastroenterology and
Hepatology at St. Olavs hospital, Trondheim University
Hospital from 2007 to 2018. All patients gave written
informed consent and ethical approvals were obtained from
the Central Norway Regional Committee for Medical and
Health Research Ethics (reference number 2013/212/REKMidt).
Consent to publish the anonymized WSI dataset was given
by REKMidt in 2021. Each database ID-number used in this
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FIGURE 1 | Flowchart showing the pipeline from manual annotation in QuPath, export of labeled patches from QuPath (black arrows), CNN training in DeepMIB,

expansion of the dataset by predicting unseen WSIs in DeepMIB and importing and correcting predictions in QuPath (red arrows), and final export of trained networks

as ONNX-files and rapid prediction directly on WSIs in FastPathology (blue arrows).

study was changed to new anonymized IDs only containing
the information “active” or “inactive” disease and whether
the WSI has “HE” or “CD3” staining. The full dataset
of 251 WSIs with ∼31 k epithelium annotations is made
openly available at DataverseNO: https://doi.org/10.18710/
TLA01U (28).

FFPE sections of 4µm were cut, mounted on slides and
either stained with hematoxylin (Mayer’s) and Eosin (Y)
(HE) or subjected to standard pre-treatment with quenching
of endogenous peroxidase and boiling in Tris EDTA pH9
for antigen retrieval before immunohistochemistry. Primary
antibody for the T lymphocyte marker was mouse anti-
human CD3 (M7254, clone F7.2.38, Dako Agilent, CA,
USA), diluted 1:50 in antibody diluent Tris buffer with
0.025% Tween-20 and 1% BSA and incubated overnight at
4◦C. Immunoreactions were visualized with the secondary
antibody rabbit/mouse EnVision-HRP/DAB+ kit (K5007,
Dako Agilent) and counterstaining with haematoxylin.
Omission of the primary antibody was used as negative

control and sections from human peripheral lymph node as
positive control.

U-Net Based Epithelial Segmentation
Using QuPath and DeepMIB
The HE and CD3 immunostained slides were scanned using a
Hamamatsu NanoZoomer S360 (Hamamatsu Photonics, Japan)
scanner at ×40 magnification. Slides were imported into the
open-source image analysis software QuPath (13). Epithelium
was annotated for ∼30 out of 111 CD3 stained WSIs by
an experienced gastrointestinal pathologist and checked and
corrected by a second pathologist. To make the images
compatible with efficient training of semantic segmentation
neural networks in DeepMIB, 2,048 × 2,048 pixels image tiles
were exported as 4× downsampled files (from 2,048 × 2,048
pixels with 512 pixels overlap to a downsampled size of 512 ×

512 pixels with 128 pixels overlap) with corresponding binary
mask labels (∗.png) from QuPath. Overlapping tiles were used
to avoid inference errors at the edges of the patches when
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importing labels back into QuPath. WSIs often contain 50–90%
white background, which will make the exterior class completely
dominant in training. Therefore, a glass detection method was
used, similarly as done in a previous study (21), and patches with
<25% tissue were discarded.

Images and labels were split randomly into an 80/20%
train/test split at the WSI level, such that only unseen WSIs were
present in the test set. The data was then placed in separate
train and test folders, each containing separate “Images” and
“Labels” sub-folders.

Two semantic segmentation neural networks were used in this
paper: U-Net (18) and SegNet (19). U-Net is a fully-convolutional
encoder-decoder neural network initially developed for the
purpose of biomedical image segmentation. U-Net is one of
two available 2D semantic segmentation networks in DeepMIB
which allows optimization of hyperparameters such as U-
Net depth, number of filters and input patch size for each
segmentation task (16). SegNet is a fully-convolutional encoder-
decoder neural network where the encoder part is identical to the
13 convolutional layers in the much-used VGG16 network (19).

