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The incidence and mortality of colorectal cancer (CRC) have been markedly
increasing worldwide, causing a tremendous burden to the healthcare system.
Therefore, it is crucial to investigate the risk factors and pathogenesis of
CRC. Cholecystectomy is a gold standard procedure for treating symptomatic
cholelithiasis and gallstone diseases. The rhythm of bile acids entering
the intestine is altered after cholecystectomy, which leads to metabolic
disorders. Nonetheless, emerging evidence suggests that cholecystectomy
might be associated with the development of CRC. It has been reported
that alterations in bile acid metabolism and gut microbiota are the two main
reasons. However, the potential mechanisms still need to be elucidated. In
this review, we mainly discussed how bile acid metabolism, gut microbiota,
and the interaction between the two factors influence the development
of CRC. Subsequently, we summarized the underlying mechanisms of the
alterations in bile acid metabolism after cholecystectomy including cellular
level, molecular level, and signaling pathways. The potential mechanisms
of the alterations on gut microbiota contain an imbalance of bile acid
metabolism, cellular immune abnormality, acid-base imbalance, activation
of cancer-related pathways, and induction of toxin, inflammation, and
oxidative stress.
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Introduction

Colorectal cancer (CRC) is the third most malignancy
worldwide for humans (1-3). The incidence and mortality of
CRC are terrifyingly high. CRC accounts for over 9% of all
cancers incidence (4). It has been estimated that approximately
53,200 deaths projected in 2020 (5) and 3.2 million new CRC
cases projected in 2040 (6). CRC exerts a significant geographic
difference, more common in the western developed countries
(7-9). The incidence rate was 10-fold higher in the highest
rate countries than that in the lowest rate countries (10).
The incidence of CRC in China is 23.3 per 100,000 (11).
In addition, the prevalence of CRC has been growing in the
young individuals (12-14), contributing to substantial social and
economic burden to the healthcare system (2, 6). Therefore, it is
essential to explore the risk factors and pathogenesis of CRC.

Several etiologies have been implicated in the pathogenesis
of CRC, including genetic susceptibility and environmental
factors, such as consumption of tobacco and alcohol,
inflammatory bowel disease (IBD), adenomatous polyps,
family history, unhealthy diet, physical inactivity and obesity (8,
15-17). Cholecystectomy is a standard procedure for treatment
of symptomatic cholelithiasis and gallstone diseases. The
number of this procedure has been increasing. It has been
reported that approximately 800,000 cases of cholecystectomy
are performed in the United States per year, and the number is
also growing in China (18, 19). In the past, cholecystectomy was
deemed to be almost harmless. Nevertheless, an increasing body
of evidence suggests that cholecystectomy might be associated
with the development of CRC (20-25). Alterations of bile acid
metabolism and gut microbiota have been demonstrated to
play significant roles in CRC. However, the potential specific
mechanisms are still unclear. Therefore, in the present study,
we described the current knowledge on the association between
cholecystectomy and CRC, and summarized the potential
mechanisms.

Epidemiology of colorectal cancer

CRC is the third most common cause of cancer-related
mortality worldwide (2), and is also the second most common
cause of cancer mortality in the United States (26). It has
estimated that more than 1.8 million cases were diagnosed
and 881,000 deaths occurred in 2018, accounting for 1 in
10 cancer cases and deaths (11). More recently, over 1.9
million new cases were reported in 2020 (27). Globally, CRC
incidence and mortality vary widely across countries, according
to GLOBOCAN 2020 data (28). The incidence of CRC is higher
in males than in females, and the trend is younger in recent years
(12-14). In general, the incidence of proximal colon tumors
is the highest, while that of distal colon tumors is the lowest,
which is more common in the elderly. The incidence rates
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increased by 1 and 2% each year among the 50-64 age group and
under 50 years of age, respectively (26). The population of CRC
patients as a whole is rapidly getting younger as the declining
incidence in the older population coincides with the increasing
incidence in the younger population, causing huge burden on
the healthcare system. It has been well-acknowledged that CRC
is associated with several risk factors such as smoking, unhealthy
diet, alcohol abuse, physical inactivity and obesity (15, 16, 29).
Nevertheless, the risk factors and pathogenesis of CRC still need
to be further explored.

