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Viral-host protein-protein interaction (VHPPI) prediction is essential to

decoding molecular mechanisms of viral pathogens and host immunity

processes that eventually help to control the propagation of viral diseases

and to design optimized therapeutics. Multiple AI-based predictors have been

developed to predict diverse VHPPIs across a wide range of viruses and

hosts, however, these predictors produce better performance only for specific

types of hosts and viruses. The prime objective of this research is to develop

a robust meta predictor (MP-VHPPI) capable of more accurately predicting

VHPPI across multiple hosts and viruses. The proposed meta predictor makes

use of two well-known encoding methods Amphiphilic Pseudo-Amino Acid

Composition (APAAC) and Quasi-sequence (QS) Order that capture amino

acids sequence order and distributional information to most e�ectively

generate the numerical representation of complete viral-host raw protein

sequences. Feature agglomeration method is utilized to transform the original

feature space into a more informative feature space. Random forest (RF) and

Extra tree (ET) classifiers are trained on optimized feature space of both APAAC

and QS order separate encoders and by combining both encodings. Further

predictions of both classifiers are utilized to feed the Support Vector Machine

(SVM) classifier that makes final predictions. The proposed meta predictor is

evaluated over 7 di�erent benchmark datasets, where it outperforms existing

VHPPI predictors with an average performance of 3.07, 6.07, 2.95, and 2.85% in

terms of accuracy, Mathews correlation coe�cient, precision, and sensitivity,

respectively. To facilitate the scientific community, the MP-VHPPI web server

is available at https://sds_genetic_analysis.opendfki.de/MP-VHPPI/.
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1. Introduction

Viruses have a long history of posing threat to living

organisms (1) as they have caused more than 300 million

deaths worldwide (2). A recent emanation Coronavirus) is an

example of an acute virus that caused a global pandemic (3).

According to World Health Organization, Coronavirus has

caused approximately more than 400 million infections and 6

million deaths across the globe (4). Similarly, the Ebola virus

was also responsible for an epidemic that caused more than 11

thousand deaths in Africa (5).

Viruses are small microscopic particles that contain genetic

material (DNA or RNA) surrounded by a protein coat (1). These

particles are considered non-living because of their inability to

reproduce or perform any other biological function since they

lack specific proteins (6). However, once they get a chance to

enter inside the host cell, they make interactions with available

proteins in the cell and become capable to reproduce themselves

(7). Initially, to enter inside a host cell, the viruses interact

with the host cell receptor proteins (8) and replicate themselves

by injecting their genetic material into the cell’s genome (9).

After the entrance into the cell, the aim of viruses is to interact

with diverse types of proteins through which they can control

the process of the cell cycle, particle assembly, apoptosis, and

cell metabolism (7, 10). The relationships between host and

virus proteins are termed virus-host protein-protein interactions

(11).

To prevent viruses from interacting with host proteins,

hosts have sophisticated mechanisms to recognize and confine

the viruses, such as the dendritic and β- cells, T-cells, and

major histocompatibility complex (12). Therefore, viruses tend

to adapt in an efficient manner by interacting with specific

host proteins and cellular pathways that prove to be substantial

for evading or inactivating factors that are detrimental to viral

growth (7). Meanwhile, to enhance immunity against viruses,

it is difficult to develop efficient vaccines/drugs because of the

poor understanding of different mechanisms that have been

adapted by the viruses, and their frequent transmissibility from

cell-to-cell or species-to-species (13). Consequently, analyzes

of virus-host PPIs are essential to explore their effects on

diverse types of biological functions and to design antiviral

strategies (14). Furthermore, through such analyzes essential

viral proteins and viral dependencies on host proteins can be

identified as drug targets to halt the replication process of viruses

by pharmacological inhibition (15).

Multiple experimental techniques have been utilized to

identify virus-host protein-protein interactions (VHPPIs)

such as protease assay (16), surface plasmon resonance

(SPR) (17), Förster resonance energy (FRET) (18), Yeast two

hybrid screening (Y2H) (19) and affinity purification mass

spectrometry (AP-MS) (20). Such conventional wet lab methods

are expensive, time-consuming, and error-prone, which impede

inter and intra species large scale proteomics sequence analyzes.

To overcome the shortcomings of experimental approaches,

the development of machine learning applications for efficient

proteomics sequence analyzes across different species (e.g.,

humans, viruses) is an active area of research (21–23).

Researchers have developed a machine learning based clustering

applications to distinguish several microbial pathogens (24, 25)

and classification applications to categorize the genes associated

with the survival of pathogens under certain environmental

conditions, antibiotics, or other disturbances (26). Similarly,

researchers have developed classification applications to

determine VHPPIs that play a key role in understanding the

functional paradigms of viruses as well as host responses

(27, 28). With an aim to provide cheap, fast, and accurate

virus-host protein-protein analyzes, to date, around 13 AI-based

predictors (21–23, 27–36) have been proposed.

Recently, Yang et al. (36) proposed a VHPPI predictor

by utilizing position-specific scoring matrices to statistically

represent virus and host protein sequences that were further

passed to Siamese convolutional neural network (CNN) for

VHPPI prediction. The predictor was evaluated on VHPPI data

of human proteins and 8 different viruses. Another similar

predictor namely, Deep Viral (35) used one hot vector encoding

(OHE) for the discretization of sequences and convolutional

neural network architecture for VHPPI prediction. Deep Viral

was evaluated on VHPPIs of humans and 12 different viruses.

Deep-VHPPI (27) predictor also used OHE and attention

mechanism along with CNN for VHPPI prediction. The

predictor was evaluated on VHPPI data related to humans and 4

different viruses.

