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Background/Objectives: Owing to accelerated population aging, health in older adults

is becoming increasingly important. Frailty can reflect the health status and disease risks

of older adults; however, appropriate biomarkers for early screening of frailty have not

been identified. Here, we applied metabolomics to identify frailty biomarkers and potential

pathogenic mechanisms of frailty.

Methods: Serum metabolic profiles from 25 frail and 49 non-frail (control)

older adults were systematically investigated by liquid chromatography-mass

spectrometry-based metabolomics.

Results: We identified 349 metabolites of 46 classes, with four increased and seven

decreased metabolites in frail older adults. Pearson correlation analysis identified 11 and

21metabolites that were positively and negatively correlated with grip strength, and 7 and

76metabolites that were positively and negatively correlatedwith gait speed, respectively.

Pathway analysis identified 10 metabolite sets and 13 pathways significantly associated

with one or more frailty phenotype criteria.

Conclusion: These results revealed the metabolite characteristics of serum in frail older

adults. Intermediates of carbohydrate metabolism (e.g., isocitrate, malate, fumarate,

cis-aconitate, glucuronate, and pyruvate), saturated fatty acids (e.g., palmitic acid),

unsaturated fatty acids (e.g., arachidonate and linoleic acid), and certain essential amino

acids (e.g., tryptophan) may be candidate biomarkers for the early diagnosis of frailty.

Mitochondrial function disorders, saturated fatty acid-mediated lipotoxicity, aberrant

unsaturated fatty acid metabolism, and increased tryptophan degradation could be

potential mechanisms of frailty.

Keywords: frailty, metabolomics, physical function, biomarker, older adults

INTRODUCTION

Aging is an inevitable life process, characterized by a time-dependent decline in functional capacity
and stress resistance associated with increased risks of morbidity and mortality (1). Preventing
aging-related damage, disease, and disability in older adults has become a priority in the public
health sector. However, the functional decline of an individual is only loosely consistent with the
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advancement in chronological age (2). Frailty can better reflect
the physiological status and disease risk of older adults than the
chronological age (3). Therefore, the early screening of frailty is
critical for personalized intervention in age-related diseases and
the prevention of adverse outcomes. Given the lack of a unified
definition for frailty, researchers commonly identify frailty using
different assessment tools, such as the Fried frailty phenotype
(4) and the frailty index (5). However, these assessment tools
are not objective enough. Sensitive and specific biomarkers for
frailty are urgently needed for more accurate identification in
older adults (6).

Currently, studies on frailty biomarkers suggest that frailty
involves crosstalk between multiple physiological pathways and
various molecular changes (7). Instead of a single biomarker,
a group of biomarkers may be more promising for the
identification of frailty (8). However, no frailty biomarkers have
been widely recognized, and the relationships between candidate
biomarkers and frailty phenotypes are largely unknown. These
issues represent major challenges in the field.

Metabolomics is a platform used to analyze the terminal
metabolites of different samples from diverse organisms. This
approach has promising applications in the elucidation of the
metabolic spectrum among older adults and could facilitate
the identification of the pathways underlying frailty (9). Recent
metabolomics studies have demonstrated strong associations
between certain metabolites and frailty. However, most of these
studies were performed in European and American populations,
and most of them only apply targeted metabolomics analyses for
some metabolites, leading to a lack of clear consensus among
studies (10–14).

Thus, we hypothesized that frailty may involve characteristic
metabolites, which may contribute to the early identification and
personalized intervention of frailty. Accordingly, in the current
study, we used untargeted metabolomics platforms to analyze
metabolites in the serum of frail and non-frail Chinese older
adults to identify potential biomarkers of frailty. We expect that
our findings may provide insights into the underlying biological
pathways involved in frailty and identify effective targets for the
treatment of age-related diseases.

MATERIALS AND METHODS

Participants
In total, 74 participants aged 60 years and older were recruited
for this study. The mean age was 76.34 ± 8.31 years, and
64.9% of the participants were men. Individuals with cancer,
rheumatic diseases, severe infections, severe liver (with Child-
Pugh class B or C) or renal (with GFR < 60 mL/min/1.73
m2) insufficiency, or receiving hormone or immunosuppressive
therapy were excluded. All participants were divided into two
groups: the frail group (case group, n = 25) and the non-frail
group (control group, n = 49). Age and sex were matched
between the two groups. All subjects gave written informed
consent following the Declaration of Helsinki and the study was
approved by the ethical review board of XuanwuHospital Capital
Medical University with the approval number of [2020]043.

