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Introduction

Aging and sunlight exposure induce different changes in facial skin. Furthermore,

collagen synthesis and the dermal lifespan of fibroblasts are reduced. As a result, an

overall reduction of collagen and elastic fibers in the dermis leads to deep wrinkles,

skin laxity, and post-inflammatory hyperpigmentation (PHI), characteristics typical of

photoaged skin (1, 2). To date, several types of lasers for skin aging are marketed.

Manstein (3) was the first to introduce the concept of fractional photothermolysis

or fractional resurfacing Carbon Dioxide (CO2) laser. This new approach is based on

the generation of microscopic columns of thermal damage (both in ablation and in

coagulation) at the interface between epidermis and dermis, which stimulate a wound

healing response (4, 5) and collagen synthesis (6, 7). Furthermore, in vivo experiments

conducted by Cohen (8) showed that fractional treatments with 1,540 nm affect

coagulation, collagen production, and dermal remodeling, leading to skin rejuvenation

and benefits in acne scars and stretch marks.

It has also been observed that a solution of near-infrared (NIR) sources in which

coagulation is not sought is a 1540 nm fractional erbium-glass laser system, which

has many advantages over other lasers, including regulation of penetration depth

(2–3mm) (9). However, these conditions cannot induce tissue alterations but only

reversible action, which has significant biological effects on biostimulation: it causes

an increment in blood flow, cytokines, and growth factor changes. Generally speaking,

changes in growth factors and cytokines might be essential in the pathogenesis of the

1540 nm fractional erbium-glass laser-induced wound healing, hair regrowth and cellular
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metabolism (10). Fractional ablative lasers have a higher safety

profile than traditional ones (5). However, only the fractional

ablative CO2 laser requires higher energies to reach different

reticular depths, which could induce hyperpigmentation

and energy-related prolonged bleeding. In addition, these

post-treatment reactions should be associated with acute

inflammatory responses to skin heat damage leading to

increased side effects, such as persistent erythema, skin

changes, PHI, scarring, and prolonged healing time (11, 12).

On the other hand, the lower absorption coefficient of 1540

and 1550 nm devices results in a greater maximum depth of

1400 µm (13).

This different mode of delivering laser energy reduces the

post-treatment erythema and recovery times (14). Furthermore,

the thermal injury generated by non-ablative laser remains

spatially confined to the dermis, while the surrounding

skin enables fast recovery of damaged tissue. Complete re-

epithelialization is usually observed within 24 to 48 h (5, 15).

Fractional CO2 laser treatment stimulates a molecular

cascade that can lead to wound healing, collagen remodeling

and scar regression (10, 16–20). These molecular

processes also evoke an increase in type III collagen

synthesis (21), and histological analysis clearly shows

neocollagenesis, epidermal thickening and an increase in elastic

fibers (22).

It is well known that during the aging process, due to

photoaging, the skin shows a reduction in type I and type

III collagen (23). The synergistic combination of ablative

and non-ablative laser sources could improve the effect

on the tissue. The simultaneous emission of the CO2 laser

and the bipolar radiofrequency is a viable and possible

alternative, which provides epidermal coagulation and tissue

remodeling due to the production of new collagen in the

dermis. This methodology can modulate the coagulation

and ablative effects, affecting healing times compared to

typical CO2 laser stimulation (24, 25), reducing patient

downtime and pain, and improving skin rejuvenation

results (26, 27).

This dual wavelength system aims to couple the ablative

aspect of CO2 laser and the deep non-ablative e non-

coagulative properties to enhance the effects of CO2 laser

while limiting the side effects. For this purpose, the DuoGlide

system (DEKA Mela, Florence, Italy) was used in this study.

This technology combines the two wavelengths (CO2 and

1540 nm), but the possibility of excluding the CO2 allowed us to

perform an in vitro study of the non-coagulative thermal effect

of 1540 nm.

The effect of the 1540 nm wavelength on cultured fibroblast

is known to upregulate the expression of collagen-related

synthesis genes and, at the same time, to downregulate matrix

proteins production (28–30). On these bases, our research

aimed to evaluate the photobiomodulation effect of the 1540 nm

wavelength treatment on the proliferation of cultured fibroblast

and their ability to express type I and III collagen.