A SegNet network with depth of 6 layers with 32 initial filter
and input patch size of 256 × 256 pixels was trained until
validation loss stagnation around 5% in DeepMIB (MATLAB
version 2021a, MIB version 2.8, CUDA version 11.3). The trained
SegNet was then used to predict the remaining ∼70 WSIs by
exporting 4× downsampled 512 × 512 image patches with 128
pixels overlap from QuPath. Patches containing <25% tissue
were deleted. The resultant images with predicted label files were
then loaded in DeepMIB for evaluation and the label patches
saved as TIF files. The TIF files were then imported back into
QuPath as annotations. Annotations were then confirmed, and
errors were manually corrected in QuPath by a pathologist for
the remaining WSIs to achieve a dataset of 111 WSIs. A final
refinement of the dataset was done by predicting the full dataset
and correcting in DeepMIB. The ∼5% patches with the lowest
mean IoU scores as evaluated inside DeepMIB were exported as
text-file lists and the patches could then be copied to a different
folder using a Windows PowerShell script (all scripts used in this
paper is made available in the NoCodeSeg GitHub repository).
The worst performing image patches and their corresponding
labels were then loaded and corrected in DeepMIB. A similar
strategy was applied to the HE-stained dataset of 140 WSIs,
using the U-Net trained on CD3 immunostainedWSIs to predict
and correct an initial batch of ∼30 HE-stained WSIs. Then
training a U-Net on the initial batch of annotated HE-stained
WSIs, applying it on the remaining HE-stained WSIs, and
retraining the U-Net. The final datasets (140 HE-stained and
111 CD3 immunostained WSIs, or 6322 HE and 4323 CD3 4×
downsampled 512 × 512 image patches in each dataset) were
again split into an 80/20% train/test split at the WSI level, such
that 36 (HE) and 21 (CD3) previously unseen WSIs were present
in the test set and new networks were trained from scratch using
DeepMIB to assess the performance of the software on this larger
train/test set (see Table 1).

Finally, two CNNs, SegNet and U-Net, were then trained
using DeepMIB. To achieve maximum variety of different image
patches per mini batch, the number of patches DeepMIB extracts

per image in a single mini batch was set to one. Initially the
number of patches per image was set to the same number as
the number of applied augmentations, however, this produced
inferior results to using just one patch per image per mini batch.
Three percent of the training set images were randomly chosen
by DeepMIB for the validation set. A fixed random generator
seed was used to make comparison between training different
conditions more direct. Several hyperparameters were tested,
such as variable input patch size (128 × 128, 256 × 256, 512
× 512), number of filters (16, 24, 32, 64), network depth (4,
5, 6, 7, 8), and the presence and absence of augmentations.
Finally, U-Net and SegNet were trained for 200 epochs, which
was the number of epochs required for training loss stagnation.
Further global training settings were as follows: Padding:
Same; Solver: Adam; Shuffle: Every-epoch; Initial learning rate:
0.00005; L2 Regularization: 0.0001; Decay rate of gradient
moving average: 0.9; Decay rate of squared gradient moving
average: 0.999. Augmentations used in all described trainings
were performed in a blended fashion (MIB version 2.8) with
a 30% probability for each augmentation to be applied to each
augmented image patch during training. The fraction of images
for augmentation was set to 75%, i.e., 25% of input image
patches were not augmented, while 75% had a 30% chance of
being augmented with either of the following augmentations
[numeric limits show in brackets]: Random left-right/top-
bottom reflections, random 90/270-degree rotations, random
X/Y/X+Y image scaling [1.0, 1.1], random color augmentation:
Hue [−0.03, 0.03], saturation [−0.05, 0.05], random intensity
augmentation: brightness [−0.1, 0.1], contrast [0.9, 1.1], and
zero-mean Gaussian blur with standard deviation in range [0,
0.5] (see Supplementary Figures 1, 2).

A selection of metrics was extracted for each patch from
DeepMIB, and metrics were then averaged at the WSI-level
(Table 1). The reported metrics were produced from calculating
the WSI-level average. The following metrics were calculated:
micro and macro-averaged pixel-wise accuracy, macro and
weighted IoU, and class-wise DSC for the exterior Epithelium
classes. U-Net proved to consistently outperform SegNet for both
the HE and CD3 dataset (see Table 1). Initially, increasing input
patch sizes were tested, with size 64 × 64, 128 × 128, 256 × 256,
and 512 × 512. The available 24 GB GPU allowed a maximum
batch size of 16 for a U-Net with 512 × 512 patch size, 32 filter,
and depth of 6. Thus, these settings (16 batch size, 32 filter, depth
6) were kept for all the different input patch size trainings to
be comparable.

Deployment in FastPathology
The best performing trained U-Net model from DeepMIB was
exported to the ONNX format using the ExportONNXNetwork
method from the Deep Learning Toolbox in MATLAB. As
ONNX does not currently support MATLAB’s implementation
of the UnPooling operation in SegNet, U-Net was the only model
converted to ONNX.

