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Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology

characterized by inflammation of the peripheral synovial joints leading to pannus

formation and bone destruction. Rheumatoid Factor (RF) and anti-citrullinated protein

antibodies (ACPA) are present years before clinical manifestations and are indicative

of a break in tolerance that precedes chronic inflammation. The majority of studies

investigating disease pathogenesis focus on the synovial joint as target site of

inflammation while few studies explore the initial break in peripheral tolerance which

occurs within secondary lymphoid organs such as lymph nodes. If explored during the

earliest phases of RA, lymph node research may provide innovative drug targets for

disease modulation or prevention. RA research largely centers on the role and origin of

lymphocytes, such as pro-inflammatory T cells and macrophages that infiltrate the joint,

as well as growing efforts to determine the role of stromal cells within the synovium.

It is therefore important to explore these cell types also within the lymph node as a

number of mouse studies suggest a prominent immunomodulatory role for lymph node

stromal cells. Synovium and proximal peripheral lymph nodes should be investigated

in conjunction with one another to gain understanding of the immunological processes

driving RA progression from systemic autoimmunity toward synovial inflammation.

This perspective seeks to provide an overview of current literature concerning the

immunological changes present within lymph nodes and synovium during early RA. It

will also propose areas that warrant further exploration with the aim to uncover novel

targets to prevent disease progression.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of unknown etiology
that preferentially affects the peripheral joints. It is characterized by prolonged inflammation
of the synovium which eventually leads to tissue destruction and pannus formation. Current
research indicates that this chronic inflammation is driven by the infiltration of destructive
pro-inflammatory lymphocytes into the joint leading to pro-inflammatory cytokine release and
the initiation of an immune response. This response is perpetuated by the interaction of these
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destructive immune cells e.g. macrophages and stromal cells
present within the synovium. Autoantibodies like rheumatoid
factor (RF) and anti-citrullinated peptide antibodies (ACPA) are
present in the peripheral blood of RA patients up to a decade
before the clinical onset of synovitis and diagnosis (RA-risk
individuals) (1–4). This highlights a break in immune tolerance
which results in systemic autoimmunity years before diagnosis.
Furthermore, prospective studies showed that depending on the
risk profile only 30% of individuals with autoantibodies go on
to develop arthritis (5, 6), suggesting that additional genetic and
environmental factors influence disease onset.

The current paradigm highlights three key phases of arthritis
development: the initial break in tolerance, the infiltration of
immune cells into the synovial joints and finally established
chronic synovitis leading to joint destruction (7). Althoughmuch
is known about the chronic inflammatory process occurring in
the synovium at the latter stages of disease, the changes that
occur in the immune system during the earliest phases when
there is break in tolerance but no apparent synovitis have yet
to be fully elucidated. This break in tolerance is hypothesized to
occur in secondary lymphoid organs such as lymph nodes (LNs).
Currently, only a few human studies have explored this, while it
may providemajor insights into early RA pathogenesis and reveal
mechanisms for restoring peripheral tolerance.

This review will outline our current knowledge of the immune
cell interactions that occur in the LN of RA patients and how
these may be linked to observations in the synovium (Figure 1).
It will also postulate other immunological avenues that warrant
future exploration to identify novel targets for treatment of
early RA.

LN STUDIES REVEAL IMMUNE CELL
ACTIVATION DURING THE EARLIEST
PHASES OF RA

LNs are highly organized lymphoid structures situated
throughout the human body that allow immune cell entry
from surrounding tissues and blood to orchestrate a fast
and effective immune response. They are the primary site of
peripheral tolerance which aims to eliminate autoreactive T
cells that escape central tolerance by exposing T cells residing
in the LN to self-antigens. Studying human LNs during health
and autoimmunity is challenging, because whole LNs are only
obtained through surgery or autopsy and needle biopsies are too
small to enable direct functional cellular analysis. The first study
looking into LNs from RA patients suspected of lymphoma, only
compared the cellular organization between LN and synovium
in paired samples (17).

