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The SARS-CoV-2 Omicron outbreak is ongoing in Shanghai, home to 25

million population. Here, we presented a novel mathematical model to

evaluate the Omicron spread and Zero-COVID strategy. Our model provided

important parameters, the average quarantine ratio, the detection interval

from being infected to being tested positive, and the spreading coefficient to

understand the epidemic progression better. Moreover, we found that the key

to a relatively accurate long-term forecast was to take the variation/relaxation

of the parameters into consideration based on the flexible execution of the

quarantine policy. This allowed us to propose the criteria for estimating the

parameters and outcome for the ending stage that is likely to take place in late

May. Altogether, this model helped to give a correct mathematical appraisal

of the SARS-CoV-2 Omicron outbreak under the strict Zero-COVID policy in

China.

KEYWORDS
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Introduction

The SARS-CoV-2 Omicron variant was reported as a new variant of COVID-
19 in November 2021 (1) and has broken out in Shanghai recently. It was
once suggested that this variant should be renamed as SARS-CoV-3 because
of its unique immunological characteristics and dramatic immune escape
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mechanism.1 Contrarily, though the pathogenicity and
transmissibility of the Omicron variant is highly different from
other SARS-CoV-2 variants, the sequence similarities between
SARS-CoV-2 and Omicron sub-lineages are above 99.6%, which
means that the original nomenclature should be followed (2).
The Omicron variant carries mutations to help the virus to
resist or escape immunity provided by COVID-19 vaccines (1,
3, 4). To prevent the spread of infection, the local government
of Shanghai municipal decided to enforce a practical lockdown
on 28 March. However, during the 15 days after the lockdown,
there were still over 20,000 Omicron cases confirmed per day,
including both diagnosed and asymptomatic. The situation was
quite severe when compared to other places across mainland
China during the same period or that in Shanghai several
months ago. Meanwhile, the epidemic in Shanghai is declining
now after the turning point, but forecast of the timeline of
the epidemic is still needed for appropriate policy decisions as
well as boosting public confidence. Here, we propose a new
mathematical model to evaluate the epidemic trend of Omicron
spreading in Shanghai and make forecasts for future.

Results

The prediction of the turning point of
the epidemic

The Omicron epidemic in Shanghai has begun since early
March 2022. Until 12 March, the number of confirmed cases
per day did not exceed 100 (Supplementary Figure 1). Due to
the surge in COVID-19 positives since mid-March, the Shanghai
municipal government made the practical lockdown decision on
March 28 to control the spread.

We obtained a time-delayed differential equation to describe
the spreading of COVID-19 Omicron (Figure 1):

dp(t)
dt
= k · [p(t)− u · p(t − τ)]

In the above equation, p(t) is the total number of patients
infected at time t. The average spreading coefficient k represents
the average number of people an unquarantined patient can
infect in a unit interval. The average quarantine ratio u is defined
as the number of quarantined patients divided by the number
of people showing nucleic acid positive at time t. The average
detection interval τ is the average time interval from being
infected to being tested positive.

We fitted the data of the total number of reported cases
before and after 28 March to our above equation, to figure out
to what extent the more stringent policy could affect. Note that

1 https://www.science.org/content/article/new-versions-omicron-
are-masters-immune-evasion

the date we used, 28 March 2022, was the very first beginning of
the massive lockdown in the Pudong area, Shanghai, followed
by the lockdown of the rest of the areas/districts in Shanghai
on 1 April (Supplementary Table 5). Before 28 March, only a
few communities had been officially controlled. We found that
the fitting between the reported data and the curve calculated
from our equation was quite close (Figure 2). We found that, to
fit the data better, it was needed to alter the parameter τ in the
two scenarios: (i) τ = 2 (days) before the city lockdown and
(ii) τ = 1 (day) after the city lockdown. This can be construed
as the more stringent quarantine policy after the city lockdown,
with nucleic acid tests for all citizens once or twice per day,
which reduced the detection interval τ.

