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Introduction

The respiratory coronavirus disease 2019 (COVID-19)
caused by the severe acute respiratory syndrome coronavirus
type 2 (SARS-CoV-2) quickly developed into a pandemic (1).
Even though laboratory diagnostic tests and vaccines were
consequently developed (2, 3), the exploration of rapidly
deployable, more reliable tools for addressing the current and
future pandemics was vital. Toward this goal, researchers
worldwide evaluated the use of medical detection dogs as a
rapid, reliable and cost-effective screening method for SARS-
CoV-2 infections (4). The ability of dogs to distinguish
diseases by their high-resolution sense of smell is based
on the volatile organic compound (VOC)-hypothesis (5).
Numerous infectious and non-infectious diseases change
metabolic processes releasing characteristic VOC-patterns in
the form of an “olfactory fingerprint” (6–10). Many studies
have shown that dogs can detect metabolic disorders, such
as cancer (11) and hypoglycemia (12), predict epileptic
seizures (13, 14), or even distinguish various pathogens (8,
15–17). Approximately 78% of the 27 SARS-CoV-2-canine
detection studies reviewed by Meller et al. yielded > 80%
sensitivity and approximately 60% of studies yielded > 95%
of specificity (4), highlighting the potential of the dog as
a “diagnostic system” and its recommendation for certain
settings. Despite these promising results, all studies published
up to now differed in numerous design features. They were
mostly designed as pilot studies and case-control selection of
patients was mostly favored over a more preferable cross-
sectional (“cohort”) selection [study quality assessment was
conducted and presented by Meller et al. (4)]. The aim of
this comprehensive review summary is to provide a general
overview of the divergent aspects that may impact canine
disease detection and to provide recommendations for future
deployment of medical detection dogs (see also summary in
Table 1). Specific emphasis is placed on the choice of dogs,
training paradigms, safety aspects, sample characteristics, pre-
screen processing (e.g., inactivation), and screening-population
and its environment related aspects, respectively (see also
Figure 1 and Supplementary Figure 1), providing an outlook
and proposals for the future standardization in the use of
dogs for disease detection. Ultimately, this report provides a
blueprint for the potential use of medical detection dogs in
future epidemics and pandemics.

Disease- or metabolism-derived
volatile organic compounds

Infectious and non-infectious diseases can produce
metabolic alterations that may be associated with the release
of volatile organic compounds (VOCs) from the body (6–10).
In this way, specific volatile biochemical fingerprints may
be detected and function as biomarkers for corresponding
diseases and their clinical course, provided that appropriate
sensory means are available (18, 19). The detective olfactory
potential of dogs and other animals has been researched in the
medical field concerning various infectious viral, bacterial, and
parasitic as well as non-infectious diseases and disorders like
epilepsy, diabetes, and cancer (5, 11, 20, 21). Horvath et al.
demonstrated that dogs can differentiate between normal and
neoplastic tissue as well as non-neoplastic disease processes
such as inflammation, necrosis or emergence of metabolic
products (22). For example, Ehmann et al. reported that
detection dogs were able to differentiate lung cancers from
chronic obstructive pulmonary disease (COPD) by sniffing
the breath (23). The occurrence of specific disease-associated
VOC-profiles using chemical analytical methods and technical
sensory devices was shown in ovarian (24) and breast cancer
(25) or in various respiratory diseases (26) and other infections
(27). By applying quantitative analytical methods in animal or
in vitro models, interesting questions about the temporal and
quantitative dynamics of VOC-production across infection
states and progress can be addressed. Traxler et al. (28) detected
VOC-changes in the breath of pigs after influenza A infection
versus control animals. Interestingly, none of the animals in
the study displayed clinical signs, indicating that changes in
VOCs still remain despite a lack of significant host immune
responses (28). Another study measured VOCs produced by B
lymphoblastoid cells following infection with specific avian and
human influenza strains in vitro. VOCs did change depending
on infection status, which coincided with the many cellular
processes that occur when an organism becomes infected (29).

Gould et al. summarized that, in various viral infections,
glycolysis in host cells is elevated due to the necessary energy
supply for replication, accompanied with increased production
of fatty acids, alkanes and related products (30). SARS-CoV-
2-infections were shown to lead to characteristic immune
and metabolic dysregulation in proteins and lipids in blood
serum (31). SARS-CoV-2-specific biochemical processes, such
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TABLE 1 Summarizing comments and recommendations for medical canine scent detection of samples from SARS-CoV-2-infected individuals.

Disease- or
metabolism-derived
VOCs

Canine detection of SARS-CoV-2-infection is thought to be mainly based on the detection of volatile organic compounds (VOCs). Canine
detection of VOCs can occur in real-time with high level of accuracy. However, VOC-detection is susceptible to environmental factors,
which can be difficult to standardize. The success of medical detection dogs’ VOC-detection depends largely on training with the right
variety of target odors.

Ethical considerations Dogs have different personalities and experiences. They are sentient beings. The learning method should only include positive reinforcement.
Dogs can fatigue and get frustrated, which should be considered in the training procedure and when they are deployed in the field. Thus,
dogs require adequate work/break cycles and regular positive rewards for their work.

Dog selection Not only anatomical but also the dog’s behavior and personality significantly impacts suitability as a detection dog. Physical and mental
fitness as well as high levels of motivation are of crucial importance. Dogs should have a solid willingness to work with humans. Prior
detection experience can be helpful.

Dog training Appropriate training is the key for success in detection. Defining the correct target scent in advance is challenging, especially when the
VOC-profile of interest remains unknown. The right grade of olfactory generalization vs. discrimination has to be achieved during training.
Sufficient variety of new samples of symptomatic and asymptomatic patients at different stages of the disease process are here required.
Duration of training can be variable and should be tailored to the individual dog’s success rate. Few days of “retraining” dogs after a longer
break are sufficient to reach initial levels of detection accuracy. Line-up, scent-wheel, and detection dog training system (DDTS) have been
used for training successfully. Apart from imprinting the specific scent to be recognized, also the search context needs to be trained for.
While automated approaches such as DDTS might offer a more randomized and rapid training by providing higher repetition rates, line-up
settings are closer to the search context in the field. Blank trials are important in order to test for forced choice decisions and to understand
the individual dog’s frustration threshold. Dogs should not only be trained with negative samples, but also ideally with samples from other
viral respiratory infections to reduce false-positive rates. Further work is needed to standardize and certify training procedures.

Susceptibility of dogs for
SARS-CoV-2

Dogs can be infected with SARS-CoV-2, but have a low susceptibility to the virus. Clinical signs are, if at all present, mild. However,
biosecurity measures for safe sample presentation, such as virus inactivation and/or safety sample containers during training and/or
deployment are recommended, not only for the dogs but also for the handlers.

Sample types Saliva, sweat, urine, and breath but also respiratory secretions and immediate body odor of SARS-CoV-2-infected individuals express specific
COVID-19-associated VOC-profiles, which can be used for training and testing. Sweat collected with cotton pads is not thought to be
infectious. Other sample types can be infectious and should be inactivated or presented in a container ensuring biosecurity. Only inactivation
procedures should be used, which have shown not to alter the target scent and could bias canine scent detection (see below). Most studies
have used sweat samples for practicality reasons. However, it is not clear if cotton-bound VOCs have a similar storage resilience than
fluid-bound VOCs such as saliva or urine, which may impact training. Further work is required to provide standardized sample materials.

Virus inactivation Beta-propiolactone (BPL), heat, ultraviolet radiation (UV), and detergent/solvent are possible measures for virus inactivation. While BPL
does not appear to alter canine VOC-detection, heat and detergents might have a greater impact on altering VOC-profiles, which remains
ambiguous for UV. However, the use of BPL-inactivation is more time-consuming, requiring laboratories with high safety standards. The
least VOC-altering method is to omit inactivation, which works especially well for sweat samples, providing a neglectable risk for infection.
In general, biosecurity aspects should never be disregarded and be approved by authorities.

Training sample
alternatives

Currently, well-established sample alternatives for a more standardized training for COVID-19-detection do not exist. Artificial
“VOC-cocktails,” samples from animal models, cell cultures, or pure virus protein are currently being tested and the tests are not yet
conclusive. It is likely that proteins can only be used in parts of the training and that the certification procedure will require samples from
SARS-CoV-2-infected individuals.

Target population and
operational applicability

Studies showed high accuracies for canine COVID-19-detection within seconds with similar or better detection performances than with
antigen tests. Depending on disease prevalence and characteristics of the population to be screened, the performance can alter. To ensure
certainty in defining the infection/disease status of an individual, multiple back-up dogs can be involved. Changing or distracting
environmental factors in the operational setting should be reduced or avoided.

FIGURE 1

Mind map representing key areas of interest highlighted and discussed by the group of experts. VOC, volatile organic compound.
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as those associated with modes of entry and replication in cells,
combined with induction of humoral and cellular immunologic
reactions as well as the dynamic cytokine release might play an
important role in COVID-19-specific VOC-expression (32).

The smell of COVID-19

Various studies exist, which give striking insights into
SARS-CoV-2-VOC-profiles with differing identifiable VOCs
mainly via gas chromatography-mass spectrometry (GC-
MS), gas chromatography-ion mobility spectrometry (GC-
IMS), time-of-flight-mass spectrometry (TOF-MS) or related
techniques (33–38). In principle, spectrometric techniques
enable the identification and quantification of VOCs in
breath samples, preceded by gas chromatographic separation
if needed. Prior studies have reported quantifiable differences
in about two dozen VOCs between individuals with COVID-
19 versus healthy individuals as well as individuals with other
respiratory diseases. Particularly striking here are COVID-
19-associated elevated concentrations of certain alcohols such
as butanol and propanol or derivatives (33, 35, 37, 38),
aldehydes such as heptanal, octanal, and nonanal (33, 34,
36), as well as ketones such as acetone and butanone or
derivatives (33, 38). Other substances with reported increased
concentrations are various alkanes, alkenes, further aldehydes,
aromatic substances, and their derivatives (33, 34, 36–38).
Decreased VOC-concentrations in COVID-19-breath were
shown for methanol (33) and – in contrast to Ruszkiewicz
et al. (33) – acetone (35). In addition, Feuerherd et al.
showed by headspace air sampling of virus-infected cell
cultures that specific differences in 2-butanone, nonane,
and pentanal concentrations represent robust discriminatory
features between SARS-CoV- 2-, human coronavirus NL63-,
and influenza A virus subtype H1N1-infections (39). Similarly,
Steppert et al. were able to discriminate between individuals
infected with influenza A virus or SARS-CoV-2 analyzing breath
samples via IMS coupled with a multicapillary column (40). In
a study from ten Hagen et al. dogs were able to discriminate
supernatants of SARS-CoV-2-infected human cell cultures from
15 other viruses including coronaviridae, orthomyxoviridae,
paramyxoviridae, pneumoviridae, adenovirus, and rhinovirus
among others (41).