Ding et al. (34) proposed a VHPPI predictor based on long

short-term memory (LSTM) neural network. At preprocessing

stage, they generated statistical representations of viral and

host proteins by reaping the benefits of 3 different encoders

namely, the relative frequency of amino acid triplets (RFAT),

frequency difference of amino acid triplets (FDAT), and amino

acid composition (AC). The predictor (34) was evaluated on

VHPPIs across proteins belonging to 137 different viruses and

13 hosts. Denovo (29) used amino acid properties such as

dipoles and volumes of side chains to represent 20 amino acids

(AAs) with only 7 cluster numbers to reduce the diversity

of amino acids. The sequences were then encoded based on

the normalized kmer frequencies of 7 unique clusters. Denovo

predictor used SVM classifier and was evaluated on the dataset

of 10 viruses and human proteins. HOPITOR (37) used a

similar encoding method as Denovo (29). HOPITOR used an

SVM classifier and was evaluated on 10 different viruses and

human proteins. Yang et al. (31) proposed InterSPPI-HVPPI

which utilized Doc2vec embeddings and random forest (RF)

classifier for VHPPI prediction. The predictor (31) was evaluated

on data related to 12 viruses, and human proteins. Karabulut

et al. (28) proposed meta predictor (ML-AdVInfect) that reaped

the benefits of 4 existing predictors namely HOPITOR (37),

InterSPPI-HVPPI (31), VHPPI, and Denovo (29). Specifically,
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the authors passed the predictions of existing predictors to the

SVM classifier for the final VHPPI prediction.

Barman et al. (22) proposed a VHPPI predictor that utilized

an RF classifier and statistical vectors generated through 4

different encoding methods namely, average domain-domain

association score, virus methionine, virus seline, and virus

valine. The predictor was evaluated on VHPPI data related to

human proteins and 5 different viruses. Zhou et al. (30) used 7

sequence encoding methods i.e., RFAT, FDAT, AC, composition,

transition, and distribution of amino acid groups. The approach

(30) used an SVM classifier for VHPPI predictions across the

proteins of 332 viruses and 29 hosts. Alguwaizani et al. (32)

combined statistical vectors of 4 different encoders namely,

amino acid repeats, the sum of the squared length of single

amino acid repeats (SARs), maximum of the sum of the squared

length of SARs in a window of 6 residues, and composition

of amino acids in 5 partitions of the protein sequence. The

predictor used an SVM classifier and experimentation was

performed on VHPPI data related to 6 hosts and 5 viruses.

Recently, Asim et al. proposed an LCGA-VHPPI predictor (38),

that made use of a local-global residue context aware sequence

encoding scheme and a deep forestmodel. The authors evaluated

their predictor on data related to 23 viruses and human proteins.

Following the success of neural word embedding approaches

in natural language processing and bioinformatics, Tsukiyama

et al. proposed LSTM-PHV (21) that transformed viral host

protein sequences to statistical vectors by learning statistical

representation of k-mers in an unsupervised manner using

Word2vec approach. The study (21) used bidirectional LSTM

for VHPPI prediction and data of proteins belonging to 332

viruses and 29 hosts. Similarly, MTT (23) predictor utilized

randomly initialized embeddings and LSTM based classifier.

MTT predictor was evaluated on data related to 16 viruses

and human proteins. Hangyu et al. (33) developed a VHPPI

predictor based on Node2vec and Word2vec embeddings

methods and a multilayer perceptron (MLP) classifier. Authors

performed experimentation over 7 variants of the SARS virus

and 16 different host proteins.

The working paradigm of existing VHPPI predictors can be

broadly categorized into two different stages. In the first stage,

raw sequences are transformed into statistical vectors where the

aim is to capture distributional information of 21 unique amino

acids. In the second stage, a machine or deep learning classifier is

utilized to discriminate interactive viral-host protein pairs from

non-interactive ones.

In the first stage, while transforming raw sequences to

statistical vectors, 2 predictors (27, 35), make use of one

hot vector encoding method which lacks information related

to correlations of amino acids. Moreover, 3 predictors use

word embedding generation approaches (21, 23, 35), that

capture kmer-kmer associations but lack information related to

the distribution of amino acids. To capture distribution and

various patterns of amino acids, other predictors utilized 10

different mathematical encoders (22, 29, 31, 34, 36) however,

these methods do not capture sequence order or amino acids

correlation information. Such information is crucial for the

analyzes of protein sequences as reported in the existing studies

(39–42) which include sequence encoders such as APAAC and

QS order. Despite the promising performance shown by APAAC

and QS order encoders for subcellular location prediction

(39), Cyclin protein classification (40), and protein-protein

interaction prediction (41, 42) tasks, no researcher has explored

their potential to effectively generate numerical representations

of viral-host protein sequences.

In the second stage, 4 predictors (27, 34–36) utilize CNNs,

2 predictors (21, 34) make use of LSTM architecture and 8

predictors (22, 23, 28–33) use traditional classifiers. As such

predictors have shown better performances across limited hosts

and viruses, therefore these predictors cannot be generalized

across multiple hosts and viruses. For instance, LSTM-PHV is

the most recent predictor which managed to produce better

performance for human and Coronavirus related VHPPI, but

failed to produce similar performance over Zhou et al. (43)

datasets that contain multiple hosts and viruses. To make a

generic predictor capable of accurately predicting interactions

across multiple hosts and viruses, only one meta predictor (28)

has been developed. However, this meta-predictor relies on the

predictions of 4 existing VHPPI predictors that have their own

drawbacks at the sequence encoding and classification level.

With an aim to develop a more accurate and generic meta

predictor, the contributions of this paper are manifold, i) It

makes use of two different physicochemical properties-based

sequence encoding methods namely, APAAC and QS order. In

addition, unlike other protein sequence analysis tasks where

numerical representations of complete raw protein sequences

have been generated through these encoders by utilizing a

combination of different physicochemical properties, the paper

in hand proposes an effective way to generate numerical

representations by using a precise subset of physicochemical

properties. ii) Considering different physicochemical properties

in both encoders extract some irrelevant and redundant features,

to remove such features, it transforms the original feature

space into a reduced and more discriminative feature space

by utilizing a dimensionality reduction method named feature

agglomeration. iii) Using separate and combined statistical

vectors generated through APAAC and Qsorder, it generates

more effective and discriminative probabilistic feature space by

fusing the predictions of two different classifiers. Optimized

probabilistic feature space is used to feed the SVM classifier

which makes final predictions. iv) Large-scale experimentation

over 7 public benchmark datasets and performance comparison

of the proposed meta predictor with existing predictors is

performed. v) To facilitate researchers and practitioners, a web

application based on the proposed meta predictor is developed.
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2. Materials and methods

This section briefly describes the working paradigm of the

proposed predictor, benchmark datasets, and diverse types of

evaluation measures.

2.1. Proposed meta-predictor

Machine learning classifiers cannot directly operate on raw

sequences due to their dependency on statistical representations.