In addition, we found that the spreading coefficient
k decreased after the city lockdown, from 1.63 to 1.49,
approximately (Figure 2). Furthermore, in the early stage of the
epidemic, the quarantine ratio u was 1.32 > 1, which means
that almost all the patients tested positive as well as their close
contacts were quarantined. In the later stage of the epidemic,
the quarantine ratio u became smaller, ∼1.04. The reduced u
may serve as a sign of the arrival of the turning point. Since p(t),
the cumulative number of confirmed cases, is a non-decreasing
function, and its derivative, dp(t)

dt , has to be greater than or equal
to zero. Therefore, from our equation, u must be smaller than
or equal to p(t)

p(t−τ) . At the beginning of the epidemic, Omicron
was spreading quickly; p(t) was much larger than p(t − τ), so
u was relatively bigger. When the turning point was getting
close, Omicron spreading slowed down, thus p(t) was not much
different from p(t − τ), and p(t)

p(t−τ) was close to one, which made
the quarantine ratio u smaller than that in the early stage of the
epidemic.

With the three parameters estimated, the trend of Omicron
spreading soon was predicted. We concluded that there will
be more than 3,00,000 people infected in Shanghai during this
Omicron outbreak (Figure 3A). Most importantly, we predicted
that the number of confirmed cases per day would start to
decrease around 13 April (Figure 3B), which was the so-called
turning point.

We found that the average detection interval τ was 1
or 2 days when fitting the known data, which means that
there would be 1–2 days of delay from infection to showing
positive in the nucleic acid test, during which time, the
unnoticed patients were still infectious (5–7). We believe that
this is one of the major reasons why Omicron spread rapidly.
Furthermore, the average quarantine ratio u was found to be
greater than one, which means that most of the infected patients
and their close contacts had been quarantined, indicating
that the lockdown and other stringent policies were effective,
making the appearance of the turning point and quelling the
epidemic possible.

Moreover, the apparent R0 value, which is the number of
people a patient could infect, could be obtained by multiplying
the spreading coefficient k and the detection interval τ. After
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FIGURE 1

A schematic diagram of our model. Three parameters were taken into account, the test interval τ, the spreading coefficient k, and the
quarantine ratio u.

the lockdown, the value of R0 dropped from 3.27 to 1.49,
providing further supporting evidence for the effectiveness
of the lockdown.

We finished the forecast on 10 April and this
manuscript/model was submitted to the online preprint
server on 12 April (using infection data available up to 11 April)
(8). Before our manuscript is submitted, the numbers of daily
infected patients before 17 April were collected to check our
prediction (Figure 3C and Supplementary Table 1). Strikingly,
it turned out that the real turning point indeed appeared on 13
April and the date when the total infection number exceeded
3,00,000 is on 14 April, perfectly matching our mathematical
prediction.

The prediction of the final stage of the
epidemic

It has been widely observed that an epidemic starting at
a particular region cannot last forever, and the curve of the
daily reported number of new infections generally has the
shape of a bell-like curve (Figure 4; 5–7, 9), while the curve

of total infections exhibits the shape of an S-like curve. At
the beginning of the epidemic (stage I), the viral spreading
accelerates rapidly and the slope of the infection curve increases
significantly over time. As result, the second time derivative is
positive and hence is recognized as a convex function. As the
epidemic proceeds, it comes to a certain time point, coined as the
inflection point-1 (Figure 4). In the period after the inflection
point-1 (stage II), the slope of the curve of daily reported new
infections starts to decrease with time. From this point onward,
the second time derivative is negative and the curve turns into
a concave function. When the turning point (i.e., the slope
of the curve is nil) is reached, the number of daily infections
reaches its maximum level. This is a critical symbol/sign that
the overall epidemic spreading is under control, as described in
our previous report (8). From the turning point to the inflection
point-2 (stage III), the number of daily infections declines
rapidly, in which the second time derivative is still negative, still
being a concave function. As the epidemic reaches its final stage
after inflection point-2 (stage IV), the decline of daily infection
starts to stabilize to a minimum level, in which the second time
derivative becomes positive, changing back to a convex function.
The two inflection points usually appear at half the maximum
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height of the curve. At the time we just finished the forecast, the
COVID-19 epidemic in Shanghai is at the junction of phases III
and IV because the derivative of the daily reported number in
the last few days has been decreasing (Figures 4, 5A).