The use of electronic noses (eNoses) has also been
explored by some studies for the detection of COVID-19.
Sensors and nanotechnology allow to detect differences in the
chemical composition of air samples by means of chemical
reactions with sensor arrays consisting of specific coatings of
certain metal oxides, organic polymers, nanoparticles, etc. (42,
43). The emerging differences in resistance and conductivity
produce corresponding “volatile finger-” or “breathprints” via
artificial neural networks (44). eNoses were able to discriminate
breath samples between individuals with symptomatic COVID-
19 versus healthy individuals (45–47) or other respiratory

diseases (48), Post-COVID-19 condition (49), and non-
symptomatic COVID-19 (47, 50). Two recent studies provided
evidence that also dogs can detect Post-COVID-19 conditions
(51, 52).

Detection of disease-related volatile
organic compounds by devices versus
dogs

Despite good discriminatory potential within individual
studies, the comparison of the described chemical analytical or
sensor methods between studies nevertheless highlights some
drawbacks of these techniques, which may create challenges
for their use in an open screening process. In the following
paragraphs, certain features of the canine and technical methods
are critically discussed.

First, it is not ensured that all relevant VOCs are reliably
detected via MS or sensor methods. Differences in databases
and small number of metabolites available as standards
complicate interpretations of MS analyses (53). Small ions,
molecules or molecular fragments cannot be easily detected
and make it difficult to interpret and draw conclusions
about originally contained compounds. For example, small
hydrocarbon-based molecules occur abundantly in exhaled
breath, making their detection complicated due to overlap
with molecules of similar spectra (38). In addition, certain
measurable VOCs are non-specifically altered across diseases
making disease discrimination prone to errors. For example,
elevated propanol in breath is associated with infectious and
non-infectious respiratory diseases other than COVID-19 (35,
54–57). Analogously, a certain “roughness” of detection is also
given with eNoses, since the selective and susceptible coatings
of the sensors might lead to physical limitations in qualitative
and quantitative resolution (42, 58, 59). These aspects become
impactful, especially when considering that VOCs in exhaled
breath are numerous and most of the VOC-compositions
have wide inter-individual variations (60). Similarly, some
uncertainties exist in canine detection, as well, since research
in perception and processing of certain olfactory cues in dogs
is not yet very advanced. Thus, the definition of the target
odor, especially in the medical field, remains one of the main
challenges in canine scent detection.

Second, differences in the detection of COVID-19-VOCs
across studies with MS-detection might emerge due to the
choice of different detection and analytical techniques, different
patient recruitment procedures and the environment (33, 37).
Snitz et al. and Rodriguez-Aguilar et al., who conducted
cross-sectional trials in a real-life scenario with eNoses, showed
the significant impact of differing sample acquisition methods
and environmental factors on the results (45, 50). Although
disease discrimination was possible, certain environment-
associated deterioration in eNose performance could not be
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excluded (50). Therefore, it is probable that the chemical
analytical and sensor detection methods are susceptible to
“olfactory noise” for COVID-19-detection. While these devices
might feed intrinsic and extrinsic VOCs to the analyzer in
an unfiltered, noisy, and “one-dimensional” manner, living
biosensors such as dogs may perceive the learned sensations
that are evoked due to a certain key composition, or “network,”
of complex and low-concentration VOCs. Dogs are therefore
possibly more capable of searching specifically for the “needle
in the haystack” than current technical solutions, provided
that training samples are correctly and meticulously defined
according to the target condition. However, olfactory noise
and other distractors may play an important role for canine
detection, as well, especially when using detection dogs in
the open environmental space. Further research is needed to
increase control of these confounding factors.

Third, chemical analytical instruments are often stationary
devices. They are mainly used offline and are coupled with
software for evaluative steps. eNoses are mobile and online
analysis is possible, but they require further software and deep-
learning approaches in order to “learn” and analyze specific
VOC-patterns. For example, the sensors must be able to detect
the correct compounds and in the correct ratio and at low
concentrations. The software then has to interpret the signals
correctly, and environmental factors can cause difficulties, as
described above. Each specific application needs considerable
method development work in advance and is cost-intensive
which is a drawback in rapid pandemic dynamics of emerging
pathogens. Marder et al. stated that “data processing is a
major bottleneck of metabolomics” (38). Furthermore, sensors
often have a short life and their sensitivity deteriorates in
presence of humidity (42, 48, 50). The analysis time for chemical
analytical devices or sensors used for COVID-19-detection in
the aforementioned studies (see section “The smell of COVID-
19”) revealed a range of one to 16 min per sample. Dogs, on
the other hand, are mobile and can identify COVID-19-samples
within a few seconds, i.e., in real-time. This requires preceding
specific canine training for high discriminating performance of
approximately 4 weeks with a range of 2–15 weeks regardless
of the chosen training method (when studies with dogs that
had previous COVID-19-scent experience were excluded) (4).
However, a variety of factors can have a large influence
on learning efficiency, e.g., number of sample exposures,
environmental factors, the success of odor generalization,
etc. Furthermore, personality traits of dogs and emerging
fatigue during work (see also section “Considerations regarding
Dog Selection”) are impacting factors, which represent a
disadvantage compared to well established artificial devices.

Finally, the lower limit of detection in dogs is one part
per trillion (ppt), exceeding the range of detection of current
available instruments by around three orders of magnitude (61–
63). A new study shows that dogs are indeed able to detect
even far lower concentrations, in the order of 10−21 (Turunen

et al., unpublished). Since it was reported that VOCs from
breath are released in the range of parts per billion (ppb) to
ppt, dogs might appear more suitable for VOC-detection in
comparison to instruments with sensitivities in the ppb range
(50, 64). However, the canine range of detection was validated
in controlled environments, which could mask an actual lower
sensitivity. In addition, sensitivity might also depend on the
qualitative characteristics of the target odor.

In hospitals and other health care facilities, chemical
analytical and sensory instruments are well suited for sensitive
and relatively rapid isolation of patients (33, 37), provided
that they are swiftly fed with sufficient data for rapid adaptive
purposes (36, 65). For external mass screening, the use of
such technical devices for VOC-detection is complex due
to sample processing time, limited selectivity, and increased
susceptibility to material damage as well as to external olfactory
noise in a poorly controllable environment. Although similar
challenges may exist for dogs, their ability to learn and
to process information immediately can make them more
capable of searching for specific odors in real time, particularly
in complex environments. However, the success of canine
detection depends significantly on the training methods and
the choice of the right training samples, which is one of the
main challenges and disadvantages compared to established
analytical and sensory methods. Finally, dogs are likely to be
complimentary to sensors and analytical methods and more
appropriate for certain scenarios.

Ethical considerations for using
detection dogs

One important consideration in repurposing dogs’ olfactory
abilities for the detection of specific odors is that dogs are
living beings with different and individual needs, characters,
experiences, behaviors, and capabilities (66). In addition, these
elements may differ in the same individual over time due to
intrinsic and extrinsic factors. These characteristics, which from
an ethical point of view must be protected and respected,
considerably distinguish dogs from standardized, industrially
produced test kits that have been tailored to a specific purpose
(67). Ethical considerations in using dogs’ abilities for human
purposes are therefore paramount. The method of operant
conditioning including positive reinforcement of correct
searching behavior by reward (food, toy, etc.) and absence
of reward for undesired searching behavior, is considered as
ethically unobjectionable, and was the method used across
the canine SARS-CoV-2-detection literature (4). For the dogs,
the method forms a motivation and pleasure driven detection
exercise using olfaction as one of the most important sensory
and cognitive tools in macrosmatics. On the other hand, one
is confronted with potential short-term issues such as fatigue
and/or boredom after a certain time of action, highlighting the
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importance of specific and individual adaptations in training
and deployment according to the different personality traits of
the dogs (67). However, Guest et al. drawing on their experience
of deploying medical scent detection dogs, suggest that two
trained dogs would have the potential to screen 300 individuals
in 30 min in a COVID-19-screening scenario (47), which
exceeds the capacity of current available testing methods by far.
After the fast screening of a population by canine detection,
reference standard reverse transcription quantitative real-time
polymerase chain reaction (RT-qPCR) of positive scent detected
individuals can be applied as further downstream verification
(47). Such approaches were already being pursued early in the
pandemic, e.g., at Dubai Airport in July 2020.

Importantly, when dogs are deployed in the field and
the disease of interest has a low prevalence, reducing the
opportunity for the animals to succeed in detection, positive
affective and motivational states of dogs have to be sustained
in order to avoid frustration (68). This can be achieved, for
example, through regular rewards for the respective detection
procedure or for detecting specifically prepared (positive)
samples (69–71). Interestingly, variation in reward types may
lead to a more pronounced maintenance of motivation in some
dogs (72). In addition, adequate work/rest cycles for the dogs are
of significant relevance for animal welfare and for high efficiency
in scent detection work (73, 74).

Considerations regarding dog
selection

Besides a well-functioning and harmonic partnership
between dog and its handler, many other individual factors can
ultimately influence the effectiveness of olfactory detection.
These are highlighted in the following. Three recent reviews
provide a more detailed overview about the anatomy,
physiology, and other factors related to canine olfaction
performance (75–77).

Intrinsic factors

Breed-specific anatomy and physiology
The paucity of comparative studies on the olfactory

abilities of different dog breeds including intra-breed variations
represents a challenge for the selection of suitable detection
dogs (75, 76). Although it can be hypothesized that anatomical
and physiological characteristics of the olfactory organ play a
crucial role, behavioristic and mental aspects, personal traits,
and experiences are of no less importance for adequate canine
screening work (76).