We defined an inference pipeline consisting of applying the
trained segmentation model across the WSI in an overlapping,
sliding window fashion, similarly as done in a previous study
(21). The result of each patch was binarized using a threshold

Frontiers in Medicine | www.frontiersin.org 5 January 2022 | Volume 8 | Article 816281

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pettersen et al. Code-Free Deep Segmentation for Histopathology

TABLE 1 | Comparative accuracies on the HE stained (n = 36) and CD3 immunostained (n = 21) test sets with different hyperparameter settings for U-Net and SegNet.

Stain Arch. Patch size Nr. of filt. Depth Batch size MICRO Acc MACRO Acc MACRO IoU Weig. IoU Ext. DSC Epith. DSC

HE U-Net 512 × 512 32 6 16 0.989 0.972 0.955 0.978 0.992 0.953

HE U-Net 256 × 256 32 6 16 0.989 0.983 0.938 0.978 0.992 0.920

HE U-Net 256 × 256 32 6 32 0.988 0.978 0.936* 0.976 0.991 0.920

HE U-Net 256 × 256 64 6 32 0.987 0.974 0.935* 0.975 0.991 0.919

HE U-Net 128 × 128 32 6 16 0.988 0.983 0.932* 0.977 0.991 0.911

HE U-Net 64 × 64 32 6 16 0.985 0.965 0.924* 0.971 0.989 0.904

HE SegNet 512 × 512 32 6 16 0.983 0.964 0.928* 0.967 0.988 0.918

HE SegNet 256 × 256 32 6 16 0.987 0.973 0.939* 0.974 0.991 0.927

HE SegNet 128 × 128 32 6 16 0.979 0.964 0.904* 0.960 0.985 0.884

CD3 U-Net 512 × 512 32 6 16 0.990 0.981 0.955 0.980 0.992 0.948

CD3 U-Net 256 × 256 32 6 16 0.987 0.977 0.931* 0.974 0.990 0.911

CD3 SegNet 512 × 512 32 6 16 0.976 0.953 0.920* 0.954 0.983 0.919

CD3 SegNet 256 × 256 32 6 16 0.971 0.949 0.898* 0.945 0.979 0.889

All metrics were reported as the mean at WSI-level. Best performing methods are highlighted in bold, for each respective metric and for each data set. The number of train/validation/test

patches for each dataset was as follows: HE: (4973/154/1195); CD3 (3539/110/674). Stars indicate significant differences (p< 0.01) compared to the single best performing architecture

within each dataset (HE and CD3 U-Net 512x512, 32 filters, 16 batch, respectively) using a two-level mixed regression model (see Supplementary Table 1). ARCH, Architecture; FILT,

Filters; NR, Number; ACC, Accuracy; WEIG, Weighted; EXT, Exterior; IOU, Intersection over Union; DSC, Dice Similarity Coefficient; EPITH, Epithelial; HE, Hematoxylin-Eosin; CD3, T-cell

lymphocyte immunomarker.

of 0.5, before being stitched to form a tiled, pyramidal image.
When inference was complete, the resulting pyramidal image was
exported to the disk in the open TIFF format.

To demonstrate the performance of FastPathology, runtime
experiments were conducted. Runtimes were measured for
the total inference pipeline, as well as for individual pipeline
components (runtimes reported are without overlapping
inference). The experiments were repeated ten times for the
same WSI, using three different inference engines (OpenVINO
CPU, OpenVINO GPU, and TensorRT). For each metric, the
average of the ten runs were reported. The source code to
reproduce the experiments can be found on GitHub7.

Computer Hardware
Runtime experiments were performed on a Razer Blade 15 Base
laptop, with an Intel i7-10750H CPU @ 2.60 GHz, 32 GB RAM,
an Intel UHD graphics integrated GPU, and NVIDIA RTX 2070
Max-Q (8 GB) dedicated GPU. All other analyses were performed
on a Dell Precision 5820 Tower, with an Intel(R) Xeon(R) W-
2155 CPU @ 3.30GHz, 96 GB RAM, and a NVIDIA Titan RTX
(24 GB) dedicated GPU.

Statistical Methods
For the statistical analyses in Table 1; Supplementary Table 1,
the mean IoU for each neural network architecture, for the
HE and CD3 datasets separately, was compared to the best
performing architecture (HE/CD3 U-Net 512× 512, 32 filters, 16
batch). Between-architecture comparisons were performed using
a two-level linear mixed regression model, where architectures
were specified as level 1, image patches as level 2 and with robust
variance estimates clustered by WSI and a random intercept for
patch. Analyses were performed using Stata/MP 16.1 (College

7https://github.com/andreped/NoCodeSeg

Station, Texas) and the estimated mean difference is presented
together with 95% CI and p-values without correction for
multiple comparisons.