Meanwhile, taking into account the time variation of the
three parameters in our mathematical model of the time-delayed
differentiation equation is key to a relatively accurate long-term
forecast. This can be understood as follows:

The total number of infected is a function of time, with three
parameters k, u, and τ:

p = p
(
t; k, u, τ

)
= k · [p (t)− u · p(t − τ)]

Therefore, we have

dp
dt
=
∂p
∂t
+
∂p
∂k
∂k
∂t
+
∂p
∂u
∂u
∂t
+
∂p
∂τ

∂τ

∂t
(1)

The equation (1) can be rewritten as:

dp
dt
=
∂p
∂t
+
∂

⇀
Param
∂t

· ∇Paramp = (
∂

∂t
+
∂

⇀
Param
∂t

· ∇Param)p

In the above equation,
⇀

Param = (k, u, τ) is a three-
component vector and ∇Param = ( ∂

∂k ,
∂
∂u ,

∂
∂t ) is the vector

gradient. This equation is reminiscent of the well-known
formula in fluid mechanics:

d
dt
=

∂

∂t
+
∂

∂x
∂x
∂t
+
∂

∂y
∂y
∂t
+
∂

∂z
∂z
∂t

=
∂

∂t
+
∂
⇀
r
∂t
· ∇ =

∂

∂t
+
⇀
v ·∇

In other words,
⇀

Param = (k, u, τ) is equivalent to a moving
frame of reference, similar to

⇀
r = (x, y, z) in fluid mechanics

(e.g., a moving boat on a river). During a relatively short period,
⇀

Param can be regarded as a constant vector (boat fixed in space),

leading to ∇Param =
⇀
0 and dp

dt =
∂p
∂t (only the movement

of the man on the boat needs to be considered). However,
over a longer period, the frame of reference would change,

so changes in
⇀

Param =
(
k, u, τ

)
along with time must be

taken into account (both the movement of the man on the
boat and that of the boat on the river need to be considered,
Supplementary Figure 2).

To eliminate the jitter of the data, the moving averages (MA,
n = 3) were calculated. For data fitting, the Python module
gurobipy was used to carry out the calculation, and the sum of
the absolute value of errors was minimized by solving quadratic
programming. The three parameters, k, u, and τ, were obtained
after fitting our differential equation to the MA number of
daily reported cases from 11 April to 21 April, with k ≈ 0.66,
u ≈ 1.00, and τ ≈ 1.5. Using the obtained parameters, the
derivative of the number of daily reported cases is expected
to reach the minimum on 4 May (Figure 5A). If the situation
stayed the same afterward, the number of daily reported cases

would drop below 1,000 by early 11 May (Figure 5B and
Supplementary Table 2). However, we regard this as just an
overly optimistic projection, and the reality may not be as good
as expected, since the three parameters in our model vary with
time and are not set in stone.

Therefore, to provide a relatively accurate prediction for the
developing trend of the second half of the Shanghai COVID-
19 epidemic, we have to take the time variation of the three
parameters into consideration and switch to using the second
set of parameters for the final stage (stage IV), during which a
raised parameter τ and a shrinking u will be adopted.