While transforming raw protein sequences into statistical

vectors, the aim is to encode positional and discriminative

information about amino acids. To represent viral and host

protein sequences by extracting both types of information,

the proposed meta predictor makes use of two sequence

encoders namely APAAC and QS order. The statistical vectors

generated by these methods depend on certain physicochemical

properties. For example, the APAAC (44) encoder contains three

different physicochemical properties namely hydrophobicity,

hydrophilicity, and side chain mass whereas, QS order (39)

has two content matrices namely, Schneider and Grantham.

However, it is important to investigate which particular

properties of both encoders are appropriate in order to generate

more comprehensive statistical vectors, rather than utilizing all

the available properties.

To fully utilize the potential of both encoders, a strategy

similar to the forward feature selection method is adopted to

find out the most appropriate physicochemical properties. For

instance, from 3 the properties of the APAAC encoder, first, we

generate statistical vectors by using one property and compute

the performance of the RF classifier. Similarly, we repeat the

same process for the second and third properties in order to

record the performance of the RF classifier. On the basis of

higher performance, we take the property-specific statistical

vectors and combine them with the second best performing

property vectors. This is followed by the evaluation on the basis

of combined features, if this does not yield any performance

gains then the iterative process stops, and individual property-

based statistical vectors with the highest performance are

selected. In contrast, if there are any performance gains with

such combinations then the combined encodings are retained

and utilized further. A similar procedure is used to generate

statistical representations using QS order.

The statistical vectors generated from the encoders may

contain irrelevant and redundant features. In order to remove

such features and retain only the most informative features,

we utilize a dimensionality reduction algorithm named feature

agglomeration (45). While reducing the dimensions of the

original feature space, it is important to find the target

dimension of the reduced feature space. To find an appropriate

feature space, we reduce the dimension of the original feature

space from 40 to 95% with a step size of 5%. By utilizing

RF classifier based on its performance, we chose the most

appropriate feature space. It is noteworthy to mention that the

process of property selection and appropriate reduced feature

space selection is performed only using training data.

In the current study, the training of meta-predictor can be

seen as a two-stage process. In the first stage, the statistical

vectors generated for virus-host protein sequences using APAAC

and QS order are separately passed through two machine

learning classifiers i.e., RF and ET (46). Then the prior

representations are concatenated and passed again through

the RF and ET classifiers, predictions of both classifiers using

individual and combined encodings are utilized to create a new

feature space on which the SVM classifier is trained to make

final predictions.

Figure 1 describes a graphical illustration of the proposed

meta predictor’s workflow. The more detailed working of the

encoding methods is given in Section 2.1.1. The dimensionality

reduction method is explained in Section 2.1.2. In addition,

details of the machine learning classifiers are provided in

Section 2.3.

2.1.1. Protein sequence encoding

The following subsections briefly illustrate the working

paradigm of APAAC and QS order sequence encoding methods.

2.1.1.1. Amphiphilic Pseudo-Amino Acid Composition

(APAAC)

Chou (44, 47) proposed an APAAC encoder that makes use

of pre-computed physicochemical values of hydrophobicity,

hydrophilicity, and side chain mass (44, 47). Each

physicochemical property contains 20 float values associated

with 20 unique amino acids (Supplementary Table S1). These

values are computed based on diverse types of information

related to protein folding, and protein’s interactions with

the environment and other molecules. For each of the three

quantitative properties, the values of its corresponding amino

acids are normalized to zero mean and unit standard deviation

through Equation 1.

f (x) =


























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


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

Mean[pi] =

∑20
k=1 pi[AAk]

20
,

S[pi] =

√

(
∑20

k=1 (pi[AAk]−Mean[pi])2)

20
,

P[pi] =
pi[AAk]−Mean[pi]

S[pi]
,

k ∈ {1., 2, 3, · · · , 20},

pi ∈ {hydrophobicity, hydrophilicity, side chain mass}.

(1)

Whereas, pi represents the physicochemical property based

value of an amino acid (AAk) which is either hydrophobicity,

hydrophilicity, or side chain mass. In Equation 1, Mean[pi]

is the mean of 20 amino acids in each property, and S[pi]
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FIGURE 1

The overall working paradigm of the proposed VHPPIs predictor. Dataset Construction To begin with, di�erent datasets are collected from

existing studies based on VHPPIs from several databases such as HPID, Intact, and VirusMentha. Feature Representation Obtained protein

sequences are encoded on the basis of two physicochemical properties based protein sequence encoders i.e., QS order and APAAC. Feature

Analyzes Appropriate physicochemical properties are selected for the APAAC and QS order on the basis of feature analyzes. Model

Construction the VHPPIs predictor is an SVM model formed on the basis of probabilistic vectors obtained from the RF and ET classifiers. Finally,

a web server is established for fast, and easy on-go analyzes of VHPPIs.
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is the standard deviation, where both can be computed using

Equation 1.

In each physicochemical property, using normalized values

of all 20 amino acids, the order of amino acids within the

host and viral protein sequences is captured using a lag-

based phenomenon.

For instance, we have a raw sequence

S=R1,R2,R3,R4, · · · ,RL, where R1,··· ,L denotes 20 unique

amino acids. If lag=1, then twomost contiguous amino acids i.e.,

Slag1 = R1R2,R2R3,R3R4,R4R5, are taken, for lag=2, second-

most contiguous amino acids, i.e., Slag2 = R1R3,R2R4,R3R5
are taken by skipping 1 amino acid, and for lag=3, third-most

contiguous amino acids are taken by skipping 2 amino acids

i.e., Slag3 = R1R4,R2R5, and so on. After generating bigrams,

from Slag1, Slag2, and Slag3, iteratively, bigrams are taken and

in each bigram, physicochemical values of both amino acids are

multiplied using a correlation function shown in Equation 2.

Pi[B] = pi(AAj).pi(AAk),

pi ∈ {hydrophobicity, hydrophilicity, side chain mass}
(2)

After computing the correlation functions, for a property,

across N number of lags, a single float is computed by averaging

property values across all the lag-based amino acid bigrams.

Enc[pi] =

lag
∑

l=1

P[B]

seq len− lagl
. (3)

Furthermore, both types of sequence order and amino acid

distributional information can be captured using Equation (4).

Enc [AA] =
frequency of AA in protein sequence

1+ w× Enc[pi]
, (4)

Here, w is a weight parameter that varies from 0.1 to 1.