Our lab set up the infrastructure to study and compare
LN needle biopsies from RA patients, RA-risk individuals

Abbreviations:RA, rheumatoid arthritis; RA-risk, individuals at risk of developing

rheumatoid arthritis; LN, lymph node; LNSC, lymph node stromal cells; FLS,

synovial fibroblasts; BM, bone marrow; BM-MSC, bone marrow stromal cells;

PTA, peripheral tissue antigens; DC, dendritic cell; APC, antigen presenting

cell; Tfh, T follicular helper; IL21, Interleukin 21; RF, rheumatoid factor; ACPA,

anti-citrullinated peptide antibodies.

and healthy volunteers (18). Initial cellular phenotyping by
flow cytometry revealed that RA and RA-risk individuals have
increased frequencies of CXCR3+CCR6−CCR4− Th1 cells (19),
ILC1 (c-Kit-NKp44− ILCs) (20), memory CD8+ T cells (21),
CD69+CD8+ T cells and more CD19+ B cells compared
to healthy controls (9). Recent research suggests that CD69
expression may be indicative of a tissue resident memory T cell
subset rather than an activated T cell subset (22). Evidence in
mice suggests there is a circulating T effector population that is
destined for a tissue resident phenotype (23, 24); however, the
evidence for this in humans is undetermined. Of note, increased
frequencies of CD69+CD8+ T cells were also observed in the
blood of RA-risk individuals and RA patients (21). Whether
the CD69+CD8+ T cells in LNs are tissue resident memory
precursors that can later migrate and cause tissue inflammation
within synovium warrants investigation.

T follicular helper cells (Tfh) are of particular interest as
they can steer B cell activation and differentiation thereby
potentially influencing autoantibody production. An increased
frequency of both CD4+ and CD8+ Tfh could be detected in
LN biopsies of RA-risk individuals and RA patients compared
to healthy volunteers (10). Moreover, the augmented CD19+

B cell frequency in RA-risk individuals and RA patients
correlated with Tfh frequency (9, 10). This may reflect germinal
center activity resulting in autoantibody production within
the LN due to break in tolerance, however, this needs
further research.

Both dendritic cells (DCs) (25, 26) as well as lymph node
stromal cells (LNSC) (27, 28) have the capacity to induce
peripheral tolerance through presentation of peripheral tissue
antigens (PTAs) to autoreactive T cells after which these cells
undergo clonal deletion, differentiation into a regulatory T cell
or become anergic. When studying DC subsets (CD1c+ myeloid
DCs and CD304+ plasmacytoid DCs) in LN tissue it appeared
that frequencies are comparable between RA-risk individuals and
healthy controls, but increased in RA patients (29). This may
suggest that these DCs are involved in sustaining inflammation
during established RA, or that other DC subsets or other antigen
presenting cells (APCs) are responsible for the initial break in
tolerance. LNSC provide the structural integrity and framework
for the important compartmentalization of lymphocytes within
the LN (30). In recent years, mouse LNSC have been implicated
more prominently in immune cell tolerance as they are able to
delete self-reactive CD8+ T cells through PTA expression on
major histocompatibility complex (MHC) I and onMHC II in the
context of CD4+ T cells (27, 28, 31, 32). However, the presence of
antibodies against self-antigens in early RA suggests this process
is not always effective and provides impetus for examining
LNSC in early RA. To investigate their functional capacities
during RA development a human LNSC culture model has
been developed (13). Transcriptome and methylome analysis of
expanded LNSC highlighted key alterations in DNA methylation
sites associated with antigen processing and presentation in RA-
risk and RA patients when compared with healthy controls
(11). Flow cytometry and qPCR data showed that all LNSC can
express HLA-DR, co-stimulatory and co-inhibitory molecules
(12), indicating that human LNSC are capable of modulating
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FIGURE 1 | Mapping immune alterations during RA development. Schematic figure highlighting known changes within the immune system of RA-risk individuals and

early RA. Genetic and environmental factors increase the likelihood of RA development in the healthy human population (5, 8). Depending on the risk profile, about