Fitting our differential equation to the MA number of
daily reported cases from 11 April to 20 April produced the
parameters as follows: k ≈ 0.47, u ≈ 0.99, and τ ≈ 2. We
chose this set of parameters to mimic an extended stage IV
of the epidemic, with u getting smaller (i.e., fewer people are
quarantined) and τ getting bigger (i.e., less frequent nucleic
acid tests are carried out). Using these changed parameters, we
predicted the ongoing epidemic trend of phase IV (Figure 5B).
With the extended detection interval and reduced quarantine
ratio, we forecasted that there would be more than 1,000
cases per day until early June and the zero-COVID status
(e.g., daily reported infections being less than 100) in Shanghai
would be established by the middle of June (Figure 5B
and Supplementary Table 2). Besides, this set of parameters
forecasted that, during this epidemic, nearly 8,00,000 people
would be infected (Figure 5C).

The forecast of COVID-19 epidemic in
Taiwan, China

The population of Taiwan is similar to that of Shanghai,
but the policy there was relatively loose. Since 7 March, the
authorities approved the free entry of business people and
reduced the duration of health monitoring. Around late May,
the daily number of confirmed cases was over 80,000 in Taiwan.
We forecasted the spreading of the pandemic with two sets of
parameters (to mimic all four stages) in Taiwan, and it turned
out, since 7 March, over 5,400,000 people would be infected in
total (Figure 6A).

Next, the death toll in this pandemic was predicted. As the
pandemic in Taiwan continued, the rolling-average case fatality
ratio was calculated by the following formula:

Rolling average CFR

=
7 days average number of deaths

7 days average number of cases 10 days earlier

CFR equal to 0.9% was adopted finally, and we concluded
that more than 4,800 people would die from this pandemic
in Taiwan (Figure 6B). Deaths from COVID-19 were largely
avoided by the lockdown in Shanghai, where only 587 COVID-
19 deaths reported since 1 March.
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FIGURE 2

Data fitting. The data were fitted separately before and after the lockdown. The blue points and curve represented the reported number of total
confirmed cases, and the yellow ones represented the number calculated from our differential equation. The parameters were rounded to three
significant digits.

As time goes on, we verified our prediction of the epidemic
spreading in Taiwan (Figures 6C,D). We collected the data of
daily confirmed cases in Taiwan after the date we first predicted
and then plotted figures to check, which indicates that our
model exhibited good performance in predicting COVID-19
spreading in Taiwan. Note that the epidemic wave beginning
in March seems to reach equilibrium in early August (same

daily confirmed cases every day). Additionally, 8,283 people died
from COVID-19 in Taiwan from 7 March to 5 August.

Discussion

The sudden Omicron epidemic outbreak in Shanghai has
brought panic to the public, and a great loss to the business.
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A B
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FIGURE 3

Epidemic trend forecast and validation. (A) The forecasted total number of confirmed cases before the turning point, with the predicted data
points colored in blue. (B) The reported daily increased number of cases (red) and those for upcoming days predicted by our model (blue)
before the turning point. (C) The number of infected cases per day. The dashed line represented the moving averages of the number of real
cases while the solid line represented the number of real cases. The actual and predicted turning points were represented by the vertical dashed
line and the rectangle above the curves.

To evaluate and forecast the spreading trend based on available
confirmed data, we proposed a novel mathematical model,
which took the local government policy (such as frequent
nucleic acid tests and isolating those showing nucleic acid
positive as well as their close contacts) into account, which
could provide us important parameters describing the Omicron
epidemic in Shanghai such as the spreading coefficient k, the

quarantine ratio u, and the detection interval τ. The predicted
number of overall cases and the expected time of turning point
may help the government to make a judgment on the spreading
and to revise the policies accordingly.

Several approaches that can be used to describe and predict
the spreading of epidemics are deterministic, stochastic, and
agent based (10, 11). Markov process can be used to model
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A B

FIGURE 4

The graphic illustration of the development of an epidemic. (A) A schematic diagram of the number of the daily reported confirmed and
asymptomatic cases. (B) The derivative of the daily reported number with respect to time during the development of an epidemic. The four
stages of the epidemic are indicated and the present status of the epidemic in Shanghai is marked in red.