Cholecystectomy

Cholecystectomy is the most common procedure performed
in biliary surgery. In most cases, the procedure is relatively
standardized and the long-term results after surgery are
satisfactory. Cholecystectomy can be performed in two main
ways: a laparoscopic or a classic open operation technique.
Compared to the classic way, the laparoscopic cholecystectomy
is a relatively minimally invasive surgical procedure and has
basically replaced the open technique for cholecystectomies
since the early 1990s (30). Several advantages have made it
a popular procedure over the past few decades, including
a short hospital stay, quick return to normal activities, and
reduced pain after surgery, more acceptable cosmetic results,
less morbidity and less mortality (31-33). The reported short-
term complications include postoperative bleeding, biliary
leakage biliary peritonitis, subhepatic effusion or subphrenic
abscess, postoperative jaundice, postoperative pancreatitis,
residual common bile duct stones, and gastrointestinal fistula,
and the long-term complications include bile duct stricture,
recurrent common bile duct stones, biliary bleeding, post-
cholecystectomy syndrome, residual overgrown bile duct
syndrome, and increased incidence of CRC.

Clinical data and characteristics of
colorectal cancer patients after
cholecystectomy

A meta-analysis of 10 cohort studies described that there
was an increased risk for colon cancer up to 30% higher
than the non-cholecystectomized group (24). In addition, the
study also observed a positive relationship between the female
gender and CRC. Moreover, a previous study confirmed that
patients who performed cholecystectomy presented a 108%
higher risk of developing CRC than the common population.
The male and female patients who underwent cholecystectomy
were reported to have a 74 and 154% higher risk of CRC,
respectively (23). Furthermore, age was also regarded as a risk
factor for gastrointestinal cancers in patients with a history of
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cholecystectomy (23). The standardized incidence ratio (SIR)
was highest in individuals between 40 and 49 years old, followed
by those in their ages more than 80 years old (23). The reported
median duration from cholecystectomy to the diagnosis of
CRC was about 5-15 years or more (34, 35). Additionally, the
right colon is more prone to be affected by cholecystectomy.
Giovaimucci et al. (34) believed that the proximal and distal
colon is related to the different sources of embryos, and they
present different sensitivity to carcinogens. The right colon is
more sensitive to bile acids, probably due to the high amount
of stool fluid in the right colon. Thomas et al. (36) believed
that the concentration of secondary bile acids and the activity
of 7a-dehydroxylase were higher in the right colon than in
the left colon, and there were obvious differences in bile acid
metabolism, leading to the susceptibility of CRC in the right
colon after cholecystectomy.

Cholecystectomy promotes the
development of colorectal cancer
by alternation of bile acid
metabolism

Synthesis, transport and metabolism of
bile acids

Bile acids are the main components of bile and are
synthesized in the hepatocytes via cytochrome P450-mediated
oxidation of cholesterol (37, 38). This process takes place
through two biosynthetic pathways: the “classical” and an
“alternative” pathway (39). During the “classical” pathway,
three cholesterol hydroxylase enzymes cholesterol 7a-
hydroxylase (CYP7Al), sterol 12a-hydroxylase (CYP8B1)
and mitochondrial sterol 27-hydroxylase (CYP27A1) produce
the primary bile acids cholic acid (CA) and chenodeoxycholic
acid (CDCA) (40, 41). The “alternative” pathway produces
CDCA via the hydroxylation of the cholesterol side chain by
CYP27A1, and the oxysterol intermediates are then formed
by 7a-hydroxylation by CYP7B141 (40). Bile acids can be
divided into free bile acids and conjugated bile acids according
to their structures. Free bile acids include CA, deoxycholic
acid (DCA), CDCA, and lithocholic acid (LCA). The free bile
acids are combined with glycine or taurine respectively to
form various corresponding conjugated bile acids, including
glycocholic acid, taurocholic acid, glycochenodeoxycholic
acid and taurochenodeoxycholic acid. Conjugated bile acids
are more water-soluble and generally exist in the body as
sodium salts, which are more stable than free bile acids. In
addition, bile acids can be divided into primary and secondary
bile acids according to their sources. Primary bile acids are
synthesized directly from cholesterol in hepatocytes including
CA and CDCA, while secondary bile acids are formed when
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primary bile acids are secreted into the intestine and undergo
7-a-hydroxylation by intestinal bacteria including DCA, LCA,
ursodeoxycholic acid (UDCA), and tauroursodeoxycholic acid
(TUDC). Bile acids are secreted through the tubular membrane
into the bile and stored in the gallbladder. After the animal
eats, the duodenum secretes cholecystokinin, which stimulates
gallbladder contraction, thereby releasing bile acids into the
small intestine. In the small intestine, conjugated bile acids
specifically activate pancreatic lipases and enhance fat-soluble
vitamins solubilization by creating mixed micelles of dietary
lipids, sterols, and fat-soluble vitamins. Finally, about 95% bile
acids are reabsorbed in the ileum and returned to the liver via
the portal vein. However, approximately 5% bile acids escaping
from intestinal reabsorption enter the colon, where they are
further converted to secondary, more hydrophilic bile acids by
the intestinal flora (40, 42, 43).