The mechanisms involved in molecular recognition in
olfactory receptors (OR) and olfactory sensory neurons and
in the identification of specific odorants are still only partially

understood. In this regard, the current consensus is that each
OR has a characteristic ligand spectrum and each odorant
can also be detected by a combination of ORs (78). Gene
polymorphisms in expression of ORs in the same breed but
also between breeds differ and may be used as an indicator for
scent discrimination performance (79–83). In addition, the total
number of neurons, i.e., the size of the olfactory epithelium, may
have an effect on olfactory acuity in dogs (79), which might be
due to enhanced olfactory resolution with increased numbers
of neurons (84). One study showed that dolichocephalic or
normocephalic dogs (often classified as scent breeds) and wolves
have better olfactory capabilities than non-scent breeds and
brachycephalic dogs (85). Brachycephalic breeds have less space
for the olfactory epithelium to expand in the nasal cavity and less
olfactory cells reducing olfactory sensitivity, and pronounced
breathing issues leading to reduced cerebral oxygen supply,
reduced heat elimination, and therefore to quicker fatigue (84,
86, 87). Thickened conchae and less ramifications inside the
nasal cavity may be a reason for less epithelial surface (88).
Brachycephalic breeds should therefore be avoided for scent
detection tasks (76). Controversially and surprisingly, Hall et al.
showed that pugs are able to outperform German shepherds in
olfactory tasks (89), highlighting that behavioral aspects play a
crucial role as well.

Furthermore, olfactory airflow in dogs in ethmoidal regions
is laminar which is optimized for scent molecule transport
(62, 90). This type of airflow is impacted in brachycephalic
breeds due to an obstructive and deforming development of
the nasal cavity and nasal conchae (87, 88), especially since the
dorsal meatus in the canine nasal cavity, functioning as a bypass
for olfactory laminar air supply, is only ventilated when high
inspiratory pressure is applied (62, 90, 91). However, Wagner
and Ruf showed that a large surface of the bony turbinates
in dolichocephalic dogs is not the main reason for a better
smelling ability (92), highlighting, again, the fact that breed and
anatomy should not be the ultimate reason for defining a good
detection dog (76).

All mentioned dog breeds in the reviewed literature
of canine COVID-19-detection by Meller et al. were
normocephalic breeds, which are typically used for scent
detection work and are known for their outstanding olfactory
capabilities and resilience (e.g., Belgian Malinois, German
Shepherd, Labrador Retriever) (4).

Dog health, behavior, and sex
Impact of physical, behavioral, and sex related factors are

less investigated than anatomical properties. In addition to a
well-functioning olfactory system, a high degree of physical
and mental fitness and especially motivation are essential for
dogs to focus on the target scent in different environments
(76, 93). Although the speed of dogs’ olfactory system is
currently unsurpassable by itself, a high level of stamina, agility,
athleticism, and motivation in dogs is of great benefit to enhance
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testing throughput. A high motivation and fitness level can
compensate for difficulties in search tasks that prove fatiguing
and where target odors are scarce (94–96).

Good cooperative work with humans, especially a balance
between obedience and independence, is essential in deployed
dogs. On the one hand, independence ensures self-determined
searching strategies rather than being potentially misguided
by the dog handler. On the other hand, obedience leads to
efficiency, where the dog handler can narrow down the area for
the search (76).

Aggression toward humans and other animals should be
excluded and distractibility and anxiety levels should be as low
as possible. Female dogs are generally considered less aggressive
and more cooperative (97–99). In terms of neurophysiology,
cells in the olfactory bulb of female dogs were shown to be
more active than in males. Furthermore, female dogs have
a better long-term memory (100). Neutering was assumed
to decrease levels of aggressiveness and distractibility (101,
102) and males were shown to perform better in terms of
directionality assessment of the target odor (103). Importantly,
however, Jamieson et al. summarized that breed and sex finally
should not be the crucial cornerstones to assess suitability of
detection dogs since training, socialization, experience, and
long-term and short-term environmental exposure can have far-
reaching influences (76). Sex aspects and potential differences in
terms of olfactory performance were not relevant in the screened
COVID-19-detection studies (4).

Physical health of deployed dogs should always be
guaranteed in the first place from the perspective of ethics
and animal welfare and, secondly, not to interfere with their
scent performance. Diseases and disorders capable of impacting
canine olfaction are, e.g., tumors and injuries in the nasal
cavity, infections like aspergillosis, distemper and parainfluenza
as well as endocrinological disorders like hyperadrenocorticism,
hypothyroidism, and diabetes (104, 105). Also, the function of
the vomeronasal organ, supposed to be responsible for detection
of pheromones and low-volatile substances, can be impacted by
diseases (77). A parotitis was shown to decrease the accuracy of
SARS-CoV-2-detection in one study dog (69).

SARS-CoV-2-infections can affect olfaction in people (106)
and in some animal models [e.g., hamster (107) and mouse
(108)]. Although dogs can be infected by SARS-CoV-2 (109,
110), typically, no clinical signs or mild and reversible signs are
observed and susceptibility appears to be low (111). However,
biosafety measures should be used when deploying scent
detection dog teams (see also sections “Susceptibility of dogs for
SARS-CoV-2” and “No viral inactivation”).

Dog mental condition and age
Olfaction is affected by aging processes, and can manifest

in atrophic degeneration of the olfactory epithelium, decreased
neurogenesis and loss of olfactory cells and their cilia (112).
Wells and Hepper showed that younger dogs perform better

in olfactory directionality perception than older dogs (103). In
addition, pathological aging (e.g., canine cognitive dysfunction)
is associated with lower olfactory capabilities (113–115),
analogous to human patients with Alzheimer’s disease (116). In
27 studies reviewed by Meller et al. (4) the median age of dogs
involved in COVID-19-detection was 3 years (range 0.5–12.0).
Age dependent canine olfactory performance in COVID-19-
detection cannot be provided as such comparisons were not in
the scope of the reviewed studies (4).

Extrinsic factors

Prior scent detection experience
Previous detection experience in dogs is of great advantage.

However, inexperienced dogs can be trained and deployed
for COVID-19-detection, as well, achieving high diagnostic
accuracies (4). For example, Chaber et al. showed that
inexperienced dogs were as efficient and accurate as experienced
dogs (117). Experienced dogs that are accustomed to the
mechanics and environment of odor detection tasks, may only
need to learn the new target odor-profile, whereas more time
must be allowed for inexperienced dogs to learn to handle the
procedure in the setting confidently and efficiently. However,
more time should be calculated when changes in setting between
training and testing occur (71, 118), even for experienced
dogs, in order to ensure understanding of the new search
context. Interestingly, the experience of dogs in detecting odors
seems to be positively correlated with the ability to cope with
more complicated odor information and with stability of long-
term memory (100). Inexperienced dogs seem to use olfaction
to a lesser extent than experienced dogs (119), highlighting
that olfaction is subject to learning processes and plasticity
and can be shaped accordingly. Therefore, frequent olfactory
exercises with alternating scenarios are beneficial to the training
repertoire and experience.

Dog operational environment
High environmental humidity seems to be favorable for

scent perception in dogs probably due to increased nasal
humidity and enhanced odorant trapping (120), while high
temperatures might have a negative impact on the general work
flow (121). The dehydration of the mucosal layer in the dog’s
nose can decrease the odor detection capabilities (122). The
training and sample assessment by the dogs is preferably done in
a spacious and conditioned room with controlled temperature
and humidity. Still, dogs should be let out in between
runs to avoid boredom and increase their odor detection
capacity. It was found that dogs had a lower performance
when they were exposed to direct sunlight and at higher
temperatures (Callewaert et al., in preparation). Kokocińska-
Kusiak et al. described environmental factors concerning canine
scent detection in the open field, highlighting how sudden
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environmental changes might impact olfactory abilities (77).
However, even in a more spatially restricted searching context,
where dogs are involved as screening tools, alterations of
external factors should be kept to a minimum. In the study of
Vesga et al., COVID-19-detection dogs directly sniffing people
in public transport performed at 69% sensitivity. However,
those dogs had no training for 2.5 months prior to this testing
scenario and still performed well (118). In the study of ten Hagen
et al., dogs had high detection accuracy in line-up screenings
at concerts (sweat samples, sensitivity 82%, specificity 100%)
following the training phase of one to two weeks in a line-up
setting (71). Apparently, dogs’ performance was not affected
by potentially constantly changing odor-profiles at the testing
location, although testing was restricted to a dedicated, roofed,
and protected area (71). It may be probable, that a setting of
stationary and somewhat isolated dog detection procedures in
the form of a checkpoint, e.g., in an isolated roofed space, is
more suitable, efficient, and more constant than letting dogs
pass through crowds of individuals where olfactory and further
environmental sensory distractions may have a higher impact
(69, 123). Interestingly, there are also specific and rigorous
training programs for explosive detection dogs (e.g., Vapor
Wake R©dogs) designed for the reliable detection of odorants
in aerodynamic wakes of moving individuals in crowds of
people (124).

Other external influences on canine olfaction performance
can originate from food and drugs. Certain food compositions
and ingredients can enhance or decrease olfactory acuity (120),
which seems to be dependent on the level of physical exercise in
dogs. Angle et al. found benefits to olfactory performance when
corn oil supplemented diets were used together with exercise
(125), whereas feeding coconut oil supplemented diets without
exercise impaired olfaction (126). Interestingly, relatively few
studies exist concerning commonly used drugs in dogs and their
impact on olfactory performance (77). Especially, metronidazole
(127) and steroids like dexamethasone or hydrocortisone (128)
have the potential to impair olfaction.

Considerations regarding dog
training

Training is the most critical step in predicting the success
of dogs in any form of detection work. Dogs without prior
odor detection training must learn the value of odor detection,
associating a reward with the smell of the target sample. The
physical mechanics of searching for and responding to odor
in the training and testing environment may be novel to dogs,
even to those with prior odor detection experience. Many dogs
trained in odor detection (e.g., explosives, narcotics) are trained
to recognize an odor, but are not required to discriminate
between two very similar odors (i.e., human scent from a
diseased state versus human scent from a non-diseased state).
Therefore, dogs must learn that the background scent (i.e.,

individual people) can vary greatly, but the target is the common
scent present in only diseased individuals, a task which requires
generalization (129). Thus, defining the correct target scent in
advance is crucial for the training and subsequent testing in the
field (see section “Variability of samples”). Because little is yet
known about the COVID-19-odor, target scent definition may
seem inconsistent, especially early in a pandemic. Nevertheless,
the majority of dogs involved in COVID-19-screening studies
performed with high diagnostic accuracies with novel samples
in the diagnostic test evaluations (DTEs) (4).

