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Medical image analysis continues to hold interesting challenges given the subtle

characteristics of certain diseases and the significant overlap in appearance between

diseases. In this study, we explore the concept of self-attention for tackling such

subtleties in and between diseases. To this end, we introduce, a multi-scale

encoder-decoder self-attention (MEDUSA) mechanism tailored for medical image

analysis. While self-attention deep convolutional neural network architectures in existing

literature center around the notion of multiple isolated lightweight attention mechanisms

with limited individual capacities being incorporated at different points in the network

architecture, MEDUSA takes a significant departure from this notion by possessing a

single, unified self-attention mechanism with significantly higher capacity with multiple

attention heads feeding into different scales in the network architecture. To the best

of the authors’ knowledge, this is the first “single body, multi-scale heads” realization

of self-attention and enables explicit global context among selective attention at

different levels of representational abstractions while still enabling differing local attention

context at individual levels of abstractions. With MEDUSA, we obtain state-of-the-

art performance on multiple challenging medical image analysis benchmarks including

COVIDx, Radiological Society of North America (RSNA) RICORD, and RSNA Pneumonia

Challenge when compared to previous work. Our MEDUSA model is publicly available.

Keywords: computer vision, deep neural net, COVID-19, chest X-ray (CXR), diagnosis

1. INTRODUCTION

The importance of medical imaging inmodern healthcare has significantly increased in the past few
decades and has now become integral to many different areas of the clinical workflow, ranging from
screening and triaging, to diagnosis and prognosis, to treatment planning and surgical intervention.
Despite the tremendous advances in medical imaging technology, an ongoing challenge faced is the
scarcity of expert radiologists and the difficulties in human image interpretation that result in high
inter-observer and intra-observer variability. As a result, and due to advances in deep learning
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(1–3) and especially convolutional neural networks (4–7), there
has been significant research focused on computer aided medical
image analysis to streamline the clinical imaging workflow and
support clinicians and radiologists to interpret medical imaging
data more efficiently, more consistently, and more accurately.

For example, in the area of lung related complications, deep
neural networks have been explored to great effect for aiding
clinicians in the detection of tuberculosis (8, 9), pulmonary
fibrosis (10, 11), and lung cancer (12–14). Similar works have
been done for prostate cancer (15, 15, 16) and breast cancer
(17, 18).

From a machine learning perspective, the area of medical
image analysis continues to hold some very interesting challenges
that are yet to be solved by the research community. There are
two particularly interesting challenges worth deeper exploration
when tackling the challenge of medical image analysis. First,
certain diseases have very subtle characteristics particularly at the
early stages of disease. For example, in the case of infection due to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus, which is the cause of the ongoing COVID-19 pandemic, the
signs of lung infections often manifests itself at the earlier stage as
faint opacities in themid and lower lung lobes that can be difficult
to characterize and distinguish from normal conditions. Second,
the visual characteristics of the certain disease have high intra-
disease variance, as well as low inter-disease variance that makes
it challenging to distinguish between diseases or characterize a
given disease. For example, many of the visual characteristics for
SARS-CoV-2 infections identified in clinical literature (19–24)
such as ground-glass opacities and bilateral abnormalities can not
only vary significantly from patient to patient and at different
stages of the disease but also present in other diseases such as lung
infections due to bacteria and other non-SARS-CoV-2 viruses.

An interesting area to explore for tackling these two challenges
found in medical image analysis in the realm of deep learning
is the concept of attention (25–27). Inspired by the notion of
selective attention in human cognition where irrelevant aspects
of sensory stimuli from the complex environment are tuned out
in favor of focusing on specific important elements of interest to
facilitate efficient perception and understanding, the concept of
attention was first introduced in deep learning by Bahdanau et al.
(27) for the application of machine translation. The success of
attention in deep learning has led to considerable breakthroughs,
with the most recent being the introduction of transformers
(25, 28). Attention mechanisms in deep learning have now seen
proliferation beyond natural language processing into the realms
of audio perception and visual perception (29–33).