Cholecystectomy changes metabolism
of bile acids

Under normal conditions, the gallbladder controls the rate
and flow of bile into the intestine and enterohepatic circulation
of bile acids, which plays a key role in regulating physiological
homeostasis (44). However, the rhythm of bile acids entering
the intestine is altered after cholecystectomy, which leads to
metabolic disorders. The normal bile acid pool is the total
amount of bile acids in the enterohepatic circulation, which
is about 3 g and consists of 50% CA, 30% CDCA, 20%
DCA and very small amounts of other bile acids. Previous
studies showed that the bile acid reabsorption and enterohepatic
circulation increase due to the sphincter of Oddi disorders
after cholecystectomy (45, 46). However, there is also small
number of studies finding that the bile acid pool decreases
or remains unchanged after cholecystectomy. For example, a
previous study observed that the bile acid pool decreased by
about 16% three months after cholecystectomy (47). Two animal
experiments showed that the total bile acid pool decreased
by about 40% two weeks after cholecystectomy, as well as
the reduction of circadian rhythm (48, 49). In addition, the
total amount of bile acids remained essentially unchanged
after five to eight years of cholecystectomy (46). The above
findings suggest that the size of bile acid pool decreases in
the short-term outcome after cholecystectomy, but there is no
significant effect on the long-term outcome. Moreover, it has
been confirmed that cholecystectomy increases the bacterial
uncoupling and dehydroxylation of bile acids, thereby leading
to the high proportion of secondary bile acids (44). Zhang
et al. (48) demonstrated that the contents of DCA, LCA and
their binding products with taurine were significantly increased
in the ileum of mice after cholecystectomy, together with the
increasing of fecal bile acid.
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Carcinogenic effects of secondary bile
acids on colorectal cancer

Numerous experimental studies have confirmed the
tumorigenic potential of bile acids, particularly the secondary
bile acids DCA and lesser extent of the LCA (50-55). It is
important to note that the bile acids are usually considered
as tumor promoters rather than tumor inducers, because
the changed bile acid concentrations depend on exposure
to carcinogenic chemicals or genetic susceptibility (56). The
carcinogenic effects of secondary bile acids on CRC are
summarized in Table 1.

DCA has been reported to enhance colonic epithelial
and colon cancer cell proliferation and/or invasiveness (57-
60), promotes dysplasia (61), and disrupts the cell monolayer
integrity of intestinal cancer and precancerous cells, increases
the production of pro-inflammatory cytokines (51, 62),
promotes cell cycle arrest (63), and activate intestinal stem cells
and epithelial regeneration (64). In addition, DCA has been
demonstrated to inhibit wound healing in wounded colonic
epithelial monolayers by impairing cell migration ability (65).
Interestingly, DCA exerts pro-apoptotic and anti-apoptotic
effects on colon cells (66). It has been revealed that DCA
could promote transition from adenoma to carcinoma and
resist apoptosis (67), and also induce epithelial-mesenchymal
transition (EMT) process, increase vasculogenic mimicry (VM)
formation (68). Furthermore, DCA could help cancer cells to
escape immune surveillance (69). Besides, DCA was found to
cause a redistribution of cholesterol and decrease the fluidity of
the membranes (70). As well, previous studies have confirmed
that DCA could be converted into a powerful carcinogen
3-methylcholanthrene (3-MC) (71),
junction and increase intestinal permeability (72). Besides,

and also regulate cell

DCA/LCA could increase drug resistance and induce colon
carcinogenesis (73).