We collected data on general information (including age,
sex, education, height, body weight, smoking, and drinking),
blood pressure, medical history of chronic diseases, and some
laboratory test results from each participant. The body mass
index (BMI) was calculated as the weight in kilograms divided
by the square of the height in meters.

Frailty Assessment
Frailty status was assessed according to the frailty phenotype
(4) composed of five criteria: weakness, slowness, inactivity,
fatigue, and shrink. The standing grip strength of both hands was
measured twice, and the maximum value was adopted. Weakness
was defined after adjusting for sex and BMI (15). Gait speed was
measured with a 4-m-walk test at the usual speed. The cutoff
point of slowness was adjusted for sex and height (15). Inactivity
was defined as not walking 2.0 h per week. Fatigue was identified
if participants said, “I felt everything I did was an effort” or “I
could not get going” more than 3 days per week. Shrink was
defined as the unintentional loss of at least 5% of weight from
the previous year or BMI <18.5 kg/m2. Participants with poor
performance in three or more criteria were defined as frail, and
those with two or fewer were defined as non-frail (4).

Serum Sample Collection
All blood samples were collected using serum separation tubes
between 6:00 and 6:30 a.m. after overnight fasting, and the serum
was extracted and stored in centrifuge tubes at−80◦C.

Metabolomics Analysis
Reagents

Water was purified using an ultrapure water preparation
system. Liquid chromatography-mass spectrometry (LC-MS)
grade acetonitrile and methanol were purchased from Merck
(Germany). High-performance LC-grade formic acid was
obtained from Sigma (Germany). All internal standard references
were purchased from Cambridge Isotope Laboratories (USA).

Metabolome Analysis

The extraction protocol and metabolomics are described as
previously reported (16). Briefly, 50 µl serum was added to 200
µl ice-cold methanol, incubated for 30min at 1,500 rpm and
4◦C, and centrifuged for 10min at 12,000 rpm and 4◦C. The
supernatant was removed into a clean 1.5-ml centrifuge tube
and dried using a SpeedVac (Genevac miVac, Tegent Scientific
Ltd., England), and the dried extracts were redissolved in 1%
acetonitrile in water. The upper layer liquids were collected for
LC-MS analysis. Quality control (QC) samples were prepared
by mixing all serum samples in steps identical to those for the
actual serum samples. In order to judge the stability of the
instrument, one QC sample was tested after every 10 samples,
and there was also one QC sample tested before the first and
after the last sample, respectively. ACQUITY UPLC HSS T3
(1.8µm, 2.1 × 100mm) columns (Waters, Dublin, Ireland)
were used in the current study. Ultra Performance Liquid
Chromatography (UPLC) (Agilent 1290 Infinity II; Agilent
Technologies, Germany) coupled with high-resolution mass
spectrometry (5600 Triple TOF Plus, AB Sciex, Singapore) was
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used to acquire the metabolome data. The temperatures of
the column and auto-sampler were maintained at 40 and 4◦C,
respectively. The injection volume was 5µL per run, and the flow
rate was 0.35mL/min. TheMS parameters for detection were: ESI
(-) source voltage −4.5 kV and +5.5 kV for ESI (+); vaporizer
temperature, 500◦C; drying gas (N2) pressure, 50 psi; nebulizer
gas (N2) pressure, 50 psi; curtain gas (N2) pressure, 35 psi; the
scan range was m/z 60–600. Information-dependent acquisition
mode was used for MS/MS analyses of the metabolites. The
collision energy was set at 35 ± 15 eV. Data acquisition and
processing were performed using Analyst TF 1.7.1 (AB Sciex,
Concord, ON, Canada). Each sample was tested once.

Metabolite identification was compared with standard
references, HMDB (the Human Metabolome Database) and
METLIN (the METLIN Metabolite and Chemical Entity
Database). A total of 48 isotopically labeled internal standards
were spiked into the samples for the semi-quantification of
metabolites. Metabolite intensities were normalized according to
the following rules and referred to as intensity (16).