The training method used across COVID-19-studies was
operant conditioning with positive reinforcement of correct
searching and indication behavior using reward (food, toy, etc.)
and the classical conditioning for odor imprinting (presentation
and conditioning of the target scent). This method allows
for an intrinsically arising motivational boost, which is the
determining factor for successful learning. However, training
protocols differ depending on the materials, settings, and
learning approaches that were used (4). Therefore, there is a
lack of standardization of canine training methods for disease
recognition, especially for COVID-19, resulting in uncertainty
in intra- and inter-dog reproducibility and in translation to real-
world scenarios (130). Currently, standardization methods are
being developed and a detailed training protocol is provided
as supplemental material by Chaber et al. (117). Furthermore,
ten Hagen et al. emphasized that integrating other, similarly
acting pathogens into training procedures is reasonable in order
to decrease the false positive rate and to sharpen the accuracy
of dogs for SARS-CoV-2-detection (41). Once dogs learn to
reject samples of similar pathogens that appear frequently in
a population, sharper discrimination between these pathogens
and the target pathogen can be achieved (41).

Olfactory generalization

A key component for consideration during the training
process is the scent generalization, which ensures that the
dog searches for the common scent-profile of a target
condition among all samples of interest rather than recognizing
individuals (129). The degree to which generalization is required
also depends on the search context. When deploying dogs as a
pandemic countermeasure, exposing the dogs to numerous and
varied samples from both affected and unaffected individuals
will likely lead to higher proportions of correct decisions in
an open field screening-scenario, where sources of olfactory
confounding factors may be numerous (e.g., age, physiological
condition, other diseases, diets, hygiene, habits, environment,
etc.). However, too broad of a generalization gradient can also
lead to a “dilution effect” of the target scent perception. In
this condition, a wide range of different odors is present in
the learning repertoire, which differ gradually from the target
odor. Thus, too much generalization may mean that dogs
also recognize odor-profiles that are merely COVID-19- or
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SARS-CoV-2-associated. This would lead to an increased false-
positive screening rate. Training on a narrow and invariable
scent repertoire, on the other hand, can lead to increased
discrimination and to confident recognition of very explicit
odor patterns or individual samples. This situation can be
a problem for screening of a disease-associated odor-profile
among plethora of individual odors, potentially leading to
an increased false-negative screening rate (129). The main
challenge in canine medical scent detection is to assess the origin
of the olfactory profile of interest through a myriad of metabolic
and other processes, and thereby to define the target odor. The
lack of knowledge about the exact odor-profile of COVID-19
and whether this odor-profile is consistent among individuals,
represents a “black box” for dog training and makes balanced
generalization very challenging. Both balanced generalization
and discrimination can be useful, depending on the search
context, to enable multi-layered searches, e.g., starting with a
broad screening by dog x (e.g., condition) followed by a specific
search for a particular target (e.g., pathogen or variant) by dog y
(see also section “Standardized sample alternatives”). In order
to assess adequate degrees of generalization dogs should be
regularly confronted with new samples, both during training
and, more importantly, when DTE is conducted. Dogs’ reaction
should always be carefully observed, especially when confronted
with novel samples, to determine whether generalization
processes took place. However, the exact mechanisms of
olfactory generalization remain poorly understood (129). An
interesting contribution could be made by studies that titrate
the intensity of generalization upon detection of disease odor
against dogs’ performance. In this way, rates of correct choices
for defined samples, or a defined condition, could be compared
between dogs trained with different odor-profiles varying
in their odorant spectrum. This could provide important
conclusions about the relative generalization process. However,
it is probable that generalization depends on further properties
of odorants, e.g., source, quality, and quantity of odorants,
interactions between odorants, etc., as well as on the individual
dog’s personality or learning style.

Training duration

Training periods varied between canine COVID-19-
detection studies as durations were chosen arbitrarily. Overall,
dogs were trained in 2–15 weeks (median 4 weeks), including
habituation (e.g., familiarization with scent work, search
contexts, and workflow) and/or imprinting, for the detection
of COVID-19- or SARS-CoV-2-infections, if no prior COVID-
19-scent experience was present. No systematic testing for
detection accuracy after different previously defined training
periods has been reported and typically the increasing training
performance over time was used as a basis for the decision to
start the DTE (4). Vesga et al. showed that dogs still performed
in an acceptable way (69% sensitivity, 94% specificity) after a

training gap of 2.5 months (118). Interestingly, half a week of
robust “retraining” of dogs with previous COVID-19-detection
experience resulted in comparable high COVID-19-detecting
performance as observed after initial training (41, 52, 71).
In contrast to the results in the study of Vesga et al. (118),
a recently published study highlighted that dogs indeed can
remember at least 40 different defined odors, not experienced
within 12 months, with 100% accuracy (131). However, the
metabolism-induced smell of a disease may be more complex
and more difficult to detect (and to remember) than more
simple odors, especially among numerous individuals. In
addition, it appears important to regularly confront dogs with
fresh samples in order to react dynamically to changing disease
conditions (e.g., new virus variants) early and reliably. Further
research is necessary to assess the potential of canine olfactory
memory in order to establish efficient training and break plans
for the maintenance of high olfactory performance and for the
reduction of fatigue- and boredom-related performance losses.

Training setting

The majority of the 27 reviewed studies by Meller et al. (4)
used training with line-ups (19 studies; Figure 2). Scent-wheel
training (Figure 3) was used in three studies while five studies
used the Detection Dog Training System (DDTS; Figure 4), a
device dedicated to the automated, randomized and software-
driven presentation of samples (4). In the more classical training
methods, great care needs to be taken when exchanging the scent
containers, so that sequencing is randomized and blinding of
the study is guaranteed which, in addition, requires sufficient
personnel and material. Manual and frequent exchange of
containers is time-consuming and contamination of containers
needs to be avoided. In case of reusable sample containers
cleaning after usage and between sessions with different dogs is
of crucial importance. While in the traditional approach the dog
usually works together with its handler, in the DDTS-approach
the dog works independently, significantly decreasing handler
bias [“Clever-Hans”-effect (132)], and the sample presentation
frequency is high with multiple presentations per minute and an
automated reward system. The studies that used DDTS observed
generalization quickly despite a limited number of samples used
(41, 52, 71, 133, 134). While such automated approaches might
enable fast scent conditioning (135), they lack the reference
to real-life scenarios where samples (or individuals) would be
presented along a line (e.g., airports, schools, events, etc.) to
the dog and its handler. Therefore, it is recommended to use
a mixed approach using automated methods for initial fast,
unbiased scent imprinting and generalization with subsequent
habituation and training at line-up or scent-wheel settings to
train dogs for systematic and controlled screening in real-life
scenarios. It is also recommended to regularly challenge dogs in
training with “blank trials”. These trials, which do not contain
samples with the target odor, are conducted to evaluate whether
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FIGURE 2

Dog and its handler working in a line-up setting.

dogs perform forced choice decisions, possibly due to rapid
frustration after not finding the target odor. Especially, when
prevalence of a certain disease is low, such frustration thresholds
in detection dogs must be high and monitored. Based on the
frustration level of the individual dog, target scent samples
should be presented at a dog specific interval to keep frustration
levels low (see also section “Ethical Considerations for Using
Detection Dogs”). Of the 27 reviewed studies by Meller et al.,
only nine studies reported the use of blank trials (4).

Susceptibility of dogs for
SARS-CoV-2

To date, little is known about the susceptibility of dogs
to SARS-CoV-2 and the disease caused by it but initial
findings indicate that the susceptibility is low (111). However,
studies have shown that dogs can be infected, accompanied by
seroconversion, but usually do not show symptoms of disease
(110, 136–140). However, a rare association between SARS-
CoV-2-infections and the development of myocarditis has been
suggested (141). Virus shedding seems to occur to a small extent
due to limited titers and during a very short period of time
(136, 139, 140). In addition, infection appears to be complicated
because only a small percentage of dogs living in households of
COVID-19 patients become infected (110, 137, 138). Therefore,

there is currently no evidence that dogs play a determining role
in virus circulation or transmission to humans, but this should
not be ruled out at this stage (110). In contrast to dogs, ferrets
and cats seem to be more susceptible to SARS-CoV-2-infections
(111, 142, 143).

In the reviewed studies of canine COVID-19-detection,
there are no reports of SARS-CoV-2-infections in the involved
dogs (4). Of the three studies that conducted PCR-testing
of the dogs after the tasks, none of the dogs tested positive
(118, 134, 144). However, those studies had high biosafety
standards. Biosafety measures should be addressed in training
and testing, such as safety containers (118, 134, 145) or chemical
and physical viral inactivation measures (41, 52, 71, 133, 134,
145–147). In addition, personal protective equipment should
be used to protect involved individuals, even in the case that
samples show low infectivity (see section “Sample types”). The
following sections discuss the wide variability of sample types
and inactivation measures used in reviewed canine COVID-19-
detection reports (4).

Samples for use in training and
testing

Upper respiratory tract samples like nasopharyngeal
(NPS) or oropharyngeal (OPS) swabs and, under certain
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FIGURE 3

Dog working at a scent-wheel.

circumstances, lower respiratory tract samples (e.g.,
tracheobronchial aspirates) are routinely used for the detection
of viral nucleic acid via PCR-techniques (148). Especially RT-
qPCR as well as lateral flow immunoassays (LFIA) are currently
widely used to identify ongoing infections and rely on the
direct detection of viral presence by identifying certain nucleic
acids or antigens, respectively (149). Temporal and quantitative
presence of SARS-CoV-2-RNA detected via RT-qPCR varies
across different human biological sample types and across the
duration of infection (150, 151).

Although the virus is essential for the induction of VOCs,
the metabolic changes detected by dogs are not necessarily
linked to the persistence of the virus, neither locally nor
temporally, and VOC-release may lag or precede detectable viral
infection (51, 52). A global COVID-19-VOC-profile affecting
the whole organism seems to be plausible since Jendrny et al.
could show that dogs were able to detect SARS-CoV-2-infections
in different body fluids although being trained with only one
sample type (134). How essential VOCs change over the time
course, disease state, and other disease characteristics still needs
to be elucidated. Nevertheless, if biological samples are used for
training, it is of crucial importance to “capture” the odor-profile

related to the operational usage, e.g., acute and active infections,
since only then dogs can be involved as screening tools.

The following sections will give a brief overview of sample
types used in the reviewed COVID-19-scent dog literature by
Meller et al. (4). Sample handling and options for preserving
VOCs in samples (e.g., storage, etc.) can be found in the
individual study protocols.

Sample types

Saliva and respiratory secretions
Most studies comparing viral content in saliva and

respiratory samples showed saliva samples to contain
SARS-CoV-2-RNA in patients of differing age and with
differing severities of COVID-19-infections (152). Saliva may
substantially contribute to the airborne/droplet transmission
(153, 154). It is suggested that in the oral cavity and in epithelial
cells of minor salivary gland ducts significant expression of
angiotensin-converting enzyme 2 (ACE2) and transmembrane
protease serine subtype 2 (TMPRSS2) may contribute to
enhanced viral invasion of the host cells by coronaviruses
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FIGURE 4

Dog working at an automated detection dog training system (DDTS).