Much of seminal literature in the realm of attention for visual
perception is the introduction of self-attention mechanisms
within a deep convolutional neural network architecture to
better capture long-range spatial and channel dependencies
in visual data (32, 34–36). Among the first to incorporate
attention into convolutional architectures is Hu et al. (36), who
introduced channel-wise attention through lightweight gating
mechanisms known as squeeze-excite modules at different stages
of a convolutional neural network architecture. Woo et al. (32)
extended upon this notion of light-weight gating mechanisms
for self-attention through the introduction of an additional
pooling-based spatial attention module which, in conjunction

with the channel-wise attention module, enabled improved
representational capabilities and state-of-the-art accuracy.

More recently, there has been a greater exploration of stand-
alone attention mechanisms used both as a replacement or in
conjunction with convolutional primitives for visual perception.
Ramachandran et al. (35) introduced a stand-alone self-attention
primitive for directly replacing spatial convolutional primitives.
Hu et al. (37) introduced a novel local relation primitive
which utilizes composability of local pixel pairs to construct an
adaptive aggregation weights as a replacement for convolutional
primitives. Wu et al. (33) and Dosovitskiy et al. (38) both studied
the direct utilization of transformer-based architectures for visual
perception by tokenizing the input visual data.

A commonality between existing attention mechanisms in the
research literature is that selective attention is largely decoupled
from a hierarchical perspective, where lightweight attention
mechanisms with limited individual capacities act independently
at different levels of representational abstraction. As such, there
is no direct global attentional context between scales nor long-
range attentional interactions within a network architecture. Our
hypothesis is that the introduction of explicit global context
among selective attention at different levels of representational
abstractions throughout the network architecture while still

enabling differing local attention context at individual levels
of abstractions can lead to improved selective attention and
performance. Such global context from a hierarchical perspective
can be particularly beneficial in medical image analysis for
focusing attention on the subtle patterns pertaining to disease
that often manifests unique multi-scale characteristics.

To test this hypothesis, we introduce Multi-scale Encoder-
Decoder Self-Attention (MEDUSA), a self-attention mechanism
tailored for medical image analysis. MEDUSA takes a significant
departure from existing attention mechanisms by possessing a
single, unified self-attention mechanism with higher capacity
and multiple heads feeding into different scales in the network
architecture. To the best of the authors’ knowledge, this is the
first “single body, multi-scale heads” realization of self-attention
where there is an explicit link between global and local attention
at different scales.

The paper is organized as follows. First, the underlying
theory behind the proposed MEDUSA self-attention mechanism
is explained in detail in section 2. The experimental results
on different challenging medical image analysis benchmarks
are presented in section 3. A discussion on the experimental
results along with ablation studies are presented in section 4.
Conclusions are drawn and future directions are discussed in
section 5.

2. METHODOLOGY

In this section, we introduceMEDUSAmechanism that explicitly
exploits and links between both global attention and scale-
specific local attention contexts through a “single body, multi-
scale heads” realization to facilitate improved selection attention
and performance. First, we present the motivation behind this
design. Second, we describe the underlying theory and design
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FIGURE 1 | Architecture of the proposed multi-scale encoder-decoder self-attention (MEDUSA) and how it can be incorporated to a deep neural network. The global

component of MEDUSA is fed by the input data which its output is connected to different scales through the network via the multi-scale specific module. The scale

box here refers to the bilinear interpolation operation on the output of σ (AG ) function based on the width and height of the feature map of the corresponding

convolutional block. Here, we have only drew three convolutional blocks but the network can have an arbitrary number of convolutional blocks.

FIGURE 2 | Example chest X-ray images from the benchmark dataset.

of the proposed MEDUSA self-attention mechanism. Third, we
present a strategy for effectively training such a mechanism.

2.1. Motivation
In this study, we are motivated by recent success in research
literature in leveraging attention mechanisms (25, 34, 39). As
explained in (25), attention provides the amplification through
weight distribution of certain features in the input that has
more impact on determining the output. It is also trainable
which means the weight distribution can be learned to improve
representational power around specific tasks and data types.

While attention mechanisms have been shown in previous
studies to lead to significant improvements in representational
capabilities and accuracy for visual perception, their designs have
involved the integration of lightweight attention blocks with
limited capacity that are learned independently in a consecutive
manner. As a result, the attention blocks are largely decoupled
from a hierarchical perspective, and thus there is no explicit
global attention context between scales and no long-range
attention interactions. This independent attention modeling
can potentially attenuate the power of attention mechanisms,
especially in medical imaging data with subtle discriminative

disease patterns with unique multi-scale characteristics. As
such, it is our hypothesis that the introduction of global
attention context for explicitly modeling the interactions among
selective attention at different scales alongside scale-specific
local attention contexts, all learned in a unified approach
can boost the representational capabilities of deep neural
networks.