30% of RA-risk individuals go on to clinically develop RA (6). LN alterations are based on inguinal LN needle biopsy research comparing RA-risk individuals with

healthy volunteers and early RA patients (9–13). Synovium alterations are based on synovial tissue biopsy research in RA-risk individuals and early RA patients

(14–17, 57–59, 64, 65). Created with Biorender.com.

adaptive immunity. The expression of HLA-DR shows that
human LNSC have the capacity to directly present PTAs while
it was also shown that LNSC can express citrullinated antigens
targeted by ACPAs (12). Whether such citrullinated antigens
are presented as PTAs in LNSC and whether this process
is altered in LNSC during systemic autoimmunity warrants
further investigation.

LNSC produce key chemokines such as CCL19, CCL21 and
CXCL13 to attract, retain and position lymphocytes within the
LN and guide the interaction between T cells, B cells and APCs
(33–35). Upon in vitro stimulation with TNFα and lymphotoxin
α1β2, RA LNSC were significantly less capable to produce
CCL19, CCL21 and CXCL13 (13). Furthermore, triggering TLR3
also showed lower induction of CCL19 in RA and RA-risk LNSC
(36). Overall, these differences in RA-risk and RA LNSC may
lead to imprecise localization of T cells upon LN entry and

induce abnormal LNSC-T cell interactions leading to aberrant
immune responses.

A remarkable feature observed in both RA and RA-risk LN T
cells and LNSC is the diminished capacity to produce cytokines
or chemokines upon in vitro stimulation which may indicate an
exhausted phenotype (13, 19, 21, 36). T cell exhaustion is the
result of repeated antigen stimulation which leads to increased
inhibitory receptor expression such as PD1 and low effector
function (37). Although extensively explored in chronic viral
infection and cancer, the role of exhaustion in autoimmunity is
as yet unclear. Future work to determine whether this reduction
in cytokine production in LN T cells is a result of exhaustion
is ongoing. Exhausted T cells are the target of immunotherapy
such as anti-PD1 treatment. Recent studies of tumor draining
LNs suggest they may harbor a reservoir of exhausted T cells
that, if targeted, may improve therapeutic efficacy (38, 39). In
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the context of cancer, targeting an exhausted T cell population
within the LN can allow for beneficial unleashing of the immune
system. It is interesting to postulate whether exhaustion is
induced in autoimmunity and how this may contribute to
disease flare or remission. The increase in CD69+CD8+ T cells
within RA and RA-risk LNs could also point toward a pre-
exhausted memory phenotype. A recent human study identified
a CD69+CXCR5+CXCR4+TCF1+ population in healthy LNs
that had reduced expression of effector molecules and showed
similarities to the mouse CD8+ T cell subset found to respond
to checkpoint blockade therapy in a number of chronic infection
mouse models (40). The CD69+CD8+ T cells increased in
RA LNs may be an expansion of this newly identified human
population which is possibly exhausted.

Overall, LN biopsy studies in RA-risk individuals provide a
great model to explore the earliest break in tolerance which
occurs in seropositive RA. Although, no LN data is currently
available on the difference between RA-risk individuals that
developed RA and those who did not, a number of changes
observed in RA patients were also present in a proportion
of RA-risk individuals. This may suggest a continuum that
contributes to disease progression; however, follow up studies
are needed to confirm this. Exploring if and how these
early differences are reflected in the chronic inflammatory
environment of the synovium provides great insight into
early RA pathogenesis and may provide novel targets for
preventive intervention.