RESULTS

Annotation of Colon Epithelium Through
Active Learning Using QuPath and
DeepMIB
We performed several trainings in DeepMIB using two different
CNNs (i.e., SegNet andU-Net), with a variety of hyperparameters
to find the highest performance (see section U-Net Based
Epithelial Segmentation Using QuPath and DeepMIB). Initially
a SegNet network was trained and applied to new unannotated
WSIs. Annotations were imported and manually corrected
in QuPath by a pathologist. Subsequent training cycles were
performedwith U-Net 512× 512 in a repetitive fashion described
in Figure 1 (DeepMIB training, inference of new WSIs and
import into QuPath for correction of annotations, export for
new DeepMIB training, etc.) to achieve a final dataset of 111
WSIs (see Figure 1). A final refinement of the annotations was
done by exporting individual accuracy scores for all image
patches exported from DeepMIB. This allowed sorting of the
patches which was in most disagreement with the U-Net
predictions (typically mean IoU scores below 0.85). The set of
∼5% worst performing patches were then loaded in DeepMIB
such that a pathologist could refine the annotations directly
on several hundred image patches instead of going through
the whole dataset of ∼5,000–7,000 image patches. This final
refinement made it possible to achieve almost pixel accurate
epithelial segmentation of∼100WSIs. The top-performing CD3-
trained network was used to repeatedly predict and correct
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FIGURE 2 | Examples of predictions (middle column) and ground truth (right column) of epithelial segmentation (transparent green) of HE stained (top row) and CD3

immunostained (bottom row) 512 × 512-pixel image patches in DeepMIB. The arrow shows the approximate cut-offs for (filled or unfilled) minimal tubule hole size

used during annotation.

the 140 HE stained WSIs, following the workflow described in
Figure 1.

Training of Deep Semantic Segmentation
of Colon Epithelium Using DeepMIB
This resulted in a final dataset of fully annotated patches,
from 140 HE stained and 111 CD3 immunostained colon
biopsy WSIs (see Figure 2 for examples). The datasets were
split into the two subsets: train (80%; n = 104 HE; n = 90
CD3) and test set (20%; n = 36 HE; n = 21 CD3). Two
segmentation networks (i.e., U-Net and SegNet) were then
trained on the final refined datasets to assess performance. We
limited each training to 200 epochs and a similar global training
setting (see section Materials and Methods) for comparable
results (see Table 1). A step-by-step tutorial video demonstrating
the full pipeline and for setting training hyperparameters in
DeepMIB has been made available online (https://youtu.be/
9dTfUwnL6zY).

For the U-Net models on the HE dataset, an increase
in segmentation accuracy was observed with increasing input
patch sizes from 64 × 64 (Epithelium DSC 0.904) to 512
× 512 (Epithelium DSC 0.953). This segmentation accuracy
decline was statistically significant for all comparisons to the
HE U-Net 512 × 512, except for HE U-Net 256 × 256

with the same number for filters (32) and batch size (16)
(see Table 1; Supplementary Table 1). The best segmentation
accuracy for SegNet was observed with input patch size 256
× 256 for the HE dataset (Epithelium DSC 0.927). For
the CD3 dataset, the maximum segmentation accuracy was
observed for 512 × 512 input patches for both U-Net and
SegNet (Epithelium DSC of 0.948 and 0.919, respectively),
and as was the case for the HE dataset, the larger patch
input CD3 U-Net 512 × 512 performed significantly better
than all the other CD3 trained architectures (see Table 1;
Supplementary Table 1).

There was a negligible difference in segmentation accuracy
when increasing the number of filters from 32 to 64 (Epithelium
DSC 0.920 vs. 0.919) or increasing the batch size from 16
to 32 (Epithelium DSC 0.920 vs. 0.920). U-Net consistently
and statistically significantly outperformed SegNet (see Table 1;
Supplementary Table 1). U-Net’s top segmentation accuracies
of Epithelium DSC of 0.953 and 0.948 (HE and CD3, U-Net
512 × 512), were significantly better than the top performing
SegNet models with Epithelium DSCs of 0.927 and 0.919 (HE
SegNet 256 × 256 and CD3 SegNet 512 × 512). Further
testing with different depth of the networks was also performed,
but depth 6 seemed to perform consistently higher (data
not shown).
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TABLE 2 | Runtime measurements of different inference engines using FastPathology.