Motivated by that, here, we learn explicit global context

among selective attention at different levels of representational

abstractions throughout the network architecture. This is
achieved via a global encoder-decoder attention sub-module
from the input data directly, as well as learning different
local channel-wise and spatial attention contexts tailored for
individual levels of abstractions via lightweight convolutional
attention sub-modules. These sub-modules are connected at
different layers of neural network architecture, based on both
global context information from the encoder-decoder and
activation response information at a given level of abstraction.
This “single body, multi-scale heads” realization of selective
attention not only has the potential to improve representational
capabilities but also results in efficient weight sharing through
interconnections between scale-specific local attention contexts
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through the global attention context via the shared encoder-
decoder block. This weight-sharing process allows the network
to be significantly faster and allows the network to apply the
same global attention map across different scales dynamically
through the corresponding scale-specific attentions. As a result,
the network’s training can be smoother as the attention layers are
all aligned and synchronized.

In the next sections, we explain how global and local
attention mechanisms are formulated in a unified structure
within MEDUSA.

2.2. Multi-Scale Encoder-Decoder
Self-Attention Mechanism
As mentioned earlier, by providing two levels of attention
mechanisms (global and local attention), we facilitate a deep
neural network architecture that learns both macro-level and
micro-level dependencies between information within an image.
While the characterization of micro-level dependencies facilitates
fine-grained attention within small local regions, characterization
of macro-level dependencies enables the neural network to
focus attention from a global relational perspective taking
relationships within the entire image into account. As such,
by leveraging a combination of macro-level and micro-level
dependencies in unison to facilitate global and local attention, the
proposed MEDUSA attention mechanism enables progressive,
more guided attention as information propagates throughout the
network. This is illustrated in Figure 4, where at first the deep
neural network is able to correctly focus its attention on the
lung regions in the image (thanks to macro-level dependency
characterization), and as we propagate deeper in the network it
is able to focus attention on specific areas in the lungs that are
important in determining whether there is the presence of disease
(thanks to micro-level dependency characterization).

The proposed local attentions aims to explicitly model the
global attention mechanisms in a unified framework with
significantly higher capacity by incorporating multiple scale-
specific heads feeding into different scales of the main network
architecture. This unified framework improves the modeling
capacity of the self-attention module by feeding the local
attentions with global long-range spatial context and enables
them at different scales to improve selective attention. To this
end, the global modeling is formulated by an Encoder-Decoder
block feeding into scale specific modules given the input sample.

Given the input sample x ∈ Rh×w×c where h,w, c are the
height, width, and the number of input channels, the Encoder-
Decoder, G(·), models the global attended information in a new
feature space AG with the same dimension as the input data and
AG ∈ Rh×w×c a sample point in that space. In the next step, the
vector AG is fed into a multiple scale-specific attention model
L(·) to extract the consistent attended information for each scale
specifically given the output feature map Fj of the scale j and
the global attention vector AG . The output of L(AG , Fj) is the
final attention map corresponding to the scale j combined with
both global and local attention in one unique map which is then
multiplied by the feature map at scale j before feeding into the
next processing block.

TABLE 1 | Sensitivity, positive predictive value (PPV), and accuracy of the

proposed network (MEDUSA) on the test data from the CXR benchmark dataset

in comparison to other networks.

Architecture Sensitivity (%) PPV (%) Accuracy (%)

ResNet-50 (43) 88.50 92.20 90.50

COVID-Net (44) 93.50 100 94.00

COVID-Net CXR-2 (41) 95.50 97.00 96.30

SE-ResNet-50 (36) 90.50 98.90 94.75

CBAM (32) 70.00 100 85.00

MEDUSA 97.50 99.00 98.30

Best results are highlighted in bold.

TABLE 2 | Confusion matrix of the proposed network (MEDUSA).

SARS-CoV-2 Negative Positive

Negative 198 2

Positive 5 195

As seen in Figure 1, the global attention block G(·) generates
a unified attention map given the input sample and acts as
a synchronizer among local attention blocks and interconnect
them to be synced on the most important global attention
information in the training process. The two main components
of MEDUSA are described as follows.