Statistical Analysis
For basic information, continuous variables were presented as
means and SD, and categorical variables were presented as
numbers and percentages (%). The student’s t-test was used to
compare the continuous variables, and Pearson’s χ

2 test was
used to compare the categorical variables. Pairwise comparison
was used to test the consistency of QC and the stability of
the instrument. For metabolomics datasets, missing values were
replaced with 0. Sparse partial least squares (sPLS) regression
was used to observe the differentiation of samples within
groups, and the association between differential metabolites and
frailty phenotypes with R package mixOmics Version 6.16.3
(17). We used the limma package Version 3.48.3 of R (18) to
identify differentially expressed metabolites between frail and
non-frail groups, as well as participants with each frailty criterion
and their counterparts without that criterion, respectively. We
made Logistic regression on the different metabolites identified
and receiver operating characteristic (ROC) analysis on the
diagnostic models. Pearson correlation analysis was used to
identify correlations between metabolites and physical functions
(gait speed and grip strength). Differences were considered to be
statistically significant for a two-tailed P < 0.05. All statistical
analyses were performed in SPSS Statistics 26 (Armonk, NY: IBM
Corp) and R 4.10.

Pathway Analysis
To identify the metabolic pathways significantly associated with
the frailty phenotype, metabolite set enrichment analysis (19)
and metabolic pathway analysis (20) were performed based on
the Small Molecule Pathway Database (https://smpdb.ca) and
the Kyoto Encyclopedia of Genes and Genomes (https://www.
kegg.jp/), respectively. Metabolites with a P < 0.05 in two-tailed
Mann-Whitney U tests were used for pathway analysis, and
those with no matched HMDB ID were removed. A pathway
with a fold change >2 and a raw P < 0.05 in metabolite set
enrichment analysis or with a raw P < 0.05 in metabolic pathway

analysis indicated that it contained more differentially expressed
metabolites with respect to the frailty phenotype.

RESULTS

There were no significant differences in age, sex, BMI,
smoking, drinking, blood pressure, chronic diseases, and
laboratory tests between the frail and non-frail groups (Table 1).
A pairwise comparison of QC showed good consistency
and high data quality (Supplementary Figure S1). UPLC-
quadrupole time-of-flight (QTOF) mass spectrometry-based
untargeted metabolomics platform analysis identified 349
metabolites of 46 categories (Figure 1A). Sparse partial least
squares (sPLS) regression shows that the subjects can be
moderately well-separated based on frailty status, as well
as by their individual indices, including weakness, slowness,
inactivity, fatigue, and shrink (Figure 1B). As the correlation
circle plot for the first two sPLS components shown in Figure 1C,
frailty had a positive correlation with each frailty phenotype
criteria and a negative correlation with gait speed and grip
strength. Besides, Figure 1C showed associations between frailty
phenotypes and metabolites. Metabolites including pyruvic acid,
dihydroxybutanoic acid, 1-methylguanine, etc. showed a positive
correlation with frailty, slowness, weakness, and fatigue, while
glyceric acid, DL-2-aminooctanoic acid, etc., showed a positive
correlation with grip strength. A group of lysophospholipids
and acyl-carnitine were clustered along with the 2nd component
which indicated a positive correlation with inactivity and a
negative correlation with gait speed. The heat map showed the
correlation between frailty phenotype and 24 metabolites from
the first two components in sPLS regression in color (Figure 1D).
Compared with non-frail participants, frail older adults showed
significant suppression and enhancement of seven and four
metabolites, respectively (Figure 1E). Moreover, we regrouped
participants according to each frailty phenotype domain criteria.
There were 19, 18, 46, 6, and 8 different metabolites observed
in the weakness, slowness, inactivity, fatigue, and shrink
groups, respectively, compared with those in the control
groups. The details of the different metabolites are shown
in Supplementary Figure S2. We successfully built Logistic
regression models of frailty, slowness, weakness, inactivity,
and shrink with their differential metabolites, respectively.
Their diagnostic efficacy and ROC analysis were shown in
Supplementary Figure S3. Pearson’s correlation analysis showed
that 11 and 21 metabolites were positively and negatively
correlated with grip strength, respectively, whereas 7 and 76
metabolites were positively and negatively correlated with gait
speed, respectively (Figure 1F, Supplementary Tables S1, S2).

Next, we generated metabolite sets for enrichment analysis
and metabolic pathway analysis. Table 2 shows metabolite
sets with a fold change of >2 and a raw P < 0.05 from
the enrichment analysis for each frailty phenotype. The two
most significantly enriched metabolite sets were fatty acid
metabolism (upregulation of l-carnitine, palmitic acid [PA],
and l-palmitoylcarnitine) and mitochondrial beta-oxidation of
long-chain saturated fatty acids (upregulation of l-carnitine and
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TABLE 1 | Comparison of characteristics between non-frail and frail groups.