Inference engine Processor Patchgen. NN input NN inference NN output Patch stitcher Export wsi tiff Total time/wsi

(ms) (ms) (ms) (ms) (ms) (ms) (s)

OpenvINO CPU Intel i7-10750H 3.65 1.03 135.31 0.80 2.76 7.09 76.38

OpenVINO GPU Intel UHD graphics 3.29 1.26 133.96 1.25 3.46 7.83 76.65

TensorRT RTX 2070 Max-Q 5.12 0.80 7.31 0.19 1.35 5.40 5.60

The table shows means of 10 runtime experiments for the 256 × 256 pixel input patch size U-Net applied to a single representative WSI from the dataset (540 patches without overlap).

Inference measurements show runtime per 256 × 256 patch in milliseconds (ms). Export of a full WSI pyramidal TIFF performed once after inference is reported in ms, and the total

runtime for the full WSI (including TIFF export) is shown in seconds (s). The fastest runtimes are highlighted in bold. GEN, Generator; NN, Neural Network; WSI, Whole Slide Image.

Using our best performing 256 × 256 U-Net model, the
proposed inference pipeline took ∼5.60 s to complete for the
entire WSI using FastPathology (see Table 2). In our experience,
this is well within the range for running direct inference in
a clinical setting, and even the longest CPU-based inference
times would be unlikely to limit the use of such algorithms by
pathologists. The fastest inference engine was TensorRT, whereas
using OpenVINO took ∼76.5 s (a 13.7× improvement using
TensorRT). The main bottleneck of the pipeline was the neural
network inference. For OpenVINO,∼94.3% of the patch runtime
was due to inference alone, whereas for TensorRT this was only
∼49.5%. Using TensorRT, our inference pipeline required ∼2.1
GB of VRAMand∼4.2GB of RAM for running inference on a full
WSI with a network trained with patch sizes of 256× 256 pixels.

DISCUSSION

Benefits and Limitations With Using
Multiple Software Solutions
The motivation of this study was to segment epithelium in a large
dataset from a biobank of normal and diseased (inflammatory
bowel disease) colon biopsies. We aimed to achieve this without
the need for computer coding abilities, while simultaneously
taking advantage of the strongest sides of available open-source
software solutions. We demonstrate an open-source, free-to-
use pipeline that can achieve high accuracy segmentation of
histopathological WSIs available to a broad user base without
the ability to write computer code. We further demonstrate the
advantages of using open-source, non-proprietary software and
formats that can be exchanged between these three software
packages. The pipeline could be improved by incorporating all
tasks into a single software solution. However, the use of several
software solutions and exchange of information between them
makes it possible to use more specialized open-source solutions
best suited for each task—QuPath for annotations of whole slide
images, DeepMIB for neural network training, and FastPathology
for efficient inference and visualization of trained models. A
disadvantage of such a multi-software pipeline is that it requires
three separate software installations, which over time might
diverge in compatibility and use different versions of auxiliary
software, such as versions of CUDA.

Even though the pipeline does not require the ability to write
computer code, it does require the use of some scripts, such as the

QuPath export/import scripts. This requires copy/pasting of pre-
existing code, with any relevant changes to the parameters within
those scripts to make the pipeline suitable for different tasks. In
the near future, it is likely that this will be possible solely through
the GUI in QuPath.

The epithelial segmentation accuracy was comparably high
for both the best performing U-Nets on HE (DSC Epithelium
0.953) and CD3 images (DSC Epithelium 0.948), demonstrating
the robustness of U-Net for this task. Segmentation accuracy was
generally better with larger patch sizes (512 × 512 vs. 256 ×

256 DSC Epithelium 0.953 vs. 0.920), however 256 × 256 patch
size networks require much less GPU memory for training and
inference. There was a statistically significant difference between
the best performing architectures (HE/CD3 U-Net 512 × 512,
32 filters, 16 batch) compared to each of the other architectures
in both datasets (HE and CD3). These statistically significant
differences, should not, however, be automatically perceived
as clinically significant different segmentation performance.
Although statistically significant, the differences in mean
IoU/epithelium DSC between the top performing architectures
were small andmay not result in clinically perceivable differences.
Application of the segmentation models for downstream
quantitative purposes (e.g., the number of intraepithelial
lymphocytes) may more accurately address the cut-off for
clinically significant performance of such models in future
studies. We have not compared the segmentation accuracy of our
trained models to current state-of-the-art architectures (29, 30).
However, DSC scores for the epithelial class up to ∼95% on
unseen test sets show little room for considerable improvement,
making the U-Net segmentation accuracy for these data sets
probably near state-of-the-art. It has also been argued by others
(31), that there is little to gain from changing neural network
architecture for semantic segmentation. The U-Net architecture
presented can also easily be tuned code-free to be better suited
for a specific task. The datasets are published with this paper and
comparison to state-of-the-art models will therefore be possible
by others.