Similarly, normalization is applied to the original sequence order

information by using Equation (5),

Enc[pi] lagi =
w× Enc[pi]lagi
1+ w× Enc[pi]

. (5)

Once the amino acid distribution and sequence order related

information are encoded, the final statistical representation is

obtained by concatenating the amino acid distributions and

correlations among amino acids, that represent the sequence

order information of a protein sequence.

Encoding [seq]Pi = Enc[AA] ‖ Enc [pi]lagi (6)

The dimension of the final statistical vector for a single

physicochemical property is 20 + lag-D vector and for 3

physicochemical properties, the final statistical vector is (20

+ lag) × 3 dimensional vector. As a result, the first 20

numbers are the normalized amino acid frequencies and the next

following discrete numbers reminisce the amphiphilic amino

acid correlations along a protein chain.

2.1.1.2. Quasi-sequence (QS) order

Owing to similar ideas like APAAC, QS order also encodes

the sequence order and discriminative information based on

different physicochemical properties (39). To incorporate a

more significant sequence order information, QS order makes

use of pre-computed values of 4 different physicochemical

properties namely, hydrophobicity, hydrophilicity, polarity, and

side chain volume to compute the coupling factors among the

amino acids of a protein sequence (39). These physicochemical

properties describe protein folding and its structural features,

particularly surface physical chemistry. These pre-computed

values have been averaged and on the basis of Manhattan

distance, new values (20 × 20 = 400) have been provided by

Schneider et al. (48) and Grantham et al. (49) (for details refer

to Supplementary Tables S2, S3).

In QS order, first, the bigrams of amino acids are

generated on the basis of a lag value that is quite similar

to stride size in CNN. To compute a coupling factor P[B],

distance values between two amino acids are taken from

Supplementary Tables 2, 3, with respect to bigrams generated via

lag value. The coupling factor P[B] can be written as;

P[B] = D2
i (AAk,AAj),

Di ∈ {Schneider,Grantham},
(7)

where D is the distance value taken from the Schneider or

Grantham’s content matrices and B denotes a bigram of amino

acids. Corresponding encoding value for a lag can be computed

by averaging all the physicochemical distance values for bigrams,

Encoding [Di]lagi =

∑len seq−i
k=1 (P[B]k)

len seq− 1
. (8)

To get a single float value for the encoding, lag values are

averaged depending on the size of the lag. For example, for

lag=3, first, the bigrams are generated with lag=1,2,3, then the

corresponding encodings for these bigrams are generated and

averaged using the following equation.

Encoding [Di] =

lag
∑

i=1

Encoding [Di]lagi (9)

These computed encoding values are normalized along with

a weight factor w,

Encoding [Di]lagi =
w× Encoding [Di]lagi
1+ w× Encoding[Di]

(10)
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To incorporate the distribution of amino acids, normalized

frequencies of 20 different amino acids are computed, according

to the following equation,

Encoding [AAk] =
frequency of AAk in protein sequence

1+ w× Encoding[Di]
.

(11)

Finally, (20+lag) × 2 dimensional statistical vector is

formed by concatenating 20 amino acids distribution values

and lag number of correlation factors referring to sequence

order information with respect to distance values provided by

Schneider and Grantham.

Encoding [seq] = Encoding[AA] ‖ Encoding [Di]lagi , (12)

where, Encdoing[AA] represents the normalized frequency

values of 20 different amino acids, and Encoding[Di]lagi refers

to the sequence order information.

2.1.2. Dimensionality reduction via feature
agglomeration clustering

Hierarchical clustering (HC) is a known group of clustering

algorithms that construct clusters on the basis of similarities

among the data samples. The end goal of HC is to compute

clusters that are completely different from each other and data

samples within a single cluster are similar to each other. Similar

ideas are inherited by feature agglomeration, where the grouping

is applied to the features of the data rather than the data samples.

In feature agglomeration, two steps are iteratively followed

to achieve the required dimensions of feature space namely,

distance computation and pooling. First the distance among all

the features is computed using Euclidean or Manhattan distance

(50). On the basis of the minimum distance, two features are

combined together on the basis of a pooling function which

can be the mean of respective features. This process is repeated

unless the features are reduced to desired dimensions.

2.1.3. Iterative representation learning

Iterative representation learning is a crucial step for

performance improvements of ML models, inspired by layer-

wise training of deep learning models. In the current study, the

proposed meta-predictor works in a two-stage process based on

iterative representation learning. In the first stage, the statistical

vectors generated for virus-host protein sequences by APAAC

and QS order are separately passed through two machine

learning models i.e., RF and ET. Then the prior representations

are concatenated and passed again through the RF and ET

classifiers. As a result, for protein sequences, in total around 6

different positive class probabilities are obtained. In the second

stage, these probabilistic values are concatenated with each other

to form a new 6-D feature vector for protein sequences. This

probabilistic feature representation of protein sequences is used

as an input for a support vector machine classifier that provides

results for the prediction of VHPPIs.

2.2. Benchmark datasets

In order to develop and evaluate AI-based predictors

for virus-host protein-protein interaction prediction, several

datasets have been developed in the existing studies (11, 21, 22,

30, 32, 36). We have collected 7 publicly available benchmark

datasets from 4 different studies. These datasets have been

extensively utilized in the development/evaluation of the most

recent VHPPI predictors (22, 29, 30, 36).

One dataset is taken from the study of Barman et al.

(22), which contains VHPPIs across human and 4 viruses i.e.,

HIV-1, simian virus 40 (SV40), HBV, HCV, papilloma virus,

these VHPPIs were downloaded from VirusMint database (51).

Whereas, negative samples were collected from Uniprot (52)

based on their dissimilarity with the true VHPPIs.

Similarly, another dataset is taken from Fatma et al. (29)

work, which contains VHPPIs of humans and 173 viruses i.e.,

Paramyxoviridae, Filoviridae, Bunyaviridae, Flaviviridae,

Adenoviridae, Orthomyxoviridae, Chordopoxviridae,

Papillomaviridae, Herpesviridae, Retroviridae. These VHPPIs

were collected from VirusMetha (53), and Uniprot (52).