• Global attention: The Encoder-Decoder G(·) assimilates
the global attention from the input image, with one main
constraint to be consistent with different scale attentions
blocks in the network. This is enforced during training when
different scale attention errors are back-propagated through
Encoder-Decoder G(·).

The Encoder block takes the input x and maps it to a latent
space featuremap z ∈ Rh

′×w′×c′ with a downsampling network
D. The latent space feature map z has lower dimensions
compared to x due to the removal of non-relevant features
by the downsampling network D. Next, given the context
vector z, the decoder block generates the output AG with the
upsampling network U. Here, it is assumed that AG ∈ Rn×m×c

which provides a weight map corresponding to every pixel of
the input image. One benefit of this approach is that the weight
map can provide good insights (e.g., to radiologists given the
medical application) to determine and illustrate how it comes
to a decision. The main purpose of using the Decoder network
is to provide such human readable visualization.

• Local attention: The global attention maps need to be
transformed to scale-specific attention feature map before
feeding to the main network. This task can be carried out
by the multiple scale-specific attention to connecting the
MEDUSA attention block properly to the classification blocks
at different scales. Assume the classification block consists
of J convolutional blocks with corresponding feature maps
F1, . . . , Fj, . . . , FJ where Fj ∈ Rnj×mj×cj .

Given the feature map Fj, MEDUSA attention block infers

a 3D attention map Āj ∈ Rhj×hj×cj , which is applied on
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FIGURE 3 | Example chest X-ray images (A–D) from the COVIDx CXR-2 benchmark dataset overlaid by the global attention output from the proposed MEDUSA

network. The red regions indicate higher attention while blue regions indicate lower global attention.

the feature map Fj to transform and generate F̄j. The overall
process can be formulated as follow:

F̄j = Lj(Fj,AG)⊗ Fj + Fj (1)

Where ⊗ denotes element-wise multiplication and AG is the
global attention maps generated by Encoder-Decoder G(·).
To make MEDUSA an efficient operation, the scale-specific
modules L(·) are formulated as follows:

Āj = L(Fj,AG) = Cj

(

A′
j, Fj

)

s.t. A′
j = Bj

(

σ (AG)

)

(2)

σ (·) is a Sigmoid function applied elementwise on the tensor
AG . This is followed by Bj a bilinear interpolation operation
which maps the input shape width and height to wj × hj. Cj is
a convolutional block with the output shape (hj × wj × cj).

In our experiments, we found that using one convolution layer
with filter size cj is enough to get good accuracy. Themain benefit
of using bilinear interpolation is to keep the same global attention
feature map across different scales which will be later fine tuned
for different scales through multiple scale-specific attention. This
way, we can interpret σ (AG) to better reflect which regions of
the image the network is paying attention. As a result, the σ (AG)
can be used as a visual explanation tool to further analyze the
predictions made by the network.

While here we incorporate the proposed MEDUSA in
a classification task, the simplicity yet effectiveness of the
proposed self-attention block makes it very easy to be integrated
into different deep neural network architectural for different
applications. New network architectures with the proposed self-
attention module can take advantage of different training tricks,
given the global attention component of MEDUSA is decoupled
from the main network. This benefits the model to be trained
in an iterative manner between the main model and the self-
attention blocks and as a result, speeds up the convergence of the
whole model. Moreover, this setup facilitates the model to take
advantage of any pre-trained model for the main task.

2.3. Training Procedure
As shown in Figure 1, the global component of the proposed self-
attention block is designed to be decoupled, or initially separate
from the main network and then combined using local attention
components. The global component of MEDUSA generates a

unique long-range spatial context given the input sample which
is customized by the scale-specific module to generate scaled
local attentions. This decoupling approach facilitates the use of
training tricks in the training of both self-attention block and the
main network. To this end, we use two main tricks to train the
proposed architecture:

• Transfer learning: First, transfer learning was used to provide
a better initialization of the global component (Encoder-
Decoder) in the MEDUSA attention block. In particular,
for the experiment on the CXR dataset, we used U-Net
(40) as the Encoder-Decoder that was pre-trained on a
large (non-COVID-19) dataset for lung region semantic
segmentation. Using a pre-trained semantic segmentation to
initialize the Encoder-Decoder, it helps guiding the network to
pay attention to relevant pixels in the image.