With respect to the molecular mechanism, DCA and/or
LCA was reported to induce expressions of cyclooxygenase
(COX)-2 promoter (74) by transactivation of the epidermal
growth factor receptor (EGFR) in HCT116, H508 and SNU-
C4 human colon cancer cell lines (17, 75), promote the
stable and translocated pronucellin entering the nucleus and
stimulate the expression of uPA, urokinase-type plasminogen
activator receptor (uPAR) and cyclin D1 in SW480 and LoVo
cells (57), activate muscarinic receptor (MR) in H508 human
colon cancer cells (76), increase the expression of matrix
metalloproteases (MMPs) in H508 cells (77), inhibit the effect
of microRNA (miR)-199a-5p and/or promote the expression of
CDK2 associated cullin domain 1 (CAC1) in HCT-8 cells (78).
These above processes were associated with proliferation and
invasion of DCA. For the anti-apoptotic characteristics, DCA
was shown to upregulate the expression of X-linked inhibitor
of apoptosis protein (XIAP) in normal intestinal epithelial
cells (IEC-6), while downregulate the expression of p53 in
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HCT116 cells (79, 80). It is noted that Hu et al. suggested
that DCA and/or LCA presented a dual role in modulating
cell survival and death by regulating expression of Nur77 and
intracellular location in HCT116 and HT29 colon cancer cells
(81). Likewise, DCA was revealed to decrease the expression
of human leukocyte antigen (HLA) class I antigens on the
surface of HT29, SK-CO-1 and SW1116 cells to help cancer
cells to escape immune surveillance (69). As well, DCA was
also described to prompt colonic epithelial cells HCoEpiC into
becoming cancer stem cells (CSCs) (73), and form aberrant
crypt foci (ACF) and high-grade dysplasia in AKR/J mice (82).
Besides, DCA endorses the recruitment of tumor-associated
macrophages (TAM) (83), decrease the levels of secretory
antibodies of the type IgA (sIgA) and promotes polarization of
M2 macrophages in APC™"/* mice (51). Interestingly, DCA
has also been reported to cause genomic instability including
heteroploidy, intrachromosomal instability and gene point
mutations (84). The genomic instability appears via several
mechanisms, comprising DNA oxidative damage, mitochondria
damage, endoplasmic reticulum damage, micronucleus rate
increase, disruption of mitosis, and mutations of chromosome
aneuploidy (85, 86). DCA-induced DNA oxidative damage is
caused after long-term exposure to high concentrations of
nitro DCA and oxidation, which can induce apoptosis or
DNA damage. Long-term DNA damage leads to mutation and
natural selection of mutant cells, and ultimately promotes the
development of cancer cells (87). Moreover, DCA can cause
abnormal functions of some DNA mismatch repair enzymes by
inducing mutations, such as adenomatous polyposis coli (APC)
and tumor protein p53 (TP53). Subsequently, the dysfunction of
DNA mismatch repair causes genome microsatellite instability
(88). Long-term exposure to a high concentration of secondary
bile acids can generate reactive oxygen species (ROS), induce
oxidative stress (89), active nitrogen species, and cause DNA
damage in intestinal epithelial cells, leading to genomic
instability and increase gene mutations (90). In contrast, LCA
has been reported to promote CRC via promoting expression
of MMP-2 in CaCo-2 cells (91), interleukin (IL)-8 in HCT116
cells (92), ATP binding cassette subfamily B member 1 (ABCB1),
ATP binding cassette subfamily G member 2 (ABCG2) in
HCoEpiC cells (73), and miR-21, and inhibition of PTEN in
HCT116 cells (93). As well, LCA induces DNA single-strand
breaks (94) and inhibits mammalian DNA polymerase f in rat
colon epithelial cells (95).