Variables Non-frail (n = 49) Frail (n = 25) P value

General information Age (years), mean (SD) 76.22 (8.26) 76.56 (8.58) 0.871

Male, no (%) 31 (63.3) 17 (68.0) 0.687

High school and above, no (%) 29 (70.7) 11 (47.8) 0.069

Body mass index (kg/m2 ), mean (SD) 24.88 (3.80) 25.40 (3.77) 0.580

Smoking, no (%) 17 (34.7) 11 (44.0) 0.435

Drinking, no (%) 13 (26.5) 10 (40.0) 0.236

Frailty assessment Walking speed (m/s), mean (SD) 0.97 (0.25) 0.67 (0.30) <0.001*

Grip strength (kg), mean (SD) 28.18 (7.94) 21.71 (8.50) 0.004*

Shrink, no (%) 3 (6.1) 6 (24.0) 0.026*

Inactivity, no (%) 6 (12.2) 15 (60.0) <0.001*

Self-reported fatigue, no (%) 24 (49.0) 17 (68.0) 0.119

Blood pressure Systolic blood pressure (mmHg), mean (SD) 139 (16.04) 141 (24.00) 0.751

Diastolic blood pressure (mmHg), mean (SD) 74 (11.20) 75 (11.46) 0.757

Chronic diseases Hypertension, no (%) 38 (77.6) 21 (84.0) 0.514

Diabetes mellitus, no (%) 17 (34.7) 9 (36.0) 0.911

Coronary heart disease, no (%) 19 (38.8) 13 (52.0) 0.277

Pulmonary disease, no (%) 7 (14.3) 2 (8.0) 0.434

Chronic kidney disease, no (%) 3 (6.1) 1 (4.0) 0.703

Laboratory tests Cholesterol (mmol/L), mean (SD) 3.97 (0.82) 4.16 (1.07) 0.424

Triglycerides (mmol/L), mean (SD) 1.38 (0.92) 1.66 (1.21) 0.277

Low density lipoprotein (mmol/L), mean (SD) 2.32 (0.70) 2.56 (0.94) 0.235

High density lipoprotein (mmol/L), mean (SD) 1.24 (0.35) 1.16 (0.31) 0.373

Hemoglobin A1c (%), mean (SD) 6.26 (1.27) 6.65 (1.65) 0.265

Fasting plasma glucose (mmol/L), mean (SD) 5.62 (1.86) 6.43 (3.02) 0.228

*p < 0.05.

stearoylcarnitine). Table 3 presents 13 pathways that involved
at least one metabolite associated with one or more frailty
phenotype criteria. The top three significant pathways were
ascorbate and aldarate metabolism, pentose and glucuronate
interconversions, and lysine degradation. However, certain
pathways associated with the frailty phenotype had low impacts,
such as inositol phosphate metabolism, pentose phosphate
pathway, vitamin B6 metabolism, fatty acid degradation, and
unsaturated fatty acid biosynthesis.

DISCUSSION

In this exploratory metabolomics investigation, we showed
that frail and non-frail individuals exhibited distinct metabolite
signatures. Carbohydrate, lipid, and amino acid metabolism
pathways were significantly associated with the frailty phenotype,
suggesting that regulation of these pathways may affect frailty
(Figure 2).

Carbohydrate metabolism is the main energy source for
the body and can provide necessary intermediate metabolites
for various important biochemical reactions in vivo. The
citrate cycle is the ultimate aerobic metabolic pathway of
carbohydrate, lipid, and amino acid in the mitochondrial matrix
(21). Our results showed a negative correlation between gait
speed and isocitrate, l-malic acid, fumarate, and cis-aconitate.
Accumulation of these citrate cycle-related metabolites in

the serum of frail older adults may result from impaired
mitochondrial function and downregulation of the citrate
cycle in frailty. Indeed, in the Framingham Offspring Study,
researchers found that participants with higher concentrations
of isocitrate tended to have lower odds of longevity (beyond
the age of 80 years) (22). Additionally, aconitate, isocitrate,
and malate were significantly associated with the incidence of
all-cause mortality after adjusting for baseline data (22). A study
on community-dwelling older black men from America also
showed that isocitrate positively correlated with the Scale of
Aging Vigor in Epidemiology (SAVE) scores for frailty (23). In
addition, Ubaida-Mohien et al. (24) quantitatively characterized
the proteins in the citrate cycle and observed that malate
dehydrogenase, isocitrate dehydrogenase, fumarate hydratase,