(154–157). High levels of SARS-CoV-2 in saliva are usually
already detectable at COVID-19-symptom onset, and usually
the loads are similar or slightly lower than in NPS/OPS (151,
152, 158–164). Some studies showed higher viral loads in
saliva in some patients or positive tested saliva samples while
NPS/OPS presented negative (163, 165–167), which could be
due to poor NPS/OPS sampling quality or due to earlier viral
manifestation in the oral cavity (165). Nevertheless, a significant
decline of viral loads in saliva takes place in the later time points
of infection compared to NPS/OPS (151, 158, 159, 162, 164).
Interestingly, the grade of salivary viral load does not seem to be
associated with disease states (158, 168).

For scent dog detection, saliva was used in the DTEs of six of
the reviewed studies, whereas upper airway samples were used
in four of the 27 studies (4). Saliva is relatively easy and quick
to obtain, but can contain high loads of viable SARS-CoV-2 in
infected individuals. Therefore, samples have to be inactivated
or presented in a high-security setting in order to protect dogs
and their handlers from infection (see section “Pre-processing
of samples”). These crucial steps can considerably complicate
the training. Jendrny et al. showed that dogs trained with beta-
propiolactone (BPL)-inactivated saliva samples can transfer
their gained olfactory abilities to the detection of previously
unknown non-inactivated SARS-CoV-2-positive saliva samples,

and even to previously unknown non-inactivated SARS-CoV-2-
positive sweat and urine samples (134). This successful transfer
performance simplifies the training (and the real scenario
deployment) considerably as it can be extrapolated from the
results that regardless of the training samples used, COVID-19
can be detected by trained dogs in the real screening scenario
based on a global and specific disease odor. Similarly, Essler
et al. showed canine transfer abilities between urine and saliva
as well (145). These results support the GC-MS-based studies
by Penn et al. and Soini et al. who revealed that general
VOC-compositions in human saliva and sweat overlap to a
large extent (169, 170). The probable direct infection of the
epithelial cells in the salivary gland ducts would provide a high
grade of COVID-19-associated VOCs dissolved in saliva and
further secretions from the oral cavity functioning as stable
carrier media. However, it remains to be elucidated if the fluid-
bound condition in saliva might elongate VOC-presence in
contrast to non-fluid-bound VOCs as it occurs in sweat/body
odor samples. Interestingly, research in biomarkers established
the term “salivaomics” since composition of saliva appears to
be sensitive to differing disease states of the organism (171).
Therefore, it can be speculated that the metabolism-based
olfactory fingerprint of COVID-19 in saliva has a relatively
specific representation. Further important questions to elucidate
are under what conditions and how long saliva samples can
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be stored without significant loss of characteristic COVID-19-
VOCs, and how VOC-production and -dynamics are related
to the temporal and clinical course of the infection. One of
the authors successfully used frozen aliquots of BPL-inactivated
saliva samples for training purposes within a year with success
(personal communication).

Sweat and body odor
In contrast to the biological material from the respiratory

tract, the potential for SARS-CoV-2-infectivity via sweat or
skin is considered negligible. However, based on research
on previously described human beta-coronaviruses, attention
should be drawn to sweat as one possible vehicle of SARS-CoV-
2-transmission (172). Skin, sweat and sebaceous glands express
ACE2-receptors (173, 174), making SARS-CoV-2-infections of
the resident cells probable (175, 176). However, viral load in
epidermis and sebaceous glands was shown to be extremely low
by immunohistochemical analysis (175, 177, 178). In contrast,
cells in sweat glands contained high levels of viral spike proteins
whereas cells in the sweat ducts contained low levels (175).
Recalcati et al. tested the sweat of 22 hospitalized COVID-
19 patients, the sweat of only five patients was SARS-CoV-
2-positive via RT-PCR (179). In contrast, Arslan et al. did
not detect viral nucleic acids in multiple sweat samples from
both axilla and forehead in 50 patients with COVID-19 (180).
Similarly, Fathizadeh et al. did not detect SARS-CoV-2 in
sweat from the forehead of 25 patients with COVID-19 (181).
These results indicate that despite potential viral presence in
sweat glands, viral shedding through skin and sweat is unlikely
(but not impossible), allowing for less strict security measures
concerning sweat/body odor samples.

Sweat/body odor on pads, gauze, etc., or clothes was used in
the DTEs of 20 of the 27 reviewed studies, while direct sniffing
of live humans was conducted in only one study (4). Sweat
and skin surface also appear to release VOCs which may vary
depending on the internal health state of the organism (18).
However, bacteria on the skin surface can also influence the
metabolism of the released VOCs (6). Whether the composition
of the microbiome on the skin has an impact on the COVID-
19-associated VOC-profile, and whether these variations may
alter scent dog acuity, needs to be elucidated. Nevertheless, body
parts frequently or constantly exposed to personal care products,
cosmetics, and perfumes are not ideal for sample acquisition
since interactions of these products with bacteria and VOCs
can occur. Furthermore, clothes intended for SARS-CoV-2-
detection by scent dogs should not be washed before being
presented to the dogs since important VOCs like organic acids
would be destroyed by this process (182). Importantly, the non-
homogeneous distribution of apocrine and eccrine glands in
the skin implicates different compositions of VOCs depending
on the sampled body region (183). Indeed, a varying collection
period was applied depending on the body region across the
reviewed COVID-19-detection studies. While a short swabbing

of the crook of the arm, wrist, face or neck was sufficient for high
diagnostic accuracies with sensitivities and specificities above
91% in three studies (69, 70, 134), studies that used axillary sweat
or other sweat type chose a longer collection period of around
1–20 min (51, 117, 184–192) or even periods of hours in case
of clothes (47, 144). However, in most cases these periods were
arbitrarily chosen (4). Callewaert et al. (in preparation) found
that 30 min sampling of the underarm skin yielded better canine
results versus 15 min sampling.

Compared to saliva or urine sampling and processing,
sampling of sweat/body odor on cotton pads or clothes
represents a quicker, safer, and more feasible method without
inactivation procedures and is well suited for rapid scent dog
mass screening. However, it is unclear whether VOCs have
a comparable half-life on solid materials such as cotton pads
compared to liquids. This could complicate the creation of
a long-lasting training sample set if not stored appropriately,
but this remains speculative and needs to be elucidated in
future studies. For example, Gokool et al. provided preliminary
evidence that the specific odor persists for months in worn
cotton shirts (193). Sweat samples for COVID-19-detection
were stored cooled or at room temperature for around 2 h (194),
24–72 h (70, 185–187, 189, 190, 192), 1 week (188), or even
up to 6 months in triple zip-lock plastic bags (69) before being
presented to a dog. In some studies, sweat samples (and clothes)
were frozen and then presented to the dogs thawed after longer
storage periods in order to preserve VOCs (47, 52, 117, 134,
191). Those qualitative and temporal differences in storage did
not seem to impact canine performance (4). A combination
of training with inactivated saliva or other liquid-bound
respiratory material with a stable VOC-profile and testing with
rapidly obtainable sweat samples in a real-life scenario could be
an effective, safe, and sustainable learning and testing method
for infectious disease testing. However, an additional challenge
with fresh sweat samples during training is recommended.

Urine
Viable SARS-CoV-2 or its RNA was detected in urine of

infected individuals in various studies (153, 195–197). Although
some studies showed no detectable virus in urine (198, 199) or,
at least, very low viral loads compared to respiratory samples
(200), other studies suggested similar viral loads in both sample
types (153). These discrepancies might suggest that urinary
transmission of SARS-CoV-2 is less likely in general, but that
dynamics of viral shedding via urine could be highly dependent
on the clinical and temporal stage of the disease (153, 200–
203). These concepts are supported by a longitudinal study
from Joukar et al. (204) who showed that at clinic admission of
COVID-19 patients (n = 100), only 7% of the urinary RT-PCR-
tests were positive. The maximal duration of viral persistence in
urine was 11 days post admission which was shorter than for
all other examined sample types (204). Similarly, Yoon et al.
revealed a rapid decline of viral loads in urine to levels below
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detection limit after only 3 days post admission (151), narrowing
the temporal window of virus detection in urine (202). Possible
enhanced viral infections of the urogenital tract are plausible
due to a prominent expression of ACE2 and TMPRSS2 (205)
and renal abnormalities due to SARS-CoV-2-infections cannot
be excluded (206, 207).

Urine was used in the DTEs of three studies (52, 134,
145) of the reviewed COVID-19-scent dog detection studies
by Meller et al. (4). Chemical analyses of VOCs in urine have
been used to detect olfactory fingerprints of different types
of cancer (208) and bacterial infections like tuberculosis (209,
210). Since urine contains the intermediate or end products of
numerous converging metabolic pathways it can be considered
a VOC-rich body fluid (6), although saliva contains a larger
variety of VOCs (208). However, due to glomerular filtration
VOCs might be more concentrated in the urine than in other
body fluids (211). Interestingly, in a direct comparison between
saliva, sweat and urine, dogs were able to detect urine from
COVID-19 patients with high certainty (median sensitivity 96%
and specificity 98%), although the dogs had been trained with
saliva beforehand. This might indicate a high concentration of
COVID-19-associated VOCs in urine (134). Urine sampling
requires more infrastructure, time, and effort and, therefore,
is less suitable for mass screening scenarios compared to
saliva or sweat. In addition, viral inactivation or high-security
measurements should be considered due to the potential risk of
viral transmission. Due to the high detection accuracy achieved
in the study from Jendrny et al. (134), testing of urine could
be used for additional post hoc confirmation after detection of
a positive case during screening with other sample types. As
with other sample types, however, optimized storage properties
still need to be investigated. Furthermore, aspects like diet
can impact urinary VOCs significantly (6), which needs to be
addressed in future studies.

Breath
Exhaled breath contains high concentrations of various

particles and molecules (212–214) including VOCs (60), with
differing compositions among certain pathological conditions
(6, 215). Although “violent” expiratory events such as coughing
and sneezing have previously been considered the main
contributors to infectious aerosol and droplet infections (216),
aerosols generated by breathing can transmit SARS-CoV-2 and
may have a major impact on the infection dynamics (217, 218).
Breath VOCs were already investigated in many other diseases
(19, 219) and initial approaches have been made in COVID-19
(see also section “The smell of COVID-19”).