Several signaling pathways have been reported to be
involved in the tumor-promoting effect of DCA on CRC. For
example, DCA promotes CRC by activation of EGFR-mitogen
activated protein kinase (MAPK), and induction of calcium in
HT-29 cells (96) and signal transduction and transcriptional
activator (STAT) 3 signaling pathways in HCT116 and HCA-
7 cells (97). DCR facilitates proliferation and invasiveness
through COX-2 in HT-29, Caco-2, HCA7, and HCT116
cells (98) and/or COX-2/prostaglandin E2 (PGE2) signaling
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TABLE 1 The carcinogenic effects of secondary bile acids on CRC.
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Authors (references) Published year Country Cells/Animals Types of bile Effects, genes, and/or pathways
acid
Cheng et al. (17) 2005 United States SNU-C4 and H508 GDCA, DCA Bile acids enhances CHRM3-dependent cell
proliferation by transactivation of EGFR
Pai et al. (57) 2004 United States SW480, LoVo DCA DCA promotes cell growth and invasiveness by
activation of B-catenin signaling
Milovic et al. (59) 2002 Germany Caco-2, HT-29 DC DC promotes cell proliferation at low-dose, while
induces apoptosis at high dose
Fu et al. (60) 2019 United States Murine mice, HCT116, DCA DCA promotes cancer stem cell proliferation
Caco2, HT29
Sorrentino et al. (64) 2020 Switzerland Murine mice DCA, LCA Bile acids activate intestinal stem cells and
epithelial regeneration via TGR5
Qiao et al. (66) 2001 United States HCT116 DCA DCA presents a dual role in apoptosis via the
ERK/MAPK pathway
Farhana et al. (73) 2016 United States HCoEpiC DCA, LCA Bile acids promote colon stemness in colonic
epithelial cells via CHRM3 and Wnt/B-catenin
signaling
Qiao et al. (80) 2001 United States HCT116 DCA DCA downregulates p53 via stimulating the ERK
signaling pathway
Hu et al. (81) 2015 United States HCT116, HT29 DCA, LCA Bile acids promote Nur77-mediated cell
proliferation and apoptosis
Lechner et al. (89) 2002 Germany HT-29 DCA DCA causes oxidative stress and increases TR level
Halvorsen et al. (91) 2000 Norway CaCo-2 LCA LCA increases cell invasion through promoting
MMP-2 secretion
Nguyen et al. (92) 2017 Korea HCT116 LCA LCA induces expression of IL-8 by activating
ERK1/2 MAPK and inhibiting STAT3
Centuori et al. (96) 2016 United States HT-29 DCA DCA promotes cell viability via activation of
EGFR-MAPK pathway
Nagathihalli et al. (97) 2014 United States HCT116, HCA-7 DCA DCA regulates cell cycle by activation of EGFR,
MAPK and STAT3 signaling
Zhu et al. (98) 2012 United States HT-29, Caco-2, HCA7, DCA DCA promotes proliferation and invasiveness by
HCT116 activation of COX-2 signaling
Lietal. (100) 2003 Japan HCT116, DLD-1, SW620 DCA DCA upregulates EPHA2 via activation of ERK 1/2
cascade
Milovic et al. (101) 2001 Germany Caco-2 DCA DCA promotes cell migration via PKC
Debruyne et al. (102) 2002 Debruyne HCT-8/E11, SRC DCA, LCA, Bile acids stimulate cell invasion and haptotaxis via
transformed PCmsrc CDCA RhoA/Rho-kinase pathway and signaling cascades
cells (PKC, MAPK, and COX-2, etc.)
Lee etal. (103) 2010 Korea HM3 DCA DCA upregulates MUC2 transcription via
activation of
EGFR/PKC/Ras/Raf-1/MEK1/ERK/CREB,
PI3K/Akt/IKKB/NF-«kB and p38/MSK1/CREB and
inactivation of JNK/c-Jun/AP-1 pathway
Lee et al. (105) 2004 Korea HT-29 DCA DCA induces IL-8 expression and exerts
anti-apoptotic effect via activation of NF-kB
Song et al. (106) 2005 United States LiM6 DCA, LCA, DCA upregulates MUC2 transcription via MAPK,
CDCA PKC-dependent activation of AP-1
Bacek et al. (107) 2010 Korea HT29 and SW620 LCA LCA enhances cell invasiveness by increasing

expression of uPAR via activation of ERK1/2 and
AP-1 pathway

CRC, colorectal cancer; GDCA, glycodeoxycholic acid; DCA, deoxycholic acid; DC, deoxycholic; LCA, lithocholic acid; CHRM3, cholinergic receptor muscarinic 3; EGFR, epidermal
growth factor receptor; TGR5, G protein-coupled bile acid receptor 1; ERK, extracellular signal regulated kinases; MAPK, mitogen activated protein kinase; TR, thioredoxin reductase;

MMP2, matrix metalloproteinase 2; IL, interleukin; STAT, signal transduction and transcriptional activator; COX-2, cyclooxygenase 2; EPHA2, EPH receptor A2; PKC, protein kinase C;
CREB, cAMP response element binding protein; PI3K, phospholnositide-3 kinase; IKKB, Ikappa B; NF-kB, nuclear factor kappa-B; MSK1, mitogen and stress-activated protein kinase 1;
AP-1, activated protein-1; JNK, c-jun N-terminal kinase; MUC2, mucin 2, oligomeric mucus/gel-forming; uPAR, urokinase-type plasminogen activator receptor.
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pathway in human colonic fibroblasts CCD-18Co cells (99).
In addition, DCA and/or LCA has been demonstrated to
promote CRC by regulating Wnt/B-catenin signaling in SW480,
LoVo, or HCoEpiC cells (57, 73), activation of extracellular
signal regulated kinases (ERK) 1/2 cascade in HCT116, DLD-
1, and SW620 cells (100), protein kinase C (PKC) in Caco-2
cells (101), RhoA/Rho-kinase pathway in HCT-8/E11 and SRC
transformed PCmsrc cells (102), EGFR/PKC/Ras/ERK/cAMP
response element binding protein (CREB), phospholnositide-
3 kinase (PI3K)/Akt/TkappaB (IKKB)/nuclear factor kappa-B
(NF-kB) and p38/mitogen and stress-activated protein kinase
1 (MSK1)/CREB pathways and inactivates c-jun N-terminal
kinase (JNK)/c-Jun/activated protein-1 (AP-1) pathway (103)
and p53 pathway (80). Moreover, DCA activates JNK 1/2,
and AKT signaling pathways that result in selective resistance
to apoptosis, angiogenesis, proliferation and oxidative stress
(40, 104). Furthermore, DCA is also reported to activate anti-
apoptotic effect of NF-kB and induces IL-8 (105) and to
upregulate MUC2 transcription via MAPK, PKC-dependent
activation of AP-1 pathway in LiM6 cells (106). Meanwhile, LCA
induces expression of uPAR and increases cell invasiveness via
activation of ERK1/2 MAPK and AP-1 pathway in HT29 and
SW620 cells (107) and inactivation of STAT3 and Src/EGFR
pathways in HCT116 cells (92, 108, 109).