and succinate-CoA ligase were significantly lower in older

individuals, which indicated decreased mitochondrial function
and downregulation of citrate cycle during aging. In addition,
we observed that certain carbohydrate metabolism-related
pathways, such as glycolysis, gluconeogenesis, pyruvaldehyde
degradation, inositol metabolism, ascorbate, and aldarate
metabolism, pentose and glucuronate interconversions, and
starch and sucrose metabolism, were associated with the
frailty phenotype, particularly slowness. The accumulation of
D-glucuronate, pyruvate and beta-D-glucuronoside in these
pathways may result from impaired mitochondrial function in
frailty. Garvey et al. (25) performed a semiquantitative global
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FIGURE 1 | Metabolomics analysis of serum from older adults. (A) Metabolome summary. There were 349 metabolites in 46 categories detected from serum samples

of participants, among which Amino acids had the most identified species (88). (B) The sparse partial least squares (sPLS) regression score plots of the first two

components within each pair of groups. The green triangle represents the case group (frailty, weakness, slowness, inactivity, fatigue, and shrink are shown in Ba–f),

the red circle represents the control group, and the ellipses represent the 95% confidence regions for each group. As the score plots show, the metabolites detected

have well-separated within groups. (C) Correlation circle plot for the first two sPLS components. The projection of each variable on the axis represents the correlation

between the variable and the corresponding component. To simplify the plot, 16 and 8 metabolites were retained in Comp1 and Comp2, respectively. (D) Heat map of

correlation between the clinical variables associated with frailty phenotype and 24 metabolites from the first two components in sPLS regression. Negative and

positive correlations are shown in blue and red ranging from −0.47 to 0.47. (E) Forest plot of different metabolites for frailty identified by limma package of R with P <

0.05. Serum of frail older adults had higher levels of 4 metabolites and lower levels of 7. (F) Heat map of Pearson correlation analysis of 96 metabolites associated

with gait speed or grip strength. Negative and positive correlations are shown in blue and red ranging from −0.5 to 1.0.
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TABLE 2 | Enriched metabolite sets in frailty phenotype.

Frailty phenotype Metabolite set Match status Fold change Metabolites Raw p

Up-regulated Down-regulated

Frailty Glycolysis 1/1 56.5 Pyruvic acid – 0.0177

Pyruvaldehyde degradation 1/1 56.5 Pyruvic acid – 0.0177

Glycine and serine metabolism 2/16 7.07 Pyruvic acid Glyceric acid 0.0190

Glycerolipid metabolism 1/2 28.25 – Glyceric acid 0.0352

Slowness Inositol metabolism 1/1 56.5 D-Glucuronic acid – 0.0177

Starch and sucrose metabolism 1/1 56.5 D-Glucuronic acid – 0.0177

Glycerolipid metabolism 1/2 28.25 – Glyceric acid 0.0352

Inactivity Fatty acid metabolism 3/3 10.27 L-Carnitine,

Palmitic acid,

L-Palmitoylcarnitine

– 0.0007

Mitochondrial beta-oxidation of long chain saturated fatty acids 2/2 10.26 L-Carnitine,

Stearoylcarnitine

– 0.0087

Fatigue Vitamin B6 metabolism 1/1 37.74 – 4-Pyridoxic acid 0.0265

Shrink Transfer of acetyl groups into mitochondria 2/5 7.555 Citric acid Oxalacetic acid 0.0220

muscle metabolomics profiling of FBN F1 hybrid male rats
and showed that glycolysis intermediates, such as pyruvate,
accumulated in the gastrocnemius of aged rats, consistent with
mitochondrial dysfunction. In a proteomics analysis of the
muscles of a Sod1−/− mouse model of accelerated sarcopenia,
enzymes participating in carbohydrate metabolism were
downregulated in the case group (26), which may disrupt normal
mitochondrial function and result in muscle mass loss. Taken
together, these findings suggest that intermediate metabolites of
carbohydrate metabolism, such as isocitrate, malate, fumarate,
cis-aconitate, pyruvate, and glucuronate, may be potential
biomarkers for frailty.