Materials and methods

Laser device description

The DuoGlide system (DEKA Mela Srl, Florence, Italy)

is a laser with a new design that incorporates a 10.6µm

Carbon Dioxide (CO2) laser device (60W) and a 1540 nm laser

(10W), which can be used with the fractional scanning units

(µScan DOT). This scanner can deliver one or both wavelengths

(1540 nm and 10.6µm) in a sequential emission mode on

the same microthermal zone (DOT) separated by healthy

tissue (DOT spacing) DOT; this allows for a tunable balance

between ablation and coagulation depths and for delivery of

new and more efficient treatments. Furthermore, the second

wavelength of 1540 nm conveyed through the new miniaturized

scanning systems can achieve homogeneous, continuous and

non-coagulative heating of the entire scanning area, reaching

further and deeper into the dermis (not gently reachable with

the ablative laser alone), thanks to spots of the order of 1000µm

emitted on the same axis as the DOT and thanks to the use

of the typical CO2 spacing parameters (∼500µm) used in the

literature for dermatological applications (25).

Cell culture

Adult HumanDermal Fibroblast cells (HDFa, Lot# 2207322)

were purchased from Thermo Fisher Scientific (Waltham,

Massachusetts, USA) and used following the recommendation of

the manufacturer. HDFa were cultivated in Dulbecco Modified

Eagle Medium (DMEM, PAN-Biotech GmbH, Aidenbach,

Germany) added with 10% of Fetal Bovine Serum (FBS), 1% of

Glutamine and Streptomycin (PAN-Biotech GmbH, Aidenbach,

Germany). Cells were kept under standard culture conditions

(37 ◦C and 5% CO2) and the DMEM was refreshed every 48 h.

Sample irradiation

To perform a colourimetric assay, HDFa cells were counted

using a Neubauer chamber (Karl Hecht Assistent GmbH,

Sondheim vor der Rhön, Germany), and 8 x 103 cells were

seeded in 96-multiwell plates (Greiner Bio-One Italia, Milan,

Italy). Before the experiments, cells were seeded in rows and

columns for each multiwell in alternate wells to avoid double or

partial irradiation. Next, each sample was maintained for 24 h

in standard culture conditions in DMEM without FBS. Then,

HDFa cells were subjected to irradiation.

Cytotoxicity and proliferation assay

Cellular viability was evaluated 24 and 48 h after the

treatment using the Cell Counting Kit-8 (CCK-8) assay
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(Sigma-Aldrich, Milan, Italy). The CCK-8 uses WST-8 reagent,

which is bioreduced by mitochondrial dehydrogenases and

becomes WST-8 formazan with an orange color soluble in the

tissue culture medium (31, 32). Proliferation was measured

by Sulforodhamine B-based assay (SRB, Sigma-Aldrich, Milan,

Italy) 24 and 48 h after irradiation. This test is based on

the capability of the protein-dye sulforhodamine B to bind

electrostatically and pH-dependent on basic amino acid residues

on cells. The quantification of the bound dye can serve as

an approximation of total cell biomass, thus cell proliferation

(33–35). Absorbance at 450 nm and 570 nm for CCK-8 and

SRB, respectively (reference wavelength at 630 nm), were read

using an automatic microplate absorbance reader equipped

with SkanIt software (Multiskan FC Micro-plate Photometer,

Thermo Fisher Scientific, Milan, Italy). Each experiment was

performed at least in triplicate.

Immunocytochemical staining and
fluorescence quantification

HDFa cells were cultivated in 35 mm2 dishes suitable

for confocal acquisition (Ibidi GmbH, Martinsried, Germany).

Cells were left homogeneously adhered to the bottom of the

petri dish to avoid bias during the subsequent analysis steps.

The immunocytochemical protocol was previously described

(36). Briefly, a 3.6% paraformaldehyde solution was used

to fix HDFa cells. After two washes in phosphate buffer

saline (PBS), cells were permeabilised using Triton-X100 for

10min at room temperature. The unspecific sites were blocked

using 10% goat serum diluted in PBS and 0.1% Tween20

(PBST). Primary antibodies were diluted as follows: anti-

type I collagen (1:400) and anti-type III collagen (1:200),

both in PBST solution. Secondary antibodies AlexaFluor555

and AlexaFluor647 were diluted at 1:500 in PBST. All the

antibodies were purchased from AbCam (Cambridge, UK)

and used according to the manufacturer’s instructions. Fixed

cells were incubated with the secondary antibodies for control

experiments to exclude non-specific binding. A mounting

medium with DAPI (4′,6-diamidino-2-phenylindole, Sigma-

Aldrich, Milan, Italy) was used to stain cell nuclei and mount

the coverslip. Immunocytochemical images were obtained by

SP8 laser scanning confocal microscope (Leica Microsystems,

Mannheim, Germany) using a 20x dry objective (NA 0.4). All the

photos from treated and control samples were acquired keeping

the same microscope parameters (gain, laser intensity, scan

area and speed. The collected images obtained were analyzed

with open-source software [ImageJ (37)]. Each image was

separated into two channels corresponding to the fluorescence

signal for a specific type of collagen (type I or type III). The

fluorescence intensity analysis was performed over the entire

image area (38).