Cholecystectomy promotes the
development of colorectal cancer
by changing the gut microbiota

Gut microbiota and colorectal cancer

The intestinal flora is a great deal number and diversity
of microbial species, which is the most significant micro-
ecosystem in the human body. It has been estimated that
approximately more than 500 species of bacteria from 30
genera exist in healthy adult intestines (110). These bacteria
are composed of aerobes, facultative anaerobes and anaerobes,
and most of them are obligate anaerobes or facultative
anaerobes. Among the bacteria, 90% of the intestinal flora is
Bacteroidetes and Firmicutes (111). The intestinal flora is a
significant contributor in several physiological activities, such
as food residue metabolism, micronutrient synthesis, primary
bile acid metabolism, secondary bile acid synthesis, and immune
response regulation (112). In addition, these bacteria is able
to establish a biological barrier in the gut via space-occupying
effect, nutrient competition, and some secreted metabolites
(113), which can decrease low-grade inflammatory response
in the body and maintain the integrity of the intestinal
wall. Motivating the intestine to create an effective immune
defense system can modulate the absorption and conversion
of sugar and fat in the intestinal tract, subsequently ameliorate
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glucose tolerance and oxidative stress, and lower blood glucose
(114). Therefore, the homeostasis of gut microbiota plays
significant roles in maintaining human health (115-118).
However, dysbiosis of intestinal flora is involved in a wide range
of human diseases. A large of human and animal experiments
has confirmed that the dysbiosis of gut microbiota shows cancer-
promoting effects on gastrointestinal carcinogenesis, especially
CRC (119-126).

Cholecystectomy and gut microbiota

It has been well-acknowledged that cholecystectomy induces
tremendous changes in the composition and function of
the gut microbiota. For example, previous studies confirmed
that after cholecystectomy, the number of Bifidobacteria and
Lactobacillus was significantly decreased, while the number of
Enterococcus, Oscillospira, Escherichia coli, Bacteroidaceae and
Bacteroidetes was significantly increased (127-131). A previous
study demonstrated that 1 mmol/L of DCA can effectively
inhibit the growth of Clostridium perfringens, Bacteroides
fragilis, Lactobacillus and Bifidobacterium in the intestinal tract
(132). In addition, Cao et al. found that DCA significantly
upregulated the populations of opportunistic pathogens,
including Ruminococcus, Escherichia-Shigella, Desulfovibrio, and
Dorea. Moreover, they also confirmed that DCA significantly
increased the levels of Clostridium and Escherichia-Shigella, but
markedly decreased the abundance of Lactobacillus_gasseri and
mostly butyrate-producing bacteria, such as Clostridium leptum
Lachnospiraceae bacterium and Eubaterium coprostanoligenes
(83). On the contrary, an animal research showed that the
population level of Bacteroides was increased in the ceca of
rats fed with DCA (133). The main potential mechanisms
include imbalance of bile acid metabolism, cellular immune
abnormality, acid-base imbalance, and activation of cancer-
related pathways and induction of toxin, inflammation and
oxidative stress.