Negative class samples were generated by a random dissimilarity

algorithm, which assumed the condition that two viral proteins

comprised of similar amino acid sequences could not interact

with the same host protein. The similarity between two proteins

was decided through distance (dissimilarity) score based on

normalized global alignment bit scores. Furthermore, once

unique viral proteins were obtained, their interactions were

decided based on the dissimilarity (distance) score > 0.8 with

host proteins.

The coronavirus and human proteins related dataset are

taken from Yang et al. (36) work, where the interactions were

collected from HPID (54), VirusHostNet (55), PHISTO (56),

and PDB (57) databases. Moreover, negative samples were

generated by dissimilarity-based negative sampling across the

PPIs retrieved from Uniprot (36, 52).

To make the predictor generic and capable to predict

interactions over new viruses, we collected 4 datasets from Zhou

et al. (30) study. These datasets contain interactions related

to 29 different hosts and 332 different viruses. To collect raw

sequences and interactions, authors utilized 5 different databases

namely PSICQUIC (58), APID (59), IntAct (60), Mentha (53),

and Uniprot (52). Furthermore, for negative data, authors

obtained protein sequences of 4 major hosts namely, human,

non-human animal, plant, and bacteria, from UniProt (52),

and removed sequences with a sequence similarity higher than

80% to any positive data using CD-HIT-2D (61). Moreover, in
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FIGURE 2

Summary statistics of 7 datasets utilized in this study. For each

study, the respective number of positive and negative samples

are shown.

order to assess the applicability on new/unseen viruses, authors

distributed VHPPIs of 29 hosts and 332 viruses into 4 different

train and 2 test sets, the distribution of viruses and hosts in these

datasets is given below,

TR1: PPIs between human and any virus except H1N1

virus.

TR2: PPIs between human and any virus except Ebola

virus.

TR3: PPIs between any host and any virus except H1N1

virus.

TR4: PPIs between any host and any virus except Ebola

virus.

TS1: PPIs between human and H1N1 virus.

TS2: PPIs between human and Ebola virus.

Furthermore, Figure 2 summarizes the statistics of datasets

in terms of the number of positive and negative samples.

In order to perform experimentation, selected datasets are

more appropriate due to multiple reasons such as recent

VHPPI predictors reporting their performance scores, making it

possible to compare our proposed VHPPI predictor to existing

predictors directly. These datasets contain sufficient VHPPIs

which enable training machine learning models in an optimal

way. Furthermore, these datasets contain diverse VHPPIs across

a broad selection of viruses and hosts which allows testing the

generalizability of the model against multiple hosts and viruses

for the task of VHPPI prediction.

2.3. Virus-host protein-protein
interaction prediction

The following section summarizes the machine learning

(ML) classifiers used to predict virus-host protein-protein

interactions .

2.3.1. Support vector machine

SVM classifier finds hyperplane(s) in an N-dimensional

feature space that can discriminate between interactive and non-

interactive pairs of host and viral proteins (62). Specifically,

it tends to find the hyperplane that maximizes the margin

i.e., the distance between data points of the corresponding

classes. Furthermore, to handle non-linear feature space,

the SVM classifier facilitates kernel trick where non-linear

feature space is transformed to separable linear feature space.

Considering the promising predictive performance of the

SVM classifier in various proteomics sequence analysis tasks

including coronavirus survival prediction (63), hepatitis B-

related hepatocellular carcinoma recurrence prediction (64),

sulfenylation sites prediction (65). As a whole, the SVM classifier

has achieved an average performance of more than 80%. We

have used an SVM classifier to distinguish interactive virus-host

protein sequences from non-interactive ones.

2.3.2. Random forest classifier

A random forest classifier is based on decision trees (DT),

which are considered the base learners (66). To begin with, a

root node is selected according to the feature with the lowest

Gini impurity or the maximum information gain (67). Several

samples are then separated based on the classes relevant to

the selected feature. The process is repeated until all nodes are

homogeneous or simply all nodes contain data only related to

one class.

Random Forest classifier is a collection of hundreds of

trees such that each tree is grown using a bootstrap sample of

the original data (68). In a random forest each tree is grown

in a nondeterministic way by inducing randomness at two

different stages. First, randomness occurs at the tree level, as

different trees get bootstraps of samples. At the node level,

randomization is introduced by selecting a random subset of

features for finding the best split rather than growing a tree on

the complete feature set. This randomness helps in decorrelating

the individual trees such that the whole forest has a low

variance. Finally, an averaged or a voted decision is formulated

based on individual predictions from the DTs. Following the

success of the RF classifier in distinct proteomics sequence

analysis tasks such as host disease classification (69), urine

proteome profiling (70), and hydroxyproline and hydroxylysine

site prediction (71). RF classifier manages to achieve an average

performance of more than 80% on these tasks. We have utilized
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RF classifier to compute a discriminative and informative

feature space using the separate statistical representations of

APAAC and QS order sequence encoders as well as combined

statistical representations.

2.3.3. Extra trees classifier

Extremely randomized trees or extra trees (ET) classifier

makes predictions similar to RF classifier (72). Multiple trees are

trained and each tree is exposed to all training data. ET drops

the idea of bootstrapping and takes a random subset of features

without replacement. Unlike RF classifier, in the ET classifier,

the splits are created across nodes via random splitting not

based on the best splitting. Therefore, the ET classifier provides

independent trees which yield better accuracy scores and low

variance across different classes. Considering the increasing

usage of ET classifiers in proteomics sequence analysis tasks

including glutarylation sites prediction (73), non-coding RNA-

protein interaction prediction (74), and protein stability changes

estimation (75). Overall, the ET classifier marks an average

performance of more than 80% on these tasks. We have used

the ET classifier to assist the RF classifier in the generation of

effective feature space using statistical representations of two

physico-chemical properties based sequence encoders.

3. Evaluation criteria

To evaluate the integrity, effectiveness, and prediction

performance of the proposed virus-host PPIs meta predictor in

a reliable manner, following the evaluation criteria of existing

studies (21, 30, 36), we utilize 8 different evaluation measures,

i.e., accuracy (ACC), specificity (SP), sensitivity (SN), precision

(PR), F1 score, area under the receiver operating characteristic

(AUROC), area under the precision-recall curve (AUPRC) and

Matthews correlation coefficient (MCC).

Accuracy (ACC) (30) measures the proportion of correct

predictions with respect to total predictions. Specificity (SP) or

True Negative Rate (TNR) is the ratio between true negative

class predictions and overall predictions of negative class.