Breath samples were used in the DTEs of six of the COVID-
19-detecting dog studies, especially in combination with masks
(4). The collection and conservation of VOCs from breath is
challenging. Lomonaco et al. showed that general VOCs of
breath samples stored in sorbent tubes at room temperature
were stable up to 72 h (220). A study by Kang and Thomas stated

that significant loss in some endogenous breath VOCs was
already discernible after 6 months of –80◦C storage, although
specialized adsorbent tubes were used (221). It is therefore
probable that VOCs in masks, similar to cotton pads or clothes,
have a storage resilience of shorter duration. However, Guest
et al. showed that clothes (socks) gave a stronger specific
olfactory signature for dogs than breath samples (face masks)
(47). This suggests a high inter-individual VOC-variability in
breath samples (60) (see also section “Detection of disease-
related VOCs by devices versus dogs”). Furthermore, higher
storage temperatures drive a greater loss of breath VOCs on
adsorbent materials (222) and longer storage times can lead
to exogenous contamination (223). These properties impair
the establishment of stable breath sample sets for training. On
the other side, subtle skin abrasions in masks, cotton pads,
and clothes certainly contribute to a prolonged retention of
certain VOC-profiles (see also section “Sweat and body odor”)
(6). Due to the impressive acuity of canine olfaction, the
potential storage artifacts of breath samples might represent a
negligible drawback, this issue however has to be addressed in
further studies.

Unlike eNoses, into which the breath sample is usually fed
directly, the direct presentation of pure breath in training and
in real-life screening to the dogs is challenging, which is not
the case for solid-/adsorbent- or fluid-bound biological material.
Furthermore, due to technical and hygienic reasons, the
throughput rate of current eNoses in real-life screening is lower
(minutes per sample) than the throughput rate of trained dogs
evaluating line-ups with self-taken sweat samples (seconds per
sample) (69, 71) (see also sections “Detection of disease-related
VOCs by devices versus dogs” and “Sweat and body odor”). In
terms of breath VOCs, masks (or specialized adsorbent material)
would be more suitable than pure exhaled breath both for
canine training and screening. However, generating those mask
samples generally required a longer duration of approximately
10 min to 24 h with a median of 180 min (47, 144, 146, 147,
190). Vlachová et al. however, conducted breath sampling on
sterile surgical compresses of only 3 min (189). Furthermore,
due to the evidence of airborne/droplet infections for SARS-
CoV-2, biosecurity associated with the immediate presentation
of pure breath samples is more complex than presentation of
carrier material-bound samples.

Variability of samples
Origin of samples for training and DTE purposes is an

important factor due to the potential contaminating impact of
environmental VOCs (6, 208, 215, 224). For example, it could
be a major issue if samples from SARS-CoV-2-positive patients
originated from only one facility, conditioning dogs on facility-
associated smell rather than SARS-CoV-2-associated smell.
Likewise, if SARS-CoV-2-negative patients are collected from a
different environment, e.g., the community, and SARS-CoV-2-
positive patients are all collected from hospital environments,
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the systematic difference between the samples may lead to
inaccurate responses by the dogs.

Similarly, geographical conditions may also have an impact
on VOC-profiles (225). Chaber et al. showed slight differences
in canine olfactory performance depending on the geographical
origin of samples (117). However, special care should be taken to
ensure that handling of utensils during sampling and processing
proceeds in the same manner for both negative and positive
samples across testing locations (47, 226, 227). In addition,
Callewaert et al. (in preparation) found that dissimilarities in
canine performance occur depending on the carrier material
(e.g., cotton pad, cotton gauze, commercial odor carrier, etc.).
Therefore, it is advised to use one and the same carrier
throughout training and DTE.

For training and DTE purposes, a large representation
of different demographic aspects (sex, age, etc.), localities of
sample origin, and temporally different stages of infection
among SARS-CoV-2-positive and -negative samples is crucial
to adequately map the olfactory fingerprint of the disease. In
addition, other aspects such as pre-existing infectious and non-
infectious pathological conditions, recovered SARS-CoV-2-
infections, Post-COVID-19 condition, COVID-19-vaccination
status, or differing virus variants may play an important role for
VOC-patterns and are subject of current research (51, 52, 69,
71). ten Hagen et al. studied the ability of dogs to discriminate
between SARS-CoV-2-infections and other viral respiratory
infections in NPS/OPS and infected cell cultures, when
trained with saliva from SARS-CoV-2-positive individuals or
with SARS-CoV-2-infected cell culture supernatants. Although
sensitivity was lower (61.2–75.8%) than in other studies from
the same laboratory, dogs rejected the samples of other viral
infections in the DTE more often than SARS-CoV-2-infected
samples, which is reflected by a high specificity of 90.2–95.1%.
This indicates that further respiratory viral diseases defined as
SARS-CoV-2-negative samples should always be integrated into
training procedures in order to enhance diagnostic acuity for
SARS-CoV-2 (41).

In terms of infection state, the crucial intervals dogs should
be able to recognize is any phase in which viable virus is shed
in order to contain the pandemic effectively. Therefore, samples
across all phases of infection should be used for training in
order to reliably indicate all potentially changing relevant odor-
profiles in the course of infection. However, further research is
needed to evaluate if and how dogs are able to transfer their
olfactory detection abilities from a certain stage of disease to
another. Recent studies found that dogs which were trained
with samples from acute SARS-CoV-2-infection did not indicate
patients with Post-COVID-19 condition as positive, when
tested versus acute infection. Nevertheless, when tested against
samples from healthy individuals, Post-COVID-19 condition
samples were identified (51, 52). These results might suggest
a titration effect, which could be based on a slow gradual

decomposition of characteristic VOCs even if the virus is only
residually or not present anymore.

Furthermore, an appropriate mapping of disease severity
(e.g., asymptomatic, mild, severe) should be taken into account
and integrated into training. However, COVID-19-VOC-
measurement indicated that there was no relationship between
VOCs and viral loads (34) or disease states, although mainly
severe cases were included (36). Importantly, more research is
needed to explore to what extent PCR-cycle threshold values,
representing viral loads, influence canine olfactory performance
[see also (47)].

Dogs can even be trained to certain concentration
differences of the target scent (228). For example, this is used
in diabetes alert dogs, which detect increases or decreases of
blood glucose values of patients beyond predetermined levels
(229). This emphasizes that the samples used in canine training
procedures must be as versatile as possible. The issues described
in this section will be minimized when further efforts are
made in the profiling of critical SARS-CoV-2-VOCs and in the
processing techniques of samples in order to reduce olfactory
noise from potential exogenous and irrelevant endogenous
factors (215). A crucial question which arises is whether
training conditions can be reduced to the lowest common
denominator by, for example, training with pure viral proteins
or proteins produced in cell cultures or animal models (see
section “Standardized sample alternatives”). Cell cultures were
used in one (41) of the 27 reviewed studies by Meller et al. (4).

Pre-processing of samples

Many protocols for inactivation of viral pathogens with
differing grades of loss of functional and structural viral integrity
exist. The main purpose of viral inactivation in scent dog
detection studies is the safe handling of training samples for
animals and humans. On the other side, olfactory fingerprints
of samples deriving from SARS-CoV-2-infections have to be
preserved, probably requiring gentle inactivation methods.
Different approaches up to renunciation of inactivation
procedures were used in the reviewed COVID-19-scent dog
literature (4), which is discussed below. The study from
Jendrny et al. revealed that inactivated samples can be used
for training to subsequently screen non-inactivated “armed”
samples with a median sensitivity and specificity of 84 and 95%,
respectively (134).

Beta-propiolactone
Beta-propiolactone (BPL) is an organic chemical compound

which has historically been used for effective inactivation of
various known viruses (230), especially in the field of vaccine
development (231–234). BPL inactivates SARS-CoV-2 as well
(235). Its inactivating properties are based on opening its
lactone ring which is unstable in aqueous media and highly
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reactive (230). Due to rapid hydrolyzation in aqueous media,
the substance is transformed within a few hours to non-toxic
3-hydroxypropionic acid making it highly suitable and safe for
biological preparations (236). Despite the rapid degradation,
viral activity has usually subsided long before the last detectable
residuals of BPL in samples have been measured (230). BPL
appears to have affinity for viral nucleic acids blocking viral
replication while mostly sparing the protein structures, which
preserves the immunogenicity of the virus. However, not all
the organic chemical modifications coming from BPL are
elucidated and proteins may be affected as well (237). On the
other hand, Determann and Joachim showed that a higher
reactivity toward certain functional groups of amino acids
results from a lower hydrolyzation capacity of the medium
(238), highlighting that water is a preferred nucleophilic reagent
of BPL. In summary, variations in nucleophilic characteristics
of the reaction with BPL and the “nucleophilic potential” as
well as further physicochemical properties of the medium might
explain why varying quantitative and qualitative dynamics
among reaction products from different organic compounds
exist (237). In the study from Jendrny et al. dogs did not smell
a relevant difference between BPL-inactivated (training) and
non-inactivated (DTE) SARS-CoV-2-infected samples (134).
Although more research is needed in this field, this might
indicate that nucleophilicity of relevant VOCs is low and
that microenvironmental aspects of the samples could further
contribute to the lack of involvement of respective VOCs in the
reaction with BPL so that those are kept preserved. Furthermore,
it is possible that the BPL-manipulation has no effect on the
high discriminatory power of the dog’s olfactory system. It
is noteworthy that in the first work by Jendrny et al., non-
inactivated negative samples were used in addition to BPL-
inactivated negative samples (133). The dogs did not indicate
the latter more often than the former even though they were
trained with BPL-inactivated positive samples (133). Only three
of the reviewed studies used BPL for viral inactivation in their
DTEs (41, 52, 133). However, in terms of safety versus VOC-
preservation, BPL inactivation represents a highly effective and
reasonable method.

Heat
Heat inactivation is a possible and common method to

destroy viral pathogens effectively (239, 240). At the same
time, maintenance of antigen integrity is important to preserve
the diagnostic value of samples, e.g., for serological analysis
(240–247). Heating methods can prevent infectivity of SARS-
CoV-2 and at the same time preserve RNA when appropriate
temperatures are applied (247). In contrast, BPL preserves
proteins but not RNA (see above). Heat has denaturizing
properties on proteins and other compounds leading to
disruption in the interaction between virion and cell. Even
slight alterations might also have a crucial and persistent
impact on quality of the VOC-emitting properties of organic

material, changing VOC-concentrations and their chemical
composition. In addition, Lomonaco et al. showed that heat
treatment is able to alter VOC-composition in human breath
samples (220).