• Alternating training: As mentioned before, the designed
structure of the proposed MEDUSA can decouple the
global component of the self-attention block from the main
network. This benefits the model to use alternating training
technique for training the attention block and the main
network sequentially, as the second training trick. During
each step of the alternating training, one block (the main
network architecture or MEDUSA attention block) is frozen
interchangeably while the other one is being trained. This way,
we ensure that these two blocks learn their relatively different
but related tasks concurrently. In our experiments, we found
that by using this technique, not only the network converges
to the best solution faster but it also makes the training less
computationally expensive in other aspects and the memory
consumption during the training decreases considerably. As
such, we can use larger batch sizes which decreases the
training time.

2.4. Experiment Results
2.4.1. Experimental Setup
In this section, we describe the evaluated dataset and
hyperparameters used for reporting the experimental results.

2.4.2. CXR-2 Dataset
To evaluate the proposed model, it is trained on the largest CXR
dataset consisting of 19,203 CXR images (41). The dataset (41) is
constructed based on a cohort of 16,656 patients from at least 51
different countries. There are total of 5,210 images from 2,815
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FIGURE 4 | Comparison between attention-enforced outputs at different convolutional blocks when using CBAM, SE Block, and MEDUSA self-attention

mechanisms. Each row demonstrates the results of the attention mechanisms on a different layer of the ResNet-50 network architecture.

SARS-CoV-2 positive patients and the rest of images are from
13,851 SARS-CoV-2 negative patients. Interested readers can
refer to Maya (41) for more information on this dataset. Figure 2
demonstrates some examples of the CXR-2 dataset.

2.4.3. Architecture Design
The global component of the proposed MEDUSA is modeled by
a U-Net architecture (40) which is used to provide the attention
mechanism to a ResNet50 (4) architecture for a classification task.
Unlike other works in the medical imaging, we did not perform
any special pre-processing on the images other than resizing

the images to 480 × 480. In our training, we used the Adam
optimizer (42) with the learning rate of 0.00008 and the batch
size of 16.

2.5. Results and Discussion
The evaluated results of the proposed method on the CXR-2
dataset are reported in Table 1. MEDUSA provides the highest
accuracy among all the other state-of-the-art techniques with
at least a margin of 2%. Moreover, compared to attentional
based models including CBAM and SE-ResNet50 which utilize
spatial attention and channel attention, MEDUSA outperform
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them by the accuracy margin of 3.55 and 13.3%, respectively.
This result illustrates the importance of formulating a unified
attention model in improving accuracy.

In addition, experimental results showed that MEDUSA and
the proposed training technique lead to a much faster training
convergence compared to CBAM and SE-ResNet-50 resulted in
a 10X speedup in the convergence of the model. This shows
that the unique design proposed for MEDUSA does not impose
considerable complexity into the model’s runtime cost which
is a common case in other well-known attention mechanisms.
Finally, as observed in Table 1, the addition of the proposed
MEDUSA to the main block of the network architecture (here
the ResNet-50 for classifying COVID-19) improves the accuracy
by the margin of 7.8% compared to a stand alone ResNet-50,
which illustrates how the proposed self-attention mechanism can
help the model to better focus on important information and
leads to higher performance. Table 2 shows the confusion matrix
of MEDUSA. It can be observed that the proposed attention
mechanism equally increases both sensitivity and specificity of
the classification model.

2.5.1. Global Attention
Let us now study the behavior of the global attention sub-
module of the proposed MEDUSA self-attention mechanism by
visualizing its attention outputs for a variety of image examples.
Figure 3 shows the global attention outputs (i.e., the output after
the σ (AG) function) overlaid on the input images in the form

TABLE 3 | Ablation study. Sensitivity, positive predictive value (PPV), and accuracy

from the ablation study for the proposed network (MEDUSA) in comparison to

other networks.