Imbalance of bile acid metabolism

Fibroblast growth factors (FGF) are cellular factors that are
synthesized by the terminal epithelial cells of the ileum and
are involved in the regulation of bile acid metabolism (134).
The FGF19 or FGF15 is transported to the liver through the
portal vein system to inhibit bile acid synthesis. A previous
study showed that the levels of FGF19 mRNA in the epithelial
tissues of the gallbladder were 250 times higher than that in
the terminal ileal epithelium (135). After cholecystectomy, the
balance of bile acid metabolism is disturbed as the expression
of FGF19 decreases and the primary bile acid production
increases, altering the bidirectional interaction between bile
acid and intestinal flora (128). The continuous drainage of
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bile into the intestinal lumen continuously stimulates intestinal
motility, which increases peristalsis and shortens the total
intestinal transit time. The enterohepatic circulation of bile
acid is accelerated and the production of secondary bile acids
is increased. The hydrophobic nature of secondary bile acids
increases their affinity for the phospholipid bilayer of the
intestinal bacterial cell membrane, leading to cell membrane
damage and bacterial lysis and death (70).

Cellular immune abnormality

The mucosal epithelium of the gallbladder could synthesize
surfactant protein D (SP-D) (136). The SP-D is excreted into
the intestinal lumen with bile and facilitates the synthesis of
intestinal T cells (137). Intestinal T cells are involved in the
regulation of inflammatory responses in the intestine. After
cholecystectomy, the lack of SP-D in the gallbladder drastically
reduces the number of intestinal T cells and predisposes
the intestinal tract to bacterial infection and dysbiosis (137).
Gallbladder surface protein D can also inhibit the growth
of Lactobacilli in the intestinal tract by directly binding to
Lactobacilli to induce lysis of Lactobacilli (137). Although
Lactobacillus is beneficial to the human body, its excessive
growth can affect the growth of other bacteria in the intestinal
tract, thus causing dysbiosis of the intestinal flora.

Acid-base imbalance

Small intestinal fluid is weakly alkaline, with a pH value
of 8.0-9.0. Normal bile is weakly acidic, and its pulsatile
secretion helps to create a good intestinal microbiological
environment and maintain a stable pH value in the intestine.
After cholecystectomy, alkaline bile is continuously secreted,
which affects the pH balance in the intestine. The optimal pH
values for the growth of Lactobacilli and Bifidobacteria are 5.5-
6.0 and 6.5-7.0, respectively (138). Therefore, the increase in pH
in the intestine inhibits the growth of beneficial bacteria such as
Lactobacillus and Bifidobacterium, leading to dysbiosis.

Activation of cancer-related pathways
and induction of toxin, inflammation
and oxidative stress

Activation of Wnt/p-catenin pathway has been implicated
in the development and progression of CRC (139-141).
E-cadherin is a well-known tumor suppressor, which can
exert its function through B-catenin (142). The correlation
between gut bacteria and E-cadherin/B-catenin has been
reported. For example, Fusobacterium nucleatum has been
demonstrated to attach E-cadherin on epithelial cells via its
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toxic factor FadA adhesin and stimulate B-catenin signaling
pathway, and subsequently induce the gene expression of Wnt
pathway (143). Meanwhile, a recent study also confirmed that,
in addition to the effect on alteration of gut microbiota,
DCA could downregulate the expression of E-cadherin, and
increase nuclear B-catenin expression, as well as initiation of
the downstream Wnt signaling molecules (83). Furthermore,
Fusobacterium nucleatum has been reported to release RNA
into the host cell cytoplasm, which could be detected by
cytosolic retinoic acid-inducible gene 1 (RIG-1), and then
activate NF-kB pathway, ultimately induce the expression
of inflammatory genes and oncogenes (144, 145). Besides,
FadA has been illustrated to bind to vascular endothelial
cadherin (VE-cadherin), causing VE-cadherin to relocate and
then increasing the permeability of endothelial cells, which
enables Fusobacterium and other bacteria species to enter
into the blood stream (146). Peptostreptococcus anaerobius has
been identified as a novel microbial promoter of intestinal
inflammation and tumor (147, 148). A recent research found
that Peptostreptococcus anaerobius could interact with toll-
like receptors (TLR)-2 and TLR-4 to motivate the generation
of reactive oxidative species (ROS), which can stimulate the
biosynthesis of cholesterol, leading to colon cell proliferation
and dysplasia in mice (149). Additionally, alternation of bile acid
has been revealed to induce the growth of pro-inflammatory
bacteria, such as Mogibacterium and Sutterella, which may
cause DNA damage and inflammatory response (150). Chronic
inflammation could then indorse the event of IBD-associated
dysplasia and development of adenoma-carcinoma sequence
(151, 152). It has been revealed that Bacteroides fragilis could
release bacteroides fragilis toxin (BFT), which activates a
pro-carcinogenic multi-step inflammatory cascade through IL-
17R, NF-kB and STAT3 pathways in colon epithelial cells
(153) and contributes the development of polyp-adenoma-
CRC (150). Escherichia coli, Bacteroides fragilis, Providencia
ewing, Micromonospora, and Peptostreptococcus anaerobius have
been displayed to induce CRC by production of a genotoxin
colibactin that could induce DNA damage (154, 155).