Similarly, Recall/Sensitivity (21) computes the score by taking

the ratio of correct predictions made on positive class samples

to the sum of correct and false predictions of positive class

samples. Precision (PR) computes performance score by taking

the ratio between correct predictions of positive class samples

and all samples which predictor labeled as the positive class.

The area under receiver operating characteristics (AUROC) (32)

calculates performance score by using true positive rate (TPR)

and false positive rate (FPR) at different thresholds.Whereas, the

area under the precision-recall curve (AUPRC) (32) calculates

the performance scores using precision (P) and recall (FPR) at

different thresholds. F1 score combines the precision (P) and

recall (R) into a single measure by taking their harmonic mean.

MCC (21) measures the correlation of the true classes with

the predicted classes by considering all predictions related to

positive and negative class samples. Mathematical equations of

the aforementioned measures are given as,
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ACC = (TP + TN )/(TP + TN + FP + FN )

Specificity (SP) = TN/(TN + FP)

Sensitivity (SN) or Recall (R) = TP/(TP + FN )

Precision (P) = TP/(TP + FP)

True Positive Rate (TPR) = TP/(TP + FN )

False Positive Rate (FPR) = FP/(TN + FP)

F1 score = 2(P × R)/(P + R)

MCC = TP × TN − FP × FN/E

E =
√

(TP + FN )(TP + FP)(TN + FP)(TN + FN )
(13)

In the above numerical cases, TP and TN denote true

predictions on the positive and negative classes. While FP and

FN refer to the false predictions related to the positive and

negative classes, respectively.

To compute the performance of the proposed predictor in

terms of the aforementioned evaluationmeasures, the evaluation

of the predictive pipeline can be performed under the hood of

two different settings, k-fold cross-validation and independent

test set based evaluation. In k-fold cross-validation, corpus

sequences are split into k-folds where iteratively k-1 folds

are used for training and the remaining fold is used for

testing the predictive pipeline. In this setting, train test split

biaseness does not exist as each sequence participates in training

and evaluation. Whereas in the independent test set based

evaluation, standard train and test splits of sequences are

already available, hence training sequences are used to train

the predictive pipeline and test sequences are used to test

the predictive pipeline. There is a possibility that authors of

benchmark datasets may partition hard sequences in the training

set and simple sequences in the test set or vice versa. However,

we believe that authors of benchmark datasets have carefully

partitioned the sequences into train and test sets to avoid any

biaseness and perform a fair evaluation. In our study, following

previous work (22, 29–31) which has performed independent

test set based evaluation on all datasets except Barman et al. (22)

dataset, we also perform independent test set based evaluation

to make a fair performance comparison. Contrarily, we evaluate

our proposed predictor on Barman et al. (22) dataset using 5-

fold cross-validation as done by the previous benchmark study.

4. Experimental setup

The proposed meta-predictor is implemented in Python

and protein sequence encoders i.e., APAAC and Qsorder are

taken from iLearnPlus (76). The classifiers are implemented
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TABLE 1 Grid search parameters along with optimal values for 3 di�erent machine learning classifiers used for virus-host protein-protein

interaction prediction.

Selected parameters Grid search space

Datasest RF ET SVM RF ET SVM

Barman (100, gini, auto) (100, entropy) (poly, 1, 100, 0.001, true)

nbe=[30, 60, 100, 150, 200,
250, 300, 350, 400, 450,
500], c=[gini, entropy]

maxfea=[auto, log2 , sqrt]

nbe=[30, 60, 100, 150, 200,
250, 300, 350, 400, 450, 500],

c=[gini, entropy]

K=[rbf, poly, linear, sigmoid],

d=[1, 2, 3, 4, 5],

C=[1, · · · , 100], γ=[auto, scale],

prob=[True, False]

Denovo (300, gini, null) (300, gini) (poly, 1, 100, 0.01, true)

Coronavirus (100, gini, auto) (100, entropy) (linear, 3, 5, 0.0001, true)

TR1-TS1 (100, gini, auto) (30, entropy) (poly, 2, 100, 0.0001, true)

TR2-TS2 (100, gini, auto) (30, entropy) (poly, 3, 10, 0.1, true)

TR3-TS1 (100, gini, auto) (30, entropy) (poly, 2, 100, 0.001, true)

TR4-TS2 (100, gini, auto) (30, entropy) (poly, 2, 100, 0.001, true)

using Scikit-Learn (77). In order to determine the optimal

hyperparameters of encoding methods and classifiers, we have

utilized a grid search strategy (78). A search in the grid finds

the most optimal values of hyperparameters by evaluating all

possible parameter combinations.

In order to determine the optimal parameters λ for the

APAAC encoder and lag for the Qsorder encoder, enλ,lag =

[1, · · · , 5] is used as the grid search space with a stride size of

1. For the Qsorder encoder, lag=1 is chosen for Denovo, TR3-

TS1, and Coronavirus datasets, lag=2 is selected for Barman,

TR1-TS1 datasets, lag=3 for TR2-TS2, and lag=4 for TR4-TS4.

In addition for the APAAC encoder, λ = (4, 4, 4, 4, 3, 3, 1), are

chosen for Barman, Denovo, TR2-TS2, TR4-TS2, Coronavirus,

TR1-TS1, and TR3-TS1 datasets.

In terms of ML classifiers, the performance of the SVM

classifier is greatly influenced by the base kernel, along

with the regularization parameter penalty C that controls

the margin among hyperplanes. Whereas the parameter d

represents the degree of the polynomial kernel, which affects

the flexibility of the decision boundary in SVM. Similarly,

the performance of tree-based classifiers (RF, ET) relies

on the number of base estimators, maximum features for

the best split, and splitting criteria i.e., Gini impurity and

entropy. To make sure the reproducibility of results, the grid

search space, and the selected hyperparameters are shown in

Table 1.

5. Results

This section briefly describes the performance of the

proposed meta predictor at different levels of ensembling.

Furthermore, it compares the performance of the

proposed meta predictor with existing predictors (11, 21–

23, 29, 30, 32, 36) over 7 different benchmark datasets

(22, 29, 36, 43).