INSIGHTS FROM SYNOVIUM DURING
EARLY RA DEVELOPMENT

Several large cohort studies of RA synovium from treatment
naïve patients have unearthed cellular heterogeneity. This
enables pathology-based stratification which can be associated
with clinical treatment response. The three main pathotypes
described are diffuse myeloid, lympho-myeloid and pauci-
immune representing myeloid dominance, lymphoid dominance
and stromal dominance respectively (41–44). Analysis of synovial
tissue biopsies not only allows for disease stratification and
exploring how chronic inflammation persists in RA but also how
it is initiated following loss of tolerance, presumably instigated in
lymphoid organs. Synovial biopsies of autoantibody positive RA-
risk individuals in almost all cases lack B cells and plasma cells
(14) and do not yet display overt immune cell infiltration when
compared to synovium from healthy controls (15), suggesting
that synovial inflammation is likely to occur closer to clinical
arthritis. The presence of CD3+ T cells in RA-risk synovium
has been associated with subsequent arthritis development (14).
Especially the combined presence of synovial CD8+ T cells with
ACPA positivity increased the risk of RA development. This
data suggest an early role for T cells in arthritis development.
How these synovial T cells relate to the increased frequency of
CD69+CD8+ T cells observed in the LNs of RA-risk individuals
is worthy of exploration.

The origin of T cells in the synovium and how and where
they have been activated is still largely unknown. Part of them

may reflect activated resident T cells but probably the majority
have been activated in peripheral lymphoid organs after which
they then migrate to the synovium, as changes in the T cell
compartment can be found in peripheral blood of early RA
and RA-risk individuals (7, 45, 46). As previously highlighted,
our work on LN-derived T cells suggest that there may be
increased Tfh cells in RA patients (10) as well as a possibly
exhausted population in RA-risk individuals (19, 21) which are
both characterized by increased PD1 expression. Whether these
changes are mirrored within the synovium is unclear. A number
of studies have reported high PD1 expression on T cells within
RA synovial tissue (47–49). Mass cytometry analysis of synovial
tissue uncovered an expanded PD1highCXCR5−CD4+ T cell
population that were akin to Tfh cells as they exhibited increased
IL21, CXCL13, IFNγ and IL10 production (49). PD1+CXCR5−

memory CD4+ T cells were enriched within synovial tissue
and fluid compared to their CXCR5+ memory CD4+ T cell
counterpart; however, the phenotype of this population was not
explored further (49). It was concluded that exhaustion was
not present due to the population’s ability to produce IL21 and
CXCL13 (49). A larger, more in depth study is required to further
characterize this PD1highCXCR5− population and to determine
at what phase of RA it emerges. Similar studies in juvenile
idiopathic arthritis suggest that synovial T cells are effector
populations and not exhausted (50); however, this has not been
confirmed in the case of RA.

Not much is known about the role of CD8+ Tfh cells
in RA, although the frequency of this population was also
increased in RA LN (10). PD1highCD8+ T cells producing IL21
and also exhibiting increased CD28, ICOS, CD69 and HLA-
DR expression have been observed in the synovial fluid and
peripheral blood of RA patients (51) which like in the findings of
Rao et al. (49) did also not express CXCR5. Whether this subset
originates from the same CD69+CD8+ T cells found upregulated
in the LN of RA-risk and early RA patients is of great interest but
difficult to elucidate.

The possible interactions of these Tfh cells present within the
synovium with B cells is interesting in relation to autoantibody
production; however, B cells and plasma cells were not detectable
by immunohistochemistry in synovial biopsies of RA-risk
individuals (14, 15). This is despite the presence of autoantibodies
and increased B cell frequencies in the lymph nodes of these
individuals (9, 10). Furthermore, no significant changes have
been observed in B cell frequency in the synovium of seropositive
early RA compared to their seronegative counterpart (52) which
further negates a role for B cells in autoantibody production
within the synovium. Lymphoid neogenesis, relating to the
aggregation of T and B cell lymphocytes, is observed in
the synovium of a proportion of RA patients; however, its
presence is associated with the degree of synovitis and not
linked to clinical outcome or autoantibody status (53). This
suggests these lymphoid aggregates are a result of chronic
inflammation rather than a consequence of initial loss in
peripheral tolerance.