the possibilities of transition of individuals from one disease
stage to another (compartments) in the stochastic framework
(11). While, deterministically, ordinary differential equations
(ODEs) can be applied to approximate the possibilities, which
are sufficient to describe the spreading (12). There have been
several fundamental/basic mathematical models that can be
applied to epidemics (i.e., mathematical epidemiology), for
instance, the simplistic SIR model, the SIS model, the SEIR
model, and the SEAIR model (11, 13). The simple theory relied
upon by these models is that the population of an area could
be divided into different compartments representing different
stages of epidemic spreading. For example, three compartments
are defined in the SIR model, i.e., the susceptible (S), the infected
(I), and the recovered (or dead) (R). Additionally, these models
assume that individuals in the area have the same number of
contacts and the same probability of contacting others, which
is characterized by the homogeneous mean-field theory (14). In
the SIR model, it is considered that the size of the population
of an area (N = 1) is constant, which means: N = S (t)+
I (t)+ R(t), which represent the size of population of different
compartment. Then, the following can be established:

dS (t)
dt
= − βS (t) I (t)

dR (t)
dt

= γI (t)

dI (t)
dt
= βS (t) I (t)− γI(t)

β = µφ, which is the product of the number of the infected
population per person can meet per unit time and the infection
probability of contact with an infected individual. Other basic

ODE models take into account other compartments (SEIR)
or assume different spreading processes (SIS). SIS premise is
that there is no immunity forever for individuals and the
infected would return to the susceptible stage again, while
SEIR introduces the exposed stage into the whole system,
where individuals ingest the pathogen but show no capacity
to infect others (13). These models can provide essential
information about the epidemic spreading, such as (1) R0

(basic reproduction number) without the estimation of the
initial susceptible population; (2) The epidemic threshold,
separating two phases of the epidemic; (3) The final epidemic
size (FES); and (4) The endemic equilibrium (10–13). In
addition, it can inform us how to reduce the contagion, for
example, adequate pre-emptive vaccination coverage to the
formation of herd immunity, reduction of µ, and minimization
of φ. Importantly, these models could be fixed with complex
networks to overcome the drawback that the demographic,
economic, and other features are overlooked as epidemics
affect cities and countries at the same time. Taking the
Barabàsi-Albert (BA) model as an example, when new nodes
are added to the network, their probabilities of connecting
with others are proportional to degrees (15). The connectivity
distribution denotes that hub nodes are difficult to spot, which
is an important factor since hubs can easily cause massive
spreading of the disease to neighbors, contributing to the
spreading/infection speed. These models are still evolving and
improving by different users. Global Prediction System of the
COVID-19 Pandemic (GPCP) has been developed to forecast
COVID-19 incidences on a seasonal basis in each country, based
on the improved SIR (version 1) and SEIR (version 2) model
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FIGURE 5

The forecast of the final stage of the epidemic. (A) The time derivative of the curve of daily reported cases in Shanghai. (B) The number of daily
reported cases in Shanghai. (C) The number of recorded and predicted overall cases in Shanghai. The recorded numbers are colored in green.
The predicted numbers are colored in blue and yellow, which were calculated using different sets of parameters. The blue lines represent the
predicted numbers calculated using restrained parameters, and the yellow lines represent the predicted numbers calculated using relaxed
parameters for stage IV.

(16). Zhang et al. proposed a novel stochastic model accounting
for the transmission dynamics of COVID-19 in China (17).
Unfortunately, the prediction of the epidemic spreading in
Shanghai lacked precision.

Like these fundamental ODE models, the formula derivation
and data fitting of our time-delayed differential model is based
on the homogeneous mean-field theory and basic chain of
epidemic spread, and some key parameters can be inferred from
the model including the R0 value. In comparison, our model
does not require the exact number of S(0) and I(0), but it models
the spreading ability and quarantine ratio explicitly. Instead,

the time interval τ is used to link the present confirmed cases
and the reported confirmed cases τ day(s) before. Moreover,
although the improved SIR and SEIR models can divide part
of the population into the defined compartment, a range of
equations and unknown parameters make its tough/tricky to
handle and to predict the epidemic spreading easily. On the
contrary, by emphasizing three essential parameters, especially
for the description and prediction of the COVID-19 epidemic
in China, our simpler model is much easier to use. Although
our mathematical model is forged based on Shanghai’s anti-
epidemic strategies which rely heavily on quarantine, it might be
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A B