Fat tissue is crucial for energy storage, immune and endocrine
processes, thermoregulation, mechanical protection, and tissue
regeneration. Fat metabolism disorders with aging lead to fat
tissue redistribution in different fat depots, even in non-adipose
tissue (27). We observed fat metabolism upregulation in the
inactivity group, including both saturated and unsaturated fatty
acid metabolism.

In our study, PA levels were higher in the serum of older
adults with low physical activity. PA, a common saturated fat,
exhibits lipotoxicity, which can induce ectopic lipid deposition
and cellular dysfunction (28). PA causes lipotoxicity in tissues,
cells, and organs, such as the bone (29), hepatocytes (30), and
testes (31), and may increase the risk of diabetes (32). Thus,
PA may reflect abnormal fat distribution in frailty. Additionally,
rapamycin blocks PA-dependent lipotoxicity in the bones by
modulating apoptosis and autophagy through the mammalian
target of rapamycin (mTOR) complex 1 pathway (33) as
mTOR signaling regulates de novo lipid synthesis (21). Further
exploration of these relevant pathways may facilitate elucidation
of the mechanisms of lipotoxicity and improve our ability to treat
or prevent frailty.

Furthermore, we observed higher levels of circulating
unsaturated fatty acids, such as arachidonate (AA) and linoleic

acid (LA), in frail older adults. AA and LA are common omega-6
polyunsaturated fatty acids (n-6 PUFAs). Our results indicated
that higher levels of circulating n-6 PUFAs were characteristic
of frailty. The effects of n-6 PUFAs on health have long
been controversial. In the Framingham heart study, higher n-
6 PUFA intake increased fasting triglyceride levels, remnant-
like particle concentrations, and very-low-density lipoprotein
sizes. Moreover, n-6 PUFAs decreased low-density lipoprotein
size, which may increase the risk of cardiovascular disease
(34). Because unsaturated fatty acids are closely related to the
differentiation and inflammatory responses of T cells (35), B
cells (36), and macrophages (37), the negative effects of n-6
PUFAs on the cardiovascular system may result from increased
inflammation activated by it (38). However, other researchers
have recently demonstrated the health-protective effects of n-
6 PUFAs. For example, higher n-6 PUFA intake could reduce
total cholesterol levels in the serum and benefit people at high
risk of myocardial infarction (39), could modestly reduce risk
of mortality from all causes (40) and have long-term preventive
effects on type two diabetes in the population. Higher levels of
circulating and tissue LA were associated with a lower risk of
major cardiovascular events (41). Overall, although we observed
higher levels of circulating unsaturated fatty acids (particularly
n-6 PUFAs) in older adults with low physical activity, the clinical
significance of these molecules in frail individuals is still unclear.
Further research on the related mechanisms is required.

Tryptophan (Trp) is an essential amino acid linked to muscle
metabolism (42) and the nervous system (43). We observed
upregulation of Trp metabolites, such as 5-hydroxyindoleacetate
and 2-oxoadipate, in the serum of weak older adults, although
we detected no differences in Trp contents. Trp metabolism
is associated with grip strength. Similar to our results,
researchers observed that circulating Trp level reduced in frail
old patients with breast cancer (44) and frail older black
men living in community (23). Even in muscle biopsies,
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TABLE 3 | Over-represented pathways associated with frailty phenotype with raw P < 0.05.

Frailty phenotype KEGG ID Pathway Match

status

Metabolites Raw p Impacts score

Up-regulated Down-regulated

Frailty hsa00260 Glycine, serine and

threonine metabolism

2/11 Pyruvate (C00022) D-Glycerate (C00258) 0.0101 0.0242

hsa00630 Glyoxylate and

dicarboxylate metabolism

2/12 Pyruvate (C00022) D-Glycerate (C00258) 0.0121 0.0794

hsa00561 Glycerolipid metabolism 1/1 – D-Glycerate (C00258) 0.0190 0.0935

hsa00010 Glycolysis /

Gluconeogenesis

1/2 Pyruvate (C00022) – 0.0379 0.1004

hsa00030 Pentose phosphate

pathway

1/2 – D-Glycerate (C00258) 0.0379 0.0000

Weakness hsa00310 Lysine degradation 2/4 N6,N6,N6-Trimethyl-L-lysine

(C03793), 2-Oxoadipate

(C00322)

– 0.0156 0.1409

hsa00380 Tryptophan metabolism 2/6 5-Hydroxyindoleacetate

(C05635), 2-Oxoadipate

(C00322)