Heat inactivation or treatment in the DTEs was used in
three (118, 145, 147) of the reviewed studies (4). Essler et al.
(145) trained dogs with detergent-inactivated urine (see below)
and tested the dogs for detection of heat-inactivated urine.
Especially when dogs were confronted with a novel heat-
inactivated sample, overall sensitivity was only 62%, whereas
specificity was 98%. This may indicate that – at least in
relation to detergent treatment – heat may alter critical COVID-
19-VOC-profiles to a certain extent inducing uncertainty, or
that the use of detergent inactivation made the odor more
obvious. However, it has to be mentioned that these transfer
trials consisted of only one set of presented samples to eight
dogs. Interestingly, the performance of dogs, which were
trained with heat-inactivated samples and tested with new heat-
inactivated samples, deteriorated significantly, which possibly
was due to a poor generalization process as sample availability
was limited at the time the experiments were performed
(145). Possibly, the process of heat-inactivation might produce
different VOC-profiles among individual samples, depending
on their original chemical and physical composition. The
learned VOC-spectrum would thus present too broad to
be finally used in detection of COVID-19-specific smell
with adequate generalization and high diagnostic acuity. The
assumption of global and individual changes in the key VOC-
profile through heat-inactivation is also supported by the fact
that the olfactory transfer performance from heat-inactivated
urine-training to heat-inactivated saliva-testing produced very
low sensitivities in two trials (11 and 22%, respectively), whereas
the accurate recognition of negative samples was maintained
(specificity of 94 and 100%, respectively) (145). However,
only one positive sample was presented per trial across nine
dogs. Furthermore, the discussed aspects of heat treatment
remain speculative since other possible complicating factors
have to be taken into account. In contrast, Jendrny et al.
showed that dogs’ transfer performance from BPL inactivated
training samples to completely novel non-inactivated samples
of the same and even different type is maintained at the
same or even higher levels (134). BPL seems to retain the
assumed global COVID-19-associated smell. Heat-inactivation
appears to be more time-saving and cheaper than BPL-
inactivation, but the former might lead to less robust learning
results in dogs. Consistent with those statements, Salgirli
et al. have also reported that dogs initially had problems
recognizing heat-inactivated masks worn by COVID-19 patients
when previously trained with non-inactivated masks (147).
In contrast, Vesga et al., who used heat treatment in
order to prevent proliferation of microbiota, reported a high
performance quality of dogs, however, the treatment was not
further specified (118).
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Ultraviolet radiation
Ultraviolet-C (UV-C) radiation may be used to inactivate

coronaviruses effectively (240, 248–250). It acts mainly by
photochemical conversions of heterocyclic bases in the structure
of nucleic acids without spontaneous reversion (251–253).
Amino acids are affected to a lesser extent while carbohydrates
and lipids are hardly modified (251). Mendel et al. used
10 minutes of UV-C-irradiation (254 nm) per side of mask
material for SARS-CoV-2-positive cases, for canine training
and for DTEs (146). Similarly, Salgirli et al. also used UV-
inactivation (147). However, it is a significant concern of
methodology in both studies that it is not clearly stated whether
negative samples were also inactivated in order to control
for potential pronounced or subtle UV-induced alterations
in COVID-19-associated VOCs. In an additional experiment
Mendel et al. showed that UV exposure did not result in
statistically significant alterations in headspace solid phase
microextraction GC-MS-profiles of at least 36 typical human-
derived scent compounds pipetted on unused masks, suggesting
a lack of significant photocatalytic effects on these VOCs (146).
Conversely, UV-radiation of different wavelengths (especially
UV-C) and dosage can have a great photocatalytic impact on
gaseous emissions and VOCs by eliminating many of them
from air samples, even within seconds (254–257), or from
liquid media (258, 259). Therefore, the extent to which specific
COVID-19-associated VOCs are altered by UV-irradiation
remains uncertain and needs to be elucidated. If there are
alterations, it has to also be clarified whether the discriminatory
power of the canine olfactory system is nevertheless sufficient to
compensate for those changes.

However, Mendel et al. (146) reported in two cases that
trained dogs were able to indicate locations at workplaces where
SARS-CoV-2-infected individuals had been situated 3–4 weeks
prior to canine inspection. It would represent a promising
indication that UV-irradiation might have no relevant effect on
COVID-19-associated VOCs and that the temporal range of
detection might extend well beyond acute infections, however,
these are only few individual cases reported (146) and it
remains questionable whether COVID-19-associated VOCs
persist in a confined area for such a long time without
appropriate storage [SARS-CoV-2 itself survives only a few
days in the environment (260)]. In summary, comparative
studies of training with UV-inactivated and DTEs with
new, non-inactivated samples under high security standards
(see also section “Susceptibility of dogs for SARS-CoV-2”)
are an essential step to ultimately verify the suitability of
UV-inactivation for establishing canine training sample sets.
Although the actual process of viral inactivation by UV
takes longer than by BPL (230), the use of UV would be
a time-saving and an ecological method since, in contrast
to BPL- or detergent-inactivation, no chemicals, no targeted
chemical manipulations of the samples, and no waiting time for
hydrolysis are required.

Detergent–solvent
Detergent/solvent applications are a further method for

efficient viral inactivation by complete destruction of the
lipid membrane of enveloped viruses while preserving the
structure of proteins from the virus and from the biological
microenvironment (261–263). This method is widely and
commercially used especially in the treatment of therapeutic
human plasma, as it robustly destroys enveloped viruses while
at the same time retaining physiological activity levels of plasma
proteins (262, 264). NonidetTM NP-40 in combination with
further detergents seems to successfully disrupt coronavirions
(240) and was used by one canine COVID-19-detection study
for urine inactivation (145). A possible VOC-alterating effect
of NonidetTM NP-40 or the closely related substance Triton
X-100 on VOCs in treated samples is not elucidated. They
represent gentle inactivation methods, but it might be assumed
that lytic effects on membranes of contained cells (265) might
slightly change the biochemical properties of those samples.
Triton X-100 has a vapor pressure of 130 Pa at 20◦C and is
therefore considered an organic volatile substance (266). It can
therefore be assumed that the detergents themselves change the
odor-profile of the samples while they are still dissolved. In
order to clarify these issues, comparative canine olfaction studies
with both detergent-inactivated and non-inactivated positive
and negative samples are necessary. However, Essler et al. (145)
could show that cognitive transfer from detergent-inactivated
to heat-inactivated samples is possible. Although sensitivities
decreased, this may also be due to heat-inactivation [(145);
see also section “Heat”]. Finally, chemical treatments with
detergents or BPL are more environmentally damaging, time-
consuming, and eventually more expensive than, for example,
the use of UV-C. Nevertheless, they appear to allow satisfactory
and safe olfactory transfer to non-inactivated samples in canine
COVID-19-detection (134, 145).

No viral inactivation
No inactivation can represent a biosafety issue, but is

probably also the best method for the preservation of crucial
VOC-profiles. SARS-CoV-2 can survive a few days in the
environment depending on the type of contaminated surface
(260). In secreted biological material like aerosols, virus was
shown to be infectious for minutes to hours (260, 267) whereas
other studies show higher viral activity up to 21 days in
different body fluids like e.g., sputum, saliva, urine, and blood,
depending on seasonal factors (268). No virus inactivation was
used by the majority of reviewed canine COVID-19-detection
studies in their DTEs (n = 21) (4). Sweat samples were the
main material used without inactivation which per se have
no high infectivity (see also section “Sweat and body odor”).
Similarly, four studies did not use inactivation of mask or
clothes samples (47, 144, 147, 190). Apparently, the material
on which sweat or body odor was collected impacts the viral
persistence as well, since cotton and related material seems to
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ensure decomposition of its RNA within minutes (269, 270).
The duration between sample acquisition and presentation to
dogs was variable across studies between hours and months
(see also section “Sweat and body odor”). However, in some
reports, inactivation was omitted also in other sample types like
saliva (184) and nasopharyngeal secretions (144) without use of
further biosafety measures. Leaving out inactivation generated
robust and good results (4) suggesting that characteristic
VOCs outlast the virus presence or at least high viral loads.
Nevertheless, independent of inactivation status, special safety
measures should be used (118, 134, 145), e.g., Training Aid
Delivery Device (TADD) containers (134, 145), which are
supposed to allow odor particles to pass through but not droplet-
or particle-bound virions, in order to protect both animals
and humans (134). This is especially interesting for training
purposes where body fluids with higher viral loads may be
used. For detection of other infectious diseases, corresponding
data about pathogen dynamics in body fluids and environment
should be used, or reliable data should be generated first in the
case of future emerging zoonotic diseases in order to determine
susceptibility of dogs to pathogens of interest and to guarantee
adequate safety.

Standardized sample alternatives

Training sample sets derived from naturally obtained
human biological fluids can be used for extended periods
of time. However, more research is needed in appropriate
storage conditions (see section “Sample types”). In addition,
acquiring samples is not trivial both from an ethical and
logistic sense, especially early in a pandemic or while pandemic
dynamics are low. Furthermore, storage duration and divergent
storage conditions can affect VOC-patterns (221, 271, 272).
There may also exist uncertainties regarding true infection
status with possible false negative or false positive PCR-status
potentially corrupting the sensitive training process for the right
olfactory cue, differences in temporal and clinical infection
states, demographic differences, etc.

Producing specific COVID-19-associated VOC-profiles
artificially for dog training purposes represents a challenging
endeavor although first approaches with a “VOC-cocktail” have
been conducted in combination with eNoses (273). However,
sensor array composition of the eNose and environmental
influences still represent a major limitation and studies are
merely scratching the surface of decoding the volatilome of
SARS-CoV-2-infections (see section “The smell of COVID-
19”). For the current state of the canine COVID-19-detection
research, it was important to cover the majority of VOC-
variations, which can emerge from varying disease-associated
factors, for adequate broad training and generalization.
Nevertheless, it is only the attempt to “catch” the true critical
COVID-19-odor of an active infection in an as broad as possible

way, for the simple reason that the critical VOC-composition is
not known yet but at the same time early investigation of anti-
pandemic measures appeared reasonable. In this way, dogs were
taught to perceive key signals from a broad array of positive
samples, which were not present in a broad array of negative
samples. Therefore, dogs did not learn to detect an absolute
COVID-19-VOC-profile, but a certain scent-profile of relative
difference to what healthy individuals did not express.