C D

FIGURE 6

The epidemic situation in Taiwan, China. (A) The number of recorded and predicted overall cases in Taiwan, China. (B) The rolling-average case
fatality rate in Taiwan, China. The validation of the prediction made in May, in terms of the number of total confirmed cases (C) and the number
of daily confirmed cases (D), respectively.

also applicable to other countries to some extent, whereas related
parameters vary according to different government strategies
and situations. Compared to western countries relying on the
formation of herd immunity and mRNA vaccines which reduce
the average spreading coefficient k, China attempts to boost the
average quarantine ratio u to get the epidemic under control.

In addition, one prominent merit of our model, compared
with other models such as those of machine learning, for
example, is that our model can provide us with characteristic
parameters of the epidemic, each of which has a distinct
physical meaning (18). In contrast, models based on big
data and machine learning are usually not physics-based and
cannot reveal the rationale behind the prediction. For a better
understanding, the parameters in our model represent different
aspects in the real life. The average spreading coefficient k
correlates with the mobility and concentration of the population

and the vaccination percentage of the population, as well as
people’s willingness to wear masks. A suddenly dropped k
would mean tighter community control. In addition, the average
detection interval τ was related to the frequency of nucleic acid
testing. The more frequent the testing, the smaller the parameter
τ would be. Finally, the average quarantine ratio u indicated
that the proportion of people showing positive in nucleic acid
tests and their close contacts who are quarantined. In the case
of Shanghai COVID-19 epidemic (and presumably for other
cities in China), stages II and III can be considered restrained
states, with smaller values of k and τ. In contrast, stages I and
IV can be considered as relaxed states, with looser parameters
such as bigger values of k and u. To predict future trend of
the epidemic, we would need to estimate parameters for stage
IV. We propose that the criteria for making the estimation
would be (1) the parameters for stage IV are more relaxed
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than those of stage III and (2) the parameters for stage IV are
somewhat similar to those of stage I. Additionally, for further
verification of our model, we also collected the data of confirmed
cases in Jilin and Changchun cities, China, and predicted the
turning point for each city by sets of parameters derived from
fitting the data of the beginning of the epidemic, respectively
(Supplementary Figure 4).

Our model, which considers the variation of the parameters,
is easy to be applied to describe and forecast the spreading of the
COVID-19 epidemic and other epidemic diseases and can help
the society to avoid panic and build up the confidence to fight
against COVID-19. We believe that our mathematical model
presented in this report would help the public to have a better
grasp of the current epidemic spread and would undoubtedly
instill confidence and calm that are urgently needed in the
caught-up fight against COVID-19 in China. However, at last,
we want to make it clear to readers that the COVID-19
pandemic is unpredictable and our mathematical model for
epidemic description is for Shanghai and related cities that are
subjected to zero-COVID policy.

Conclusion

We proposed, for the first time, a novel time-delayed
differential equation to describe and forecast the spreading of
the epidemic in Shanghai, by which we have predicted the
turning point and the time when the number of infected would
drop below 1,000 successfully. Altogether, our work was a novel
mathematical appraisal of the SARS-CoV-2 Omicron outbreak
and Zero-COVID policy in Shanghai lockdown.

Materials and methods

Data used in modeling

The case numbers were collected manually from officially
released reports and moving averages were then calculated
(Supplementary Table 3).

Mathematical modeling

First, a differential equation was deducted to describe the
spreading of COVID-19. Let us denote s (t) as the number of
people whose nucleic acid tests are positive, then we have:

s (t) = p(t − τ)

In the above equation, p (t) is the total number of patients
infected at time t and τ is the time interval from being infected to
being tested positive. Since the patients infected during the time

τ will not be recorded as nucleic acid positive, the diagnosed or
recorded patients [s (t) above] at time t is equal to the number
of infected population at time t −τ .