It is clear from these studies that a population of T cells within
the synovium that bear resemblance to Tfh cells and can provide
B cell help are present in RA synovium. However, how this
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population arises and where these cells received their activation
and differentiation cues is still contentious. Determining at what
stage of RA pathogenesis this cell population arises will provide
much insight into their functional role. Synovial cues directing
the attraction, retention and activation of T cells may originate
from altered resident synovial fibroblasts (FLS).

Fibroblasts in the synovium of patients with established
RA have been studied for decades showing that these cells
invade the cartilage and are responsible for tissue degradation
and bone erosion [reviewed in (54)]. During destructive joint
inflammation, FLS have an activated phenotype and secrete
several immunomodulatory factors (55, 56). Epigenome and
methylome analysis performed by several labs showed that FLS
from RA patients undergo DNA methylation changes that can

be linked to disease development (8, 57–59). A recent, elegantly
designed functional genomics atlas study demonstrated that FLS
account for up to 24% of RA heritability providing evidence of a
causal role for FLS in RA development (8). This is in line with
a prospective study which compared synovial biopsies of RA-
risk individuals who later developed RA after follow up, with
those who did not. Using immunohistochemistry analyses no
overt immune cell infiltration was found in the synovium of
RA-risk individuals who later developed disease (14, 15) while
gene expression profiling points toward an activated stromal cell
gene signature with increased podoplanin and CXCL12 levels
and decreased lipid droplets (16). These studies provide strong
evidence for a causal role for FLS in driving disease pathogenesis
at an early stage.

FIGURE 2 | Novel targets to restore cellular fitness before RA development. Diagram representing novel targets of either chronic inflammation or loss of tolerance to

prevent RA development in RA-risk individuals. Outer circle shows four critical areas that show significant changes in early RA. Lymph node and bone marrow

alterations are observed, potentially due to a loss of tolerance in RA which warrant further investigation. Timely normalization of cellular fitness within lymphoid organs

or other peripheral tissues could possibly prevent RA development in RA-risk individuals. Peripheral blood research may identify predictive biomarkers for early

diagnosis or disease prognosis. Chronic inflammation is observed in distinct locations outside the synovium but whether these are the consequence of a loss of

tolerance or caused by inflammation is unknown. The locations of the outer circle culminate in the chronic inflammatory environment observed within the synovium but

how exactly they contribute warrants further examination. Created with Biorender.com.
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Fibroblasts are known to exhibit immunomodulatory
capacities when interacting with nearby or incoming immune
cells and several studies have investigated their potential
as antigen-presenting cells (60, 61). Similar to stromal cells
in the LN, FLS create a pro-survival and anti-apoptotic
microenvironment in the synovium by secreting cytokines
and chemokines that support the survival of immune cells
supporting inflammation (62, 63). AIRE was recently identified
as a cytokine-induced RA-risk gene in RA FLS (64). RNA
sequencing revealed that AIRE did not induce PTAs in FLS, but
stimulates pro-inflammatory cytokine and chemokine secretion
associated with RA development. AIRE expression was hardly
detected on mRNA level in unstimulated RA FLS, but largely
increased and detected at protein level after TNFα and IL1β
stimulation (64). Single-cell RNA sequencing on RA FLS showed
a putative subpopulation of CD90+HLA-DRhigh FLS expanded
in the sublining of RA synovium. Additionally, inflammatory
mediators such as IL6 could be linked to this FLS subset (65).
The HLA-DRhigh FLS subpopulation was shown to express
genes related to MHC-II presentation and IFNγ signaling (65),
suggesting that FLS have the capacity to present antigens and
interact with immune cells directly. It will be of interest to
investigate whether this HLA-DRhigh FLS subset is expanded
already in RA-risk individuals and to study its potential capacity
to regulate peripheral tolerance.