Statistical analysis

The CCK-8 and SRB assay data were expressed asmean±SD.

In addition, the Kruskal-Wallis test followed by Dunn’s test for

multiple comparisons were performed. The data obtained from

immunofluorescence analysis were described as mean±SEM.

The Mann-Whitney two-tailed test was selected. Statistical

significance was set for all the experimental results at ∗p <

0.05. All the data were analyzed using the commercial software

GraphPad Prism 8th edition (San Diego, CA, USA).

Results

Evaluation of cytotoxicity and cell
proliferation after cell irradiation

Data obtained from the CCK-8 assay showed that all the

tested fluences (J/cm2) (2.1, 2.8, 3.5, 4.2) did not affect cellular

viability 24 and 48 h after treatment (Figure 1A). On the other

hand, the SRB assay demonstrated that the application of 3.5

and 2.8 J/cm2 induced a significant increase in cell proliferation

compared to the untreated samples. This increase occurred

24 h after the treatment, but was not observed after 48 h

(Figure 1B).

Confocal analysis of type I and type III
collagen

Firstly, we evaluated the fluorescence intensity of the basal

expression of collagen in HDFa cells not subjected to irradiation.

Figure 1C shows that type I collagen is significantly higher than

type III collagen. In Figure 1D, the application of 3.5 and 2.8

J/cm2 induced a significant increase in fluorescence intensity

related to type III collagen.

Discussion

The extracellular matrix (ECM) is responsible to the

physiological properties of the skin and its architectural

organization; the ECM consists of many elements, including

collagen fibers. Fibroblasts synthesize collagen so that the

skin contains typically from 80 to 85% type I collagen and

from 10 to 15% type III collagen. Chronologically aged skin

reduces collagen types I and III due to skin photoaging

(23). Radiation activates cellular mechanisms which cause

clinical manifestations of skin photoaging, such as wrinkles,

pigmentation, telangiectasias and neoplasm (39, 40) Nitrous

proteins and Cytochrome C oxidase are always considered

the main targets of light (41–43). However, recent studies

have shown that the cryptochromes and opsins (44, 45)
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FIGURE 1

Cell viability (A) and proliferation (B) after 24h (gray) and 48h (white) after the irradiation. Data are expressed as mean ± SD, n = 9 (A) and n = 18

(B). Statistical analysis: **p < 0.01 (vs. 0 fluence). The one-way ANOVA, Kruskal-Wallis test followed by Dunn’s test of multiple comparisons

(Continued)
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FIGURE 1 (Continued)

post-hoc. (C) Fluorescence intensity of type I and type III collagen in untreated cells: collagen was reported in light gray, type III collagen in dark

gray. Data are expressed as mean±SEM, n = 20. Statistical analysis: Mann-Whitney two-tailed test, ****p < 0.0001. (D) Fluorescence intensity of

type I collagen (light gray) and type III collagen (dark gray) compared at the same applied dose. Data are expressed as mean ± SD, n = 20.

Statistical analysis: Mann-Whitney two-tailed test, **p < 0.01; ****p < 0.0001 (vs. the same fluence). Example of confocal images of untreated

(E) and treated (F) HDFa cells. Type I collagen: red; type III collagen: green; cell nuclei: blue. Representative images were acquired with a 63x oil

objective (NA 1.4). Scalebar: 100 µm.

are responsible for the cellular response to visible and UV

light. The hypothesis therefore could be that a photon

of light could hit several molecular targets by activating

molecular targets such as reactive oxygen species (ROS),

adenosine triphosphate (ATP) and ionized channels (44, 46)

thus activating multiple signaling cascades. It is already well

established that NIR light, as well as the visible spectrum,

can induce a versatile and a significant range of changes

in the expression pathways of several genes, leading to

modifications in cell differentiation and proliferation, as well

as collagen synthesis (47–49). Indeed, a positive effect on

the induction of type I collagen production with 1,320 nm

wavelength was also observed during the wound healing

process (50).

The results obtained in this study are in line with

the scientific literature concerning the rearrangement of

types I and III collagen after laser therapy, suggesting a

neocollagenesis activation (51, 52). Indeed, our results

revealed a significant increase in type III collagen

expression improvement, confirming the laser-induced

neocollagenesis effect. Furthermore, our data demonstrate

that irradiation with medium fluences of 1540 nm modulates

cell proliferation. Concerning this evidence, even if there

is no evidence in the literature of the possible effects

of the laser in the various phases of the fibroblasts cell

cycle, our findings indicate an increase in the cellular

activity of the mitochondrial electrical potential following

laser treatment.
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