Architecture Sensitivity (%) PPV (%) Accuracy (%)

ResNet-50 (43) 88.50 92.20 90.50

Seg Type 1 +ResNet-50 (43) 92.00 95.83 94.00

Seg Type 2 +ResNet-50 (43) 94.50 96.43 95.50

MEDUSA (Self-attention is

disabled at test time)

98.50 88.70 93.00

MEDUSA 97.50 99.00 98.30

Best results are highlighted in bold.

of heat maps. The red area indicates higher global attention
while blue areas indicates lower global attention. The images
used here are from the same CXR-2 dataset. The model correctly
classifies the cases in Figures 3A–C while the case in Figure 3D

are incorrectly classified by the network.
It can be observed that while global attention is clearly

focused on the lung region in the correctly classified cases in
Figures 3A–C, the global attention is not focusing on the lung
region in the incorrectly classified case of Figure 3D, which
could be attributed to the poor quality of the chest CXR
image compared to the correctly classified cases. This heat map
visualization can help with better determining if the model is
leveraging relevant information to infer the correct prediction
which is very important in critical decision-making such as
medical applications. In addition, it is interesting to notice that
in the case of Figure 3B, the global attention mechanism focuses
away from the wires on the chest, and thus proves to be useful for
avoiding attention on unrelated, non-discriminative patterns that
may otherwise be leveraged for making the right decisions for the
wrong reasons. Also, we can see that in Figures 3A,C, MEDUSA
helps significantly in focusing attention on the lung region
for improved guidance toward relevant patterns. We believe
providing this kind of visualization can greatly enhance the trust
in deep learning models especially in medical applications where
the decision-making causes vital outcomes.

2.5.2. Local Attention
Let us now study the impact of the scale-specific attention sub-
modules of MEDUSA toward local selective attention. Here,
we compared the activation outputs of convolutional layers at

TABLE 4 | Sensitivity, positive predictive value (PPV), and accuracy of the

proposed network (multi-scale encoder-decoder self-attention, MEDUSA) on the

test data from the RSNA Pneumonia dataset in comparison to other networks.

Architecture Sensitivity (%) PPV (%) Accuracy (%)

SE-ResNet-50 (36) 40.0 90.9 68.0

CheXNet (49) 50.0 92.6 73.0

CBAM (32) 68.0 77.3 74.0

MEDUSA 82.0 83.7 83.0

Best results are highlighted in bold.

FIGURE 5 | Example chest X-ray images (labeled A–E) with different types of significant distortions and visual anomalies from the Radiological Society of North

America (RSNA) Pneumonia Challenge dataset.
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FIGURE 6 | Impact of MEDUSA global attention on the images with distortion. The images (A–C) are corresponding to images (A–C) in Figure 5.

different stages of the network after asserting selective attention
via MEDUSA, SE, and CBAM attention mechanisms. More
specifically, we study the attention-enforced outputs of three
different convolutional blocks (shown in Figure 4) to observe
how the activation behavior evolves at different stages of the
network. The whiter pixels refer to higher attention-enforced
activations, with all activations normalized for visualization
purposes. As seen in Figure 4, while all tested attention
mechanisms can guide attention toward relevant areas of the
image (e.g., lungs) in the first convolution block, as we go
to the deeper blocks, the SE and CBAM mechanisms start to
lose focus on these relevant areas. On the other hand, we can
observe from the attention-enforced outputs where MEDUSA is
leveraged that as we go deeper into the network, the attention-
enforced activation outputs consistently focuses on the relevant
areas for decision making while narrowing down focus toward
more localized discriminative patterns within the broader area
of interest in earlier blocks. This figure depicts the effectiveness
of introducing global context alongside tailored local attention
contexts at different scales, which provides a better hierarchical
representation of the input image and the model can better
extract higher level features that are more localized around the
important pixels.

2.6. Ablation Study
In this section, we further study the impact ofMEDUSA attention
block to investigate to what extent it leads the network to
improve its performance. Here, we specifically consider two
different scenarios.

The first scenario is to see what happens if we turn off the
MEDUSA attention block on ResNet-50 after the training is
done. This will show us howmuch impact the attention block has
during the training and testing as we can compare the obtained
results with the base ResNet-50 model. In the second scenario,
we answer the question of whether MEDUSA can only help
the model to just ignore unnecessary information of the input
sample or it provides scale specific attentional context through
the network. To this end, the segmented result of the lung area
given the input image is fed into the ResNet-50 at a singular
input-head without the addition of other attention heads. In
this case, we study two types of image segmentation. In the first

type, we provide the CXR image which only contains the lung
region, s(x) to the network, where function s is the segmentation
operation and x is the unsegmented CXR image. In the second
type of segmentation, we provide x + s(x) as the input to the
ResNet-50.