The Dataset and Annotations
Several issues arose during annotation. Defining a pixel-accurate
epithelium ground truth is difficult as several images contain
artifacts (folds, blurred areas, poorly fixated tissue, stain exudates,
etc.) as well as intraepithelial inclusions (e.g., granulocytes) (see
Figure 3). These cannot be easily defined into the dichotomous
categories: epithelium or exterior, as e.g., folded tissue might
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FIGURE 3 | Examples of prediction errors in difficult regions: HE stained images with folding artifacts (top row, red arrows) and granulocyte aggregates (second row,

blue arrows). CD3 immunostained images with thick mucin rich epithelium (third row, red stars) and poorly fixated blurred epithelium at the edge of a patch (bottom

row, blue stars). Prediction (middle column) and ground truth (right column) of epithelial segmentation are shown in transparent green. 512 × 512-pixel image patches

displayed in DeepMIB.
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FIGURE 4 | Significant differences in prediction accuracies for the (A) HE stained test set WSIs (n = 36) with active disease (n = 15) vs. inactive disease (n = 21), and

(B) CD3 immunostained test set WSIs (n = 21) with active disease (n = 7) and inactive disease (n = 14). Error bars represent 95% confidence intervals assuming

normality. Two-tailed Student’s T-test of active vs. inactive disease gave p < 0.0001 for all four comparisons.

contain both classes. Therefore, slides with more than ∼10–
20% artifacts were excluded from the dataset, as they contained
large areas not suitable for pathological diagnostics either.
Furthermore, defining intraepithelial granulocytes as part of the
epithelium or not had to be individually considered, as large
abscess like assemblies of granulocytes with little or no visible
epithelium can obviously not be considered epithelium.

However, the clinical use of an epithelium segmentation
algorithm in colon biopsies would certainly involve quantitative
estimates of intraepithelial granulocytes and excluding large
granulocytic abscesses during annotation also potentially
diminishes the clinical value of the algorithm. Indeed, significant
differences in prediction accuracies were seen for the test
sets of both HE and CD3 immunostained slides between
patients with active disease (with infiltration of neutrophilic
granulocytes) and inactive disease (see Figure 4). Still, the
segmentation accuracy was deemed to be at a clinically
acceptable level with Epithelium DSC scores > 91% for
all slides.

The cytoplasmic part of colon epithelium has a wide variation
in size, particularly because of variation of mucin content.
Inconsistencies in the cut-off for when mucin is no longer
part of the epithelial cell and starts being part of the exterior
class, was an obvious source of deviation between ground
truth and predictions (see Figure 3). Furthermore, the cut-off
between when the lumen of the colonic tubule ceases to be
part of the epithelium and starts being part of the exterior
class, was problematic. This was alleviated to a certain extent

by taking advantage of the power QuPath has as an annotation
tool which allows running a single background thresholder
pixel classifier algorithm, subsequently creating several large
and small background annotations. These could subsequently
be selected by a minimal size cut-off and subtracted from the
epithelium annotations consistently for the entire dataset by
running QuPath scripts in batch mode. A similar procedure is
also possible to perform in DeepMIB using the BWThresholding
tool followed by subtraction from all annotations, then a small
dilation and subsequent similar erosion to fill small holes.
One should be aware that this, however, might introduce
merging of nearby annotations. The top row of Figure 2

(HE segmentation results) provides a visual approximation
of the maximal colonic tubule lumen sizes that are accepted
as being part of the epithelium class (transparent green) or
exterior class.

CONCLUSION

In this paper, we have presented a code-free pipeline for
developing and deploying deep neural network segmentation
models for computational pathology. The pipeline uses open,
free software and enables the user to build and test state-of-the-
art deep learning methods for segmentation of WSIs, without
requiring any programming experience. We also demonstrate
competitive results on two segmentation tasks with rapid
inference of about 5 s for an entire WSI. The WSIs and
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annotations are also made publicly available to contribute to the
active research within the field.
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