Outcomes of combined bile acid
applications

Although DCA and LCA present tumor-promoting effects,
UDCA is a therapeutic bile acid and has been reported to
have a chemopreventive effect based in vitro and in vivo (156-
160). Recently, UDCA was demonstrated to reduce the risk for
advanced colorectal adenoma (161, 162) and CRC (156, 163).
In addition, UDCA could modulate the gut microbiome (162).
UDCA can inhibit DCA-induced apoptosis via modulation of
EGFR/Raf-1/ERK signaling in HCT116 cells (164). Moreover,
co-treatment with low-dose celecoxib and UDCA reveals to
decrease cell growth in HT-29 colon tumor cells (165). Besides,
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FIGURE 1

Cholecystectomy promotes the development of CRC by the alternation of bile acid metabolism and the gut microbiota. The green arrow
indicates the levels are upregulated or the pathway is activated, while the red arrow indicates the levels are downregulated or the pathway is
inactivated. CRC, colorectal cancer; CYP7AL, cholesterol 7a-hydroxylase; CYP8BL, sterol 12a-hydroxylase; CYP27A1, mitochondrial sterol
27-hydroxylase; CA, cholic acid; CDCA, chenodeoxycholic acid; COX-2, cyclooxygenase 2; EGFR, epidermal growth factor receptor; uPAR,
urokinase-type plasminogen activator receptor; MR, muscarinic receptor; MMPs, matrix metalloproteinases; miR, microRNA; MUC2, mucin 2,
oligomeric mucus/gel-forming; TR, thioredoxin reductase; IL, interleukin; EPHA2, EPH receptor A2; ABCB1, ATP binding cassette subfamily B
member 1; ABCG2, ATP binding cassette subfamily G member 2; HLA, human leukocyte antigen; sIgA, secretory antibodies of the type IgA; XIAP,
X-linked inhibitor of apoptosis protein; ROS, reactive oxygen species; PGE2, prostaglandin E2; ERK, extracellular signal regulated kinases; CREB,
cAMP response element binding protein; PI3K, phospholnositide-3 kinase; IKKB, Ikappa B; NF-«kB, nuclear factor kappa-B; MAPK, mitogen
activated protein kinase; STAT, signal transduction and transcriptional activator; PKC, protein kinase C; MSK1, mitogen and stress-activated
protein kinase 1; AP-1, activated protein-1; JNK, c-jun N-terminal kinase.

UDCA inhibits Ras mutations, wild-type Ras activation, and necessary for acute and chronic cholecystitis, symptomatic
expression of COX-2 in azoxymethane (AOM)-induced colon cholelithiasis, biliary tract movement disorders, non-calculous
cancer in rats (166). However, a previous study found that long- cholecystitis, gallbladder tumors or polyps, and biliary
term administration of high-dose UDCA was associated with an pancreatitis. Gallbladders with good contractile function
increased risk of colorectal neoplasia in patients with ulcerative should be preserved as much as possible, not blindly
colitis (UC) and primary sclerosing cholangitis (PSC) (167). removed. However, whether other physiological changes
Currently, there are inadequate data to support the routine after cholecystectomy are associated with intestinal flora,
application of UDCA for chemoprevention of CRC, either in affecting the occurrence and development of CRC, and whether
the common population or among individuals who are at higher there is a direct correlation between the carcinogenic effect
risk for CRC. of secondary bile acids and intestinal microorganisms after

cholecystectomy are still unclear and need to be further
. . investigated. With the continuous research on the pathogenesis
ConClUSIOnS and prOSpeCtlonS of secondary bile acids-induced CRC, targeted therapies,
including targeted bile acid metabolism and intestinal
There are many studies on the pathogenesis of CRC. microflora regulation, may be promising treatment strategies
In this paper, we reviewed the recent studies on the effects for CRC.

of cholecystectomy on CRC (Figure 1). The results show

that cholecystectomy might promote the development of

CRC by alteration of bile acid metabolism and the gut

microbiota. The occurrence of CRC is related to changes Data availability statement

in bile acid metabolism, the composition and function

of the gut microbiota, and/or the interaction between The original contributions presented in this study are
the two factors. General surgeons should strictly grasp included in the article/supplementary material, further inquiries
the indications of cholecystectomy. Cholecystectomy is can be directed to the corresponding author.
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