– 0.0371 0.0139

Slowness hsa00040 Pentose and glucuronate

interconversions

2/2 Beta-D-Glucuronoside

(C03033), D-Glucuronate

(C00191)

– 0.0011 0.2656

hsa00053 Ascorbate and aldarate

metabolism

1/1 D-Glucuronate (C00191) – 0.0381 0.5000

hsa00561 Glycerolipid metabolism 1/1 – D-Glycerate (C00258) 0.0381 0.0935

hsa00562 Inositol phosphate

metabolism

1/1 D-Glucuronate (C00191) – 0.0381 0.0000

Inactivity hsa01040 Biosynthesis of unsaturated

fatty acids

3/6 Hexadecanoic acid

(C00249),

(9Z)-Octadecenoic acid

(C00712), Arachidonate

(C00219)

– 0.0053 0.0000

hsa00071 Fatty acid degradation 2/3 Hexadecanoic acid

(C00249),

L-Palmitoylcarnitine

(C02990)

– 0.0148 0.0000

Fatigue hsa00260 Glycine, serine and

threonine metabolism

2/11 – Betaine (C00719),

D-Glycerate (C00258)

0.0285 0.0745

hsa00561 Glycerolipid metabolism 1/1 – D-Glycerate (C00258) 0.0286 0.0935

hsa00750 Vitamin B6 metabolism 1/1 – 4-Pyridoxate (C00847) 0.0286 0.0000

Trp levels were found to be lower in frail older adults
(12). The reduction in serum Trp with aging in rats was
similar to that observed in humans (25). These studies
reported reduction in Trp contents with aging or aggravated
frailty, although the mechanisms of this phenomenon are
unclear. Based on metabolomics profiling of mice and humans,
Westbrook et al. revealed that the tryptophan degradation
pathway was significantly activated in frail individuals with
down-regulated Trp levels and up-regulated Trp metabolites
like kynurenine, which had links with chronic inflammation
(45). In our study, Trp metabolite contents increased in the
weak group; these results may be explained by enhanced Trp
degradation, consistent with the Trp concentration reduction in
the aforementioned studies. However, the mechanisms are still
not known, and it is unclear whether Trp synthesis is disrupted in
frail individuals.

In this study, we explored the metabolic profiles of frailty in
older Chinese adults. Our study identified candidate biomarkers
for physical frailty, which are of practical value for both clinical
diagnosis and basic research on frailty. However, this study has
certain limitations. First, the sample size was limited; thus, we did
not perform an additional sex control analysis. Second, since this
was a single-center study, we did not evaluate people of different
regions, races, lifestyles, dietary habits, cultures, and economic
levels. Therefore, our results may not represent the entire Chinese
population. Despite these limitations, we observed differences
between the metabolite profiles in frail and non-frail groups,
suggesting that it may be feasible to identify frailty biomarkers
through metabolomics platforms. Further studies are needed
to test our findings in larger cohorts and more populations,
focus on dynamic changes in distinct metabolites and build a
diagnostic model of frailty to confirm a set of sensitive and
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FIGURE 2 | Potential biomarkers and mechanisms of frailty. Some metabolites of carbohydrate metabolism (e.g., glucuronate, pyruvate, citric acid, cis-aconitate,

isocitrate, fumarate, and malate), fatty acids (e.g., arachidonate, linoleic acid, and palmitic acid), and certain amino acids (e.g., tryptophan) are candidate biomarkers

for frailty. Mitochondrial dysfunction, saturated fatty acid lipotoxicity, cardiovascular effects of unsaturated fatty acids, and chronic inflammation caused by increased

tryptophan degradation may be possible mechanisms for frailty.

specific biomarkers for early diagnosis. In addition, technological
advancements in metabolomics are expected to promote the
study of frailty biomarkers.

CONCLUSION

Our findings emphasized the value of metabolomics in the search
for frailty biomarkers and initially revealed the metabolomic
signatures in the serum of frail older adults from China.
Isocitrate, malate, fumarate, cis-aconitate, glucuronate, pyruvate,
PA, AA, LA, and Trp could be potential candidate biomarkers
for frailty. Disorders of mitochondrial function, lipotoxicity
of saturated fatty acids, disturbances in unsaturated fatty acid
metabolism, and increased Trp degradation were identified as
potential mechanisms and therapeutic targets of frailty. Future
studies are needed to replicate our results in different populations
and provide more evidence on the underlying mechanisms
of frailty.
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