The results are grouped together in Table 3. As shown in
Table 3, when MEDUSA is disabled at test time, while the model
still retains higher accuracy than ResNet-50 baseline by 3%, the
accuracy drops to 5.3% compared to the when the MEDUSA
block is still enabled during the testing. This shows that not
only the MEDUSA attention block causes the ResNet-50 to attain
higher accuracy during the training, but it also makes the model
have higher accuracy during the testing. We also observe the
similar pattern when we only provide the segmented image and
remove the MEDUSA block in ResNet-50. In this regard, the
network loses close to 2.5% accuracy on the test set. This proves
that the MEDUSA attention mechanism is more than just a
segmentation applied to the input image like what has been used
in the papers (45, 46). The proposed self-attention mechanism
provides multi-scale attention context which are learnt via a
unified self-attention mechanism from a global context.

3. COMPREHENSIVE COMPARATIVE
EVALUATION ON MEDICAL IMAGE
ANALYSIS DATASETS

In this section, we further validate the efficacy of the proposed
MEDUSA self-attention mechanism through comprehensive
experiments on two popular medical image analysis datasets
comparing the performance of MEDUSA to other state-
of-the-art deep convolutional neural networks, as well as
other state-of-the-art self-attention mechanisms for deep
convolutional neural networks. First, we conducted experiments
and comparative analysis on MEDUSA and other tested
state-of-the-art methods on the Radiological Society of North
America (RSNA) Pneumonia Detection Challenge dataset
(47) for the purpose of pneumonia patient case detection.
Next, we conducted experiments and comparative analysis
on MEDUSA and other tested methods on a multi-national
patient cohort curated by the RSNA RICORD initiative (48)
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FIGURE 7 | Impact of MEDUSA local attention on the images with distortion. Columns 1, 2, and 3 correspond to images (A–C) in Figure 5, respectively.

for the purpose of severity scoring of COVID-19 positive

patients.

The source code of the proposed MEDUSA is available

https://github.com/lindawangg/COVID-Net. All codes were

implemented using TensorFlow version 1.15 in Python version
3.7.

3.1. RSNA Pneumonia Detection Challenge
Dataset
This dataset was curated by the RSNA and consists of frontal-
view chest X-ray images from a cohort of 26,684 patients
for the purpose of Pneumonia patient case detection. The
images are labeled pneumonia-positive and pneumonia-negative,

Frontiers in Medicine | www.frontiersin.org 9 February 2022 | Volume 8 | Article 821120

https://github.com/lindawangg/COVID-Net
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Aboutalebi et al. MEDUSA

FIGURE 8 | Example chest X-ray images from the RSNA RICORD COVID-19 Severity dataset.

TABLE 5 | Sensitivity, positive predictive value (PPV), and accuracy of the

proposed network (MEDUSA) on the test data from the RSNA RICORD COVID-19

severity dataset in comparison to other networks.

Architecture Sensitivity (%) PPV (%) Accuracy (%)

SE-ResNet-50 (36) 90.8 77.4 76.7

CheXNet (49) 63.46 84.62 83.33

CBAM (32) 84.0 73.0 70.0

MEDUSA 85.0 88.6 85.3

Best results are highlighted in bold.

with ∼6,000 of which being pneumonia-positive cases. It is
very important to note that, based on our deeper analysis
of the data, approximately 20% of the chest X-ray images
contain significant distortions and visual anomalies. Examples
of such images are shown in Figure 5. Such distortions and
visual anomalies make this particular dataset quite challenging
and thus particularly effective for evaluating the selective
attention capabilities of MEDUSA and other state-of-the-art self-
attention mechanisms to focus on the right visual cues amidst
such distortions.

The experimental results evaluating different networks for
this dataset are depicted in Table 4. It can be observed that
leveraging the proposed MEDUSA self-attention mechanism
can provide significant performance improvements over other
state-of-the-art self-attention mechanisms, leading to over 6%
higher accuracy when compared to other methods. Furthermore,
leveraging MEDUSA resulted in a 14% gain in sensitivity
when compared to other methods. Nonetheless, CheXNet

(49) provides a higher positive predictive value (PPV) among
the tested networks at the cost of a significantly lower
overall sensitivity.