The VOC-hypothesis is based on viable metabolic entities
with the result of VOC-production, which may have fingerprint-
like properties for certain pathological conditions, e.g., viral
infections. Some have suggested that dogs might be able to
detect viral proteins, i.e., spike proteins (51, 52), which could be
perceived by olfaction without any metabolic intermediate step.
Amino acids are not among the substances typically defined as
odorants, and to date have been little studied in the context of
odor perception, except in fish (274–278). Humans have been
shown to be able to distinguish among certain amino acids
by olfaction (279, 280). Whether dogs are able to smell parts
of the pure SARS-CoV-2-proteins and reliably discriminate
it against other distractors is currently being investigated. In
this context, the function of the vomeronasal organ in dogs
should be emphasized, which serves as an additional olfactory
organ for intra-species communication through pheromones
and is located rostrally at the bottom of the nasal cavity
(5). Interestingly, in contrast to the main olfactory organ,
the vomeronasal organ is capable of detecting non-volatile
molecules of higher molecular weight, such as proteins (281),
which might indicate the presence of different receptor cell types
in both olfactory organs (282).

If dogs are able to smell viral proteins, a standardized, broad,
and sustainable training infrastructure based on appropriately
manufactured proteins could be established and research is
already underway. Safety would be guaranteed due to the
absence of the viable virus, however, the risk of contamination
of such sensitive samples is high. In addition, costs of sampling
body fluids versus production of protein samples must be
considered. An essential consideration, however, is the periodic
emergence of new variants of SARS-CoV-2 with differing
mutations in spike genes and protein expression (283, 284).
When dogs are trained on a single protein the spectrum of
detection would be extremely narrow and certainly highly
specific, increasing olfactory discrimination (129), but it has
to be studied whether it would suffice to cover different
virus variants. It would therefore seem reasonable to mix the
variants during training sessions according to the current viral
occurrence in the population. However, it may take some time
before the next corresponding protein is available after discovery
and identification of a new variant.

It is probable that the impact of viral variants on variation
in COVID-19-VOC-patterns is less pronounced. Chaber et al.
stated that dogs had no difficulties recognizing the virus despite
being confronted with different strains in biological samples

Frontiers in Medicine 18 frontiersin.org

https://doi.org/10.3389/fmed.2022.1015620
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1015620 December 7, 2022 Time: 10:42 # 19

Meller et al. 10.3389/fmed.2022.1015620

(117). On the contrary, Kantele et al. showed a significant
difference in accuracy between variants, when the training
included only biological samples with the wild-type virus (69).
Furthermore, by using only proteins for training, it would be
essential that viral material is present and “readily accessible”
in the screening samples of diseased individuals, which is not
always the case for sweat/body odor or urine as described
above (see section “Sample types”). In contrast, only infected
individuals who acutely excrete the virus would be detected in
this way sparing individuals who do not shed the virus anymore
but still express COVID-19-VOC-patterns. Nevertheless, this
can be deceptive because the viral load may vary temporally
across the samples while the individual is still infectious or
may depend on vaccine-induced immune response (see section
“Sample types”).

In order to circumvent these issues, supernatants from
infected human cell cultures (41) could be used for additional
training with negative/distractor samples belonging to the
same culture or with different cell lines among positive and
negative samples, profiting from the advantages of VOCs. The
combinatorial approach of VOCs and proteins (e.g., one or
more “sets” of specifically trained dogs, see section “Olfactory
generalization”) could maintain high levels of sensitivity in
general screening and be used in special confirmatory cases as
a highly specific detection method for certain dangerous viral
variants, which could be continuously updated in dogs’ olfactory
memory (117).

Although cell cultures are a very interesting alternative,
it should be noted that the VOC-profile does not necessarily
correspond to the versatility of VOC-patterns from naturally
obtained biological samples. Murarka et al. trained dogs with
an ovarian cancer cell line and showed that olfactory transfer
or switch from cell culture to samples of patients with ovarian
cancer did not readily occur in dogs (285). Similarly, there was
a lower detection ability in SARS-CoV-2-positive cell culture
supernatants after dogs had been trained with naturally acquired
saliva samples (41). These problems could be circumvented to
some extent by using different cell lines in cell cultures, but
mimicking the olfactory versatility of naturally acquired samples
remains difficult. Another alternative may be the use of SARS-
CoV-2-training samples from animal models. Nevertheless, the
question of effective translation to human derived VOCs needs
to be addressed (286). Despite the great advantages of sample
alternatives with regard to trainability and standardization, the
use of “real” biological samples will probably still be necessary to
prepare dogs for real-life screening scenarios.

Target and screening population
and the operational applicability

The World Health Organization (WHO) and the German
Paul Ehrlich Institute (PEI) recommend thresholds for

diagnostic sensitivities and specificities for point-of-care-
antigen tests to be more than 80% and more than 97%,
respectively (287). 78% of reviewed canine detection studies
showed ≥ 80% sensitivity and 60% of studies showed ≥ 95%
specificity. Therefore, dogs’ detection is in line with or even
better than other rapid diagnostic tests. Dogs achieved even
better performances when only considering high-quality studies
with a low risk of bias (4).

However, when considering the entire components
influencing the dog as a detection system, it has to be taken
into account that the characteristics of the population to be
tested has its impact on the accuracy as well. Besides the actual
prevalence of COVID-19 within the target population to be
screened the detection performance differs between different
populations and search scenarios, which has a direct impact on
the practicality. Therefore, the calculation of expected positive
and negative predictive values is crucial for the decision on
screening scenarios in order to avoid any vilification of the dogs’
detection (Table 2).

It is furthermore important to note that not all studies relied
on a single dog’s decision to determine sensitivity and specificity.
In particular, in some cross-sectional studies, decisions from
multiple dogs were used to ensure certainty in defining the
infection/disease-status of tested individuals (69, 71, 191, 194).
Those considerations, which also might depend on the number
of available trained dogs, are important especially for the
planning and conduction of a screening test. Furthermore,
changing and distracting environmental factors should be
reduced or avoided in the operational screening setting (see also
section “Dog operational environment”).

TABLE 2 Positive and negative predictive values for dogs’
performance of 90% sensitivity and 99% specificity and for the
recommendations of the World Health Organization (WHO) and Paul
Ehrlich Institute (PEI) among different COVID-19 prevalences in the
target population.

COVID-19
prevalence

Dogs’ performance
(SEN = 0.90,
SPE = 0.99)

WHO and PEI
recommendations

(SEN = 0.80, SPE = 0.97)

PPV NPV PPV NPV

0.0010 0.0826 0.9999 0.0260 0.9998

0.0011 0.0902 0.9999 0.0285 0.9998

0.0012 0.0976 0.9999 0.0310 0.9998

0.0013 0.1049 0.9999 0.0335 0.9997

0.0014 0.1120 0.9999 0.0360 0.9997

0.0015 0.1191 0.9998 0.0385 0.9997

0.0016 0.1261 0.9998 0.0410 0.9997

0.0017 0.1329 0.9998 0.0434 0.9996

0.0018 0.1396 0.9998 0.0459 0.9996

0.0019 0.1463 0.9998 0.0483 0.9996

0.0020 0.1528 0.9998 0.0507 0.9996

SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative
predictive value.
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Dog detection as the one health
approach to tackle COVID-19

The increase of zoonotic infectious diseases highlights the
importance of collaborative, multisectoral and interdisciplinary
work to address challenges that could impact public health,
animal health and production, and environmental conservation.
The World Health Organization (WHO), the Food and
Agriculture Organization of the United Nations (FAO),
the World Organization for Animal Health (WOAH) and
the United Nations Environment Programme (UNEP) have
established an intersectoral collaboration aiming to implement
initiatives under the concept of “One Health” to address
main global problems at the human-animal-environment
interface (288). The four organizations are working together
to mainstream One Health so that they are better prepared to
prevent, predict, detect, and respond to global health threats
and promote sustainable development. The use of COVID-
19-detecting dogs is a great example of using this concept to
respond to the current COVID-19-pandemic. In this review,
we showed how multi-sectoral communication and joint work
resulted in the generation of evidence that the use of dogs
trained to detect SARS-CoV-2-infections has been shown to
be a rapid, mobile, and non-invasive tool for early detection
of affected individuals. Collaborative efforts are crucial to
minimize the rapid viral transmission requiring massive testing
(289, 290). The use of detection dogs to pre-screen infections
among the population could overcome the overloaded response
capacity of laboratories due to the higher number of required
tests, the lack of needed reagents to perform these tests,
and technical issues in sampling infected individuals (i.e.,
inappropriate sample collection, storage, or transportation) or
false-negative results related to the disease status with low viral
multiplication levels (291–293).

Conclusion

Dogs can detect samples from SARS-CoV-2-infected
individuals with a high degree of diagnostic accuracy. However,
the search context, study design and quality of the current
studies varied considerably, and only a small percentage of
studies were of high quality with a low risk of bias. In
contrast to an industrially produced test kit, dogs and their
olfactory performance are naturally subject to many variations.
In addition, disease detection involves difficult to measure
and volatile amounts of substances and little is known about
the olfactory dynamics of a pathological process, making it
difficult to control the process of adequate odor imprinting.
However, the evidence of canine COVID-19 recognition has
been replicated by several different groups, and the dog
proved to be an incomparably fast detection tool. Importantly,
in epi/pandemic conditions, dogs can be trained quickly
with a good level of sensitivity before specific laboratory

methods are available, helping with isolation of infected patients
presenting with or without symptoms. Therefore, further
research on influences of the odor profile (or the perception
of it) by factors such as training sample number and type,
sampling method, inactivation type, training procedures, dogs’
personalities, environment, translation from training to test
scenario, etc. proves to be very important for harmonization
and optimization of canine scent detection and for maintenance
of high study quality. Those considerations pave the way for
the canine olfaction to become a reliable, stable and quick
test method. Thus, standardization and validation processes
such as those used in the field of drug and explosive detection
dogs are urgently needed, if medical detection dogs should
be deployed in the field to detect samples from SARS-CoV-2-
infected individuals.

We recommend the use of dogs as VOC-detectors in
mass screenings as a quick, highly adaptive, and effective
countermeasure both at the emergence and also in the further
course of a pandemic, provided that sufficient numbers of
diverse positive and negative, high quality, safe samples for
training purposes can be generated early, the pathophysiological
condition of those samples is known with a high certainty, and
that training procedures, dogs, and their handlers are certified
similarly as described for scent detection in explosives (294).
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