5.1. Performance analyzes of proposed
meta predictor using di�erent
representations at property level and
encoder level

The impact of different physicochemical properties

and dimensionality reduction is explored by analyzing the

performance of RF and SVM classifiers on the TR4-TS2

dataset. Table 2 shows 8 different evaluation measures based

on performance values produced by the RF classifier using

statistical representations generated through APAAC and

Qsorder encoders using individual and combinations of

properties. It also illustrates the performance values of the

classifier using combined statistical vectors of both encoders. To

illustrate the performance impact of dimensionality reduction,

it shows the performance of the RF classifier using the feature

agglomeration method based on generated comprehensive

feature space of statistical vectors produced through individual

encoders (APAAC, Qsorder) and a combination of both

encoders. To illustrate, the performance gains achieved through

iterative representation learning of second stage classifier

using first stage classifier predicted probabilities, show the

performance of the SVM classifier.

In Table 2, for the Qsorder encoder, p1 represents the

Schneider-Wrede property and p2 denotes the Grantham

property. Similarly for the APAAC encoder, p1, p2, and p3

denote hydrophobicity, hydrophilicity, and side chain mass

properties, respectively. RF classifier with statistical vectors

generated through Qsorder using the p1 property produces

84.16% accuracy and 83.89% accuracy using the p2 property.

It can be concluded that, RF classifier produces different

performances when it is fed with two different statistical

vectors generated through the Qsorder encoder by using

two different physicochemical properties p1 and p2. This

performance difference illustrates both properties extract and

encode different types of information while generating statistical

vectors. The performance of the classifier is improved when it
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TABLE 2 Performance comparison of di�erent statistical representations across 1st stage RF classifier and with iterative feature learning based 2nd

stage SVM classifier.

Encoder Properties DR Random forest classifier

ACC PR F1 SP SN AUPRC AUROC MCC

QSOrder

p1 no 84.16 85.46 84.01 84.06 91.01 98.02 97.55 69.91

p2 no 83.89 85.75 83.68 83.89 90.23 98.16 97.74 69.62

p1+ p2 no 84.23 85.99 84.03 84.23 91.77 98.24 97.89 70.20

p1+ p2 yes 85.23 86.72 85.08 85.23 92.30 97.90 97.49 71.94

APAAC

p1 no 83.22 85.80 82.91 83.22 90.22 98.09 97.49 68.97

p2 no 82.89 85.05 82.62 82.89 89.45 98.04 97.35 67.90

p3 no 84.56 86.71 84.34 84.56 91.45 98.30 97.88 71.24

p3+ p1 no 82.89 85.30 82.59 82.89 89.45 98.10 97.49 68.15

p3+p2 no 85.57 87.65 85.37 85.57 92.59 98.24 97.75 73.19

p3+p2 yes 86.24 88.36 86.05 86.24 92.98 98.26 97.96 74.57

p1+p2+p3 no 85.23 87.17 85.04 85.23 92.23 98.16 97.63 72.38

APAAC+QSorder
no 86.24 87.88 86.09 86.24 92.90 98.10 97.49 74.10

yes 86.24 87.88 86.09 86.24 92.91 98.24 97.80 74.10

2nd Stage predictors SVM classifier

Qsorder-DR-RF, APAAC-DR-RF,

Qsorder-DR+APAAC-DR-RF, Qsorder-DR-ET,

APAAC-DR-ET, Qsorder-DR+APAAC-DR-ET

93.62 93.64 93.62 93.62 96.71 98.50 98.14 87.27

Bold values denote the highest performance figures.

is fed with combined statistical vectors generated through both

properties. Its performance gets further improved when it is fed

with combined vectors of both properties reduced through the

feature agglomeration method. This performance improvement

validates, that both properties extract some redundant features

that when eradicated in the newly generated feature space, the

performance gets improved.

Similarly, for the APAAC encoder, among 3 statistical

vectors generated through 3 different properties, the RF classifier

produces better performance with the p3 property and produces

the lowest performance with the p2 property. Thus, according

to the working paradigm of the proposed property selection

method, top-performing property p3 vectors will combine with

p1 and p2 properties vectors iteratively. From the concatenation

of the p3 property vector with p1 and p2 property vectors,

the classifier achieves a slight performance gain with p3 and

p2 concatenation. Furthermore, when p3 and p2 properties

vectors were combined with the p1 property, the performance

of the classifier decreased as compared to its performance

with p2 and p3 properties combinations, and the property

selection method selected p2 and p3 as two optimal properties.

These results reveal that to fully utilize the potential of the

APAAC encoder, it is essential to utilize the best combination of

properties. Furthermore, the concatenation of statistical vectors

generated through selected best properties based APAAC and

Qsorder encoders fails to improve the performance of the

RF classifier as compared to its performance on individual

statistical representations.

Dimensionality reduction along with individual encoders

has improved the performance of the RF classifier as compared

to its performance on the same encoders without applying

dimensionality reduction. However, it produces almost similar

performance with and without dimensionality reduction on

combined vectors of APAAC and Qsorder encoders.

To gain further performance enhancement, in the second

stage we utilize positive class probabilities predicted by ET

and RF classifiers using feature agglomeration based optimized

statistical vectors of individual APAAC and Qsorder encoders

and both encoders combined vectors. SVM classifier is trained

on newly generated probabilistic 6D feature space where it

achieves higher performance as compared to the performance

values of RF and ET classifiers. In comparison to the

performance of the RF classifier with sequence representations

obtained by applying dimensionality reduction to APAAC and

QS Order combined vectors (APAAC+Qsorder, DR=yes), it

achieves performance improvements of 7.38% in accuracy,

5.76% in precision, 7.53% in F1 score, 7.38% in specificity,

3.1% in sensitivity, 0.26% in AUPRC, 0.34% in AUROC and

13.17% in MCC. In comparison to the performance of the

RF classifier with sequence representations generated through
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TABLE 3 Performance comparison of proposed MP-VHPPI with existing viral-host PPI predictors over a benchmark Barman dataset in terms of 7

di�erent evaluation measures.