Here, we also investigate how MEDUSA’s global and

local attention impact the performance of the model when
the input image is distorted. Figures 6, 7 demonstrate

the global attention and local attention from MEDUSA,

respectively, visualized for a subset of images shown in

Figure 5. As seen, the global attention component of the
proposed self-attention mechanism effectively identifies

the most informative regions of the image for the model
to attend to, even when the images are distorted and no

additional preprocessing is applied. The proposed self-attention
mechanism clearly helps the model to focus on the most
important information which is confirmed by the quantitative
results as well.

Figure 7 shows the local attention heads outputs which
are adjusted based on the global attention map at different
blocks in the convolutional network by the scale-specific
modules of the proposed MEDUSA. As we go deeper into the
network, the attention area is more localized on the relevant
regions which are consistent with the reported results in the
main paper.

3.2. RSNA RICORD COVID-19 Severity
Dataset
This dataset was curated by the RSNA and consisted of chest
X-ray images with full annotations on the severity condition
score associated with COVID-19 positive patients. Each lung
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is split into 3 separate zones (a total of 6 zones for each
patient) and the opacity is measured for each zone. Here for
the experimental result, the patient cases are grouped into two
airspace severity levels: Level 1: opacities in 1 or 2 zones and
Level 2: opacities in 3 or more zones. The multi-national patient
cohort in this dataset consists of 909 CXR images from 258
patients. Among the 909 CXR images, 227 images are from 129
patients with Level 1 annotation and the rest of the images are
grouped with Level 2 class label. Figure 8 illustrates example
CXR images from this dataset for the different airspace severity
level groups.

The efficacy of the proposed MEDUSA self-attention
mechanism and that of other state-of-the-art methods are
shown in Table 5, with sensitivity and PPV values being
reported for Level 2 patient cases. Again, we observe that
MEDUSA has superior accuracy and positive predictive
value (PPV) when compared to other approaches. The
proposed MEDUSA self-attention mechanism provided
over 8.6% higher accuracy and over 11.2% higher PPV than
compared to SE and CBAM self-attention mechanisms.
While leveraging the SE self-attention mechanism resulted
in the highest sensitivity in this experiment, its overall
accuracy is lower due to its poor performance on Level 1
patient cases.

4. CONCLUSION

In this paper, we proposed a novel attention mechanism
so-called MEDUSA which is specifically tailored for medical
imaging applications by providing a unified formulation for the
attention mechanism. The global context is modeled explicitly
among selective attention at different scales and representational
abstractions throughout the network architecture which can
help to model the scale-specific attention more effectively.
This unified framework provides a more coherent attention
mechanism at different scales to the network leading to more
accurate attention context and higher performance as a direct

result. Our results attest that the current model is not only
faster than some of the predecessors, but is also able to achieve
higher accuracy. While the results showed the effectiveness

of the proposed attention mechanism on image based and
medical applications, we aim to introduce the new version
of the proposed MEDUSA in designing new architectures for
other problems such as NLP and sequential data. Moreover,
new training techniques to speed up the convergence and
improve the model accuracy is another direction of the future
work.

An interesting future direction is to leverage the proposed
MEDUSA architecture for the purpose of CT image analysis.
While the realization of the proposed MEDUSA attention
mechanism currently leverages two-dimensional convolutional
blocks given the nature of CXR images explored in this study,
extending MEDUSA to three-dimensional convolutional blocks
would enable volumetric global and local attention for volumetric
medical imaging data. This would be worth a deeper exploration
in the future.

Finally, while in this study, we mainly focused on chest
X-ray analysis of COVID-19, our proposed MEDUSA
framework has broader potential in medical image analysis
beyond the studied clinical workflow tasks and modality.
In this regard, MEDUSA can be used for a wide range of
applications ranging from disease detection, risk stratification,
and treatment planning for a wide range of diseases such
as tuberculosis (8, 9), pulmonary fibrosis (10, 11), prostate
cancer (50–53), breast cancer (17), and lung cancer (12–14) using
different modalities ranging from ultrasound to MRI to CT to
PET imaging.
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