During the time dt, the number of newly infected patients
dp(t) is:

dp (t) = k · f (t) · dt

The parameter k above is the spreading coefficient
representing the average number of people an unquarantined
patient can infect in a unit interval, and f (t) is the number of
unquarantined patients at time t. The function f (t) is equal to
p (t) subtracted by the number of quarantined patients q (t):

f (t) = p (t)− q(t)

We further assume that q (t) (including both nucleic acid-
positive patients and their close contacts) is proportional to s (t),
and let u be the average quarantine ratio:

q (t) = u · s (t) = u · p(t − τ)

Therefore, we get the final differential equation:

dp(t)
dt
= k ·f (t) = k ·

[
p (t)− q (t)

]
= k ·[p (t)− u ·p(t − τ)]

In this equation, there are three unknown parameters: the
average spreading coefficient k, the average quarantine ratio u,
and the average detection interval τ. These parameters may
vary during different periods, for example, before or after the
city lockdown. Using the number of reported cases during
a particular time in Shanghai, these three parameters can be
estimated by data fitting. As a next step, we could forecast the
trend of Omicron spreading in Shanghai with these estimated
parameters.

Additional information

The forecast for the final stage of the epidemic, based
on the number of cases from 11 April to 21 April, was
finished and was submitted to online preprint server2 on
25 April, when the epidemic in Shanghai was at the stage
III. Later, after getting to stage IV, we reanalyzed the up-
to-date data to make clear the concordance of the forecast
provided by our model. The restrained and the relaxed
parameters were obtained by fitting the differential equation
to the MA number of daily reported cases from 22 April
to 29 April and from 22 April to 30 April, respectively.
As shown in Supplementary Figure 3 and Supplementary
Table 4, the number of daily reported cases would drop
below 1,000 around 11 May and then drop below 100
around 17 May if the restrained parameters were adopted

2 https://www.medrxiv.org
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throughout, whereas the time when the infected population
starts to fall below 1,000 and 100 were around 14 May
and 30 May. Further, the just-released numbers of the
infected on 14 and 15 May were 1,258 and 896, which still
maintained the downward trend. In conclusion, the prediction
of our model has a good consistency and was quite close
to reality, and we believe the Shanghai epidemic will be
under control soon.
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SUPPLEMENTARY FIGURE 1

The total number of confirmed cases in Shanghai from 1 March to the
eve of the turning point. The blue points and curve represent the data
before the official lockdown, and the red ones represent the data after
the lockdown.

SUPPLEMENTARY FIGURE 2

A schematic diagram of the fluid mechanics’ formula and our
mathematical model at the final stage of the epidemic prediction. All the
three components in the fluid mechanics’ formula, the stream, the
crew, and the ship were in flux, just as the three parameters in our
mathematical model varied along the process of the
epidemic.

SUPPLEMENTARY FIGURE 3

The forecast of the final stage of the epidemic when getting to stage IV.
(A) The time derivative of the curve of daily reported cases in Shanghai.
(B) The number of daily reported cases in Shanghai. The recorded
numbers are colored in green. The predicted numbers are colored in
blue and yellow, which were calculated using different sets of
parameters. The yellow lines represent the predicted numbers
calculated using restrained parameters, and the blue lines represent the
predicted numbers calculated using relaxed parameters for
stage IV.

SUPPLEMENTARY FIGURE 4

Data fitting and epidemic spreading prediction in Jilin and Changchun.
Data fitting in Jilin (A) and Changchun (B) using the number of
confirmed cases at the beginning of the epidemic in each city,
respectively. The prediction of the turning point in Jilin (C) and
Changchun (D), respectively. In the data fitting, the yellow color
represents the real data, and the blue color represents the number from
the data fitting. In the prediction, the red color represents the real data
and the blue color represents the prediction around the predicted
turning point.
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