Approach ACC SN SP PR F1 MCC AU-ROC

Yang et al. (31) RF 79.17 81.85 76.45 77.83 79.79 58.40 87.1

Alguwzizani et al. (32) SVM 78.6 73.72 83.48 81.69 77.50 57.50 84.70

Barman et al. (22) SVM 71.00 67.00 74.00 72.00 69.41 44.0 73.00

Barman et al. (22) RF 72.41 89.08 55.66 82.26 66.39 48.00 76.00

Zhou et al. (30) SVM 79.95 76.14 83.77 82.46 79.17 60.1 85.8

Asim et al. (38) LGCA-VHPPI 82.00 82.00 89.37 82.40 81.47 63.99 88.00

Proposed MP-VHPPI 82.90 90.87 82.90 84.08 82.74 66.96 88.17

Performance figures of Barman et al. (22) SVM, Barman et al. (22) RF, Alguwzizani et al. (32) SVM, and Yang et al. (31) RF are taken from Yang et al. (31) work. Bold values denote the

highest performance figures.

(p1+p2, DR=yes) of Qsorder and (p3+p2, DR=yes) of APAAC, it

achieves performance improvements with an average margin of

6.10% across all the evaluationmeasures. Therefore, it is inferred

that the SVM classifier along with the iterative representation

learning leads to the highest performance for virus-host protein-

protein interaction prediction.

5.1.1. Proposed MP-VHPPI predictor
performance comparison with existing
predictors on Barman’s dataset

Table 3 shows the performance values of 7 different

evaluation measures of the proposed meta predictor and 6

existing VHPPI predictors (22, 30–32, 38) on Barman et al.’s

(22) dataset. From 6 existing predictors, Asim et al. (38)

LGCA-VHPPI predictor achieves better performance in terms of

accuracy 82%, specificity 89.37%, f1 score 81.47%, MCC 63.99%,

and AU-ROC 88%.Whereas, Zhou et al., (30) predictor produce

better performance in terms of precision at 82.46%. Among 7

different evaluation measures, Barman et al., predictor (22) only

managed to produce the highest sensitivity 89.08% as compared

to the sensitivity of 5 other predictors. Comparatively, the

proposed meta-predictor outperforms 6 previously mentioned

predictors (22, 30–32, 38) in terms of 6 distinct evaluation

measures. Overall, in terms of accuracy, the proposed meta

predictor achieves an improvement of 0.9%, 1.79% in sensitivity

1.62% increase in precision, 1.27% increase in F1 score, 2.97% in

MCC, and 0.17% in terms of AU-ROC.

In terms of robustness on Barman’s dataset, the proposed

and existing predictors fall into two different categories based on

the differences between their specificity and sensitivity scores,

i.e., less biased, predictors with a small difference in specificity

and sensitivity scores, and more biased predictors with a large

difference in specificity and sensitivity scores. Individually there

are sensitivity and specificity differences of 5.4, 9.76, 7, 33.42,

7.63, 7.37, and 7.97% for Yang et al.’s (31) RF, Alguwzizani et al.

(32) SVM, Barman et al. (22) SVM, and Barman et al. (22) RF,

Zhou et al. (30) SVM, Asim et al. (38) LGCA-VHPPI predictor

and the proposed meta-predictor, respectively. On the basis of

these difference values, among all predictors, Yang et al.’s RF

(31), Barman et al. (22) SVM, Zhou et al. (30) SVM, Asim

et al. (38) LGCA-VHPPI, and proposed meta-predictor can be

considered less biased as they have small differences (<8%) in

terms of their specificity and sensitivity scores. Contrarily, the

other two predictors Barman et al.’s (22) RF, and Alguwzizani

et al. (32) SVM, have large differences between sensitivity and

specificity scores and are biased toward either type I or type II

error. Type I error arises when a predictor is prone toward false

positive predictions due to low specificity and high sensitivity

scores (TIE = 1 − SP), and in type II error the predictor is

prone to false negative predictions due to low sensitivity and

high specificity scores (TIIE = 1 − SN). Barman et al.’s (22)

RF is more prone to type I error due to high sensitivity and

lower specificity scores, whereas Alguwzizani et al. (32) SVM is

more prone to type II error due to higher specificity and lower

sensitivity scores.

5.1.2. Proposed MP-VHPPI predictor
performance comparison with existing
predictors on Denovo’s dataset

Table 4 illustrates performance values of 7 different

evaluation measures of the proposed meta predictor and 7

existing VHPPI predictors Yang et al. (31) RF, Alguwzizani et al.

(32) SVM, Fatma et al. (29) SVM, Yang et al. (36) CNN, Zhou

et al. (30) SVM, Dong et al. (23) LSTM, and Asim et al. (29)

LCGA-VHPPI on Denovo dataset.

From 7 existing predictors, Asim et al., LGCA-VHPPI

predictor (38) achieve better performance in terms of accuracy

94.24%, sensitivity 94.24%, f1 score 94.23%, MCC 88.56%,

and AU-ROC 98.49%. Whereas, Yang et al., predictor (36)

achieve the highest performance values in terms of specificity

97.41%, and precision 97.23%. Among all existing predictors,

Fatma et al., predictor (29) show the least performance. In

comparison to these predictors, the proposed meta predictor

offers performance improvements across 4 different evaluation

measures. It achieves a performance gain of 0.35% in both

accuracy and f1 score, 2.99% increment in sensitivity, and 0.76%

increment in MCC.
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TABLE 4 Performance comparison of proposed MP-VHPPI with existing viral-host PPI predictors over benchmark DeNovo dataset (29) in terms of 7

di�erent evaluation measures.

Approach ACC SN SP PR F1 MCC AU-ROC

Yang et al. (31) RF 93.23 90.33 96.17 95.99 93.07 86.60 98.10

Alguwzizani et al. (32) SVM 86.47 86.35 86.59 86.56 86.46 72.90 92.60

Fatma et al. (29) SVM 81.90 80.71 83.06 – – – –

Yang et al. (36) CNN 94.12 90.82 97.41 97.23 93.92 – –

Zhou et al. (30) SVM 84.47 80.00 88.94 87.86 – 62.92 89.7

Dong et al. (23) LSTM – 84.12 – 83.92 84.02 – 92.21

Asim et al. (38) LGCA-VHPPI 94.24 94.24 96.47 94.32 94.23 88.56 98.49

Proposed MP-VHPPI 94.59 97.23 94.59 94.73 94.58 89.32 98.16

Performance figures of DeNovo SVM (29), Alguwzizani et al. (32) SVM, and Yang et al. RF on DeNovo Dataset (29) are taken from Yang et al. (31) work. Bold values denote the highest

performance figures.

The predictors on