FUTURE RESEARCH AVENUES

Detailed analysis of tissues involved in initial triggering of RA
are fundamental for finding predictive biomarkers for disease
progression and for the discovery of novel drug targets to aid
future preventive treatment strategies (Figure 2). As said, we
propose that the first signs of RA can be identified in lymphoid
organs as they are the epicenter of immune activation in which
APCs, including stromal cells, can trigger T-cell mediated B-
cell activation, thereby initiating an inflammatory response
and autoantibody production. Studying tissue samples derived
from lymphoid organs of individuals at risk of developing RA
will provide crucial insights into the earliest stages of disease
pathogenesis. Presently, within the field of rheumatology, only
a few studies have been performed on human LN biopsies while
this biopsy procedure is frequently performed in routine clinical
care in the field of oncology. In addition, our observational study
investigating the perspectives of study participants, indicated
that inguinal LN biopsy sampling is well-tolerated, safe and
provides sufficient material for further molecular and cellular
analyses (Fiechter et al.)1. Accordingly, available data provides a
strong case for the application of this research tool in order to
identify novel biomarkers and drug targets in individuals at risk
of developing RA.

A so far unexplored lymphoid organ in RA-risk individuals
is the bone marrow (BM), while already decades ago it has been
postulated that RA may be a BM disorder (66). A more recent

1Fiechter RH, Bolt JW, van de Sande MGH, Aalbers CJ, Landewé RBM,

Maas M, et al. Ultrasound-guided lymph node biopsy sampling to study the

immunopathogenesis of rheumatoid arthritis: a well-tolerated valuable research

tool.

micro-CT study has shown bone loss in ACPA positive healthy
individuals without clinical signs of arthritis (67). Of interest,
animal labeling studies have shown migration of fibroblastic
cells from the BM to the synovium at the onset of arthritis
(68). Besides the production of hematopoietic stem cells, the
BM is highly important for the development of mesenchymal
stromal cells (MSC). There is compelling evidence that BM-
MSC are instrumental for effective hematopoiesis and have
important immunomodulatory and regenerative capacities (69–
71). Accordingly, clinical trials have been initiated to examine
the therapeutic properties of MSC in many different diseases,
including RA (72). However, the inconsistent findings reported,
reflect that the understanding of MSC biology, especially in
the context of autoimmunity, is limited. A few studies have
investigated BM-MSC in patients with RA (73–75). These
studies show that RA BM-MSC are normal in frequency
and have a normal differentiation capacity (73). However,
RA BM-MSC exhibit reduced proliferation, telomere loss, and
premature replicative exhaustion (73). Moreover, BM-MSC
from RA patients are less supportive for hematopoietic stem
and progenitor cell (HSPC) survival (74). Currently, it is
unknown whether these BM-MSC abnormalities are caused by
inflammation or take place already before disease onset in RA-
risk individuals.

Increased immune cell aging, determined by measuring the
shortening of telomeres, has been observed in several chronic
inflammatory diseases, including RA (76–78). Immune cells from
30 year-old RA patients show a biological cellular age of a 50
year-old healthy individual (79). Of note, in RA this accelerated
aging is already observed in HSPC (80); however, it is unknown
whether premature aging is an intrinsic defect present already
before onset of disease or a secondary effect due to inflammatory
signals or treatment. It is unclear whether this accelerated aging
originates in lymphoid organs and is also observed in tissue
resident cells like MSC which will have a major influence on
MSC-mediated cell survival and immunomodulation.

Many of the questions still outstanding regarding RA
pathogenesis are those of disease origin and cellular contribution.
We postulate that RA-risk individuals can be studied as a
model to investigate the earliest phases of systemic autoimmunity
wherein self-tolerance is lost potentially due to accelerated
cellular aging affecting adaptive immune responses. It is
important to unravel whether accelerated or premature aging
can already be detected in preclinical phases of RA by studying
cellular characteristics of senescence in lymphocytes as well as
stromal cells isolated from synovial, LN and BM tissue biopsies
obtained from RA-risk individuals. If present, such research
will lead to the discovery of novel targets to restore cellular
fitness before RA onset. Research focusing on detailed analyses
of human tissue samples obtained during the earliest preclinical
phases of RA are highly challenging but will provide great
advancement toward the ultimate goal of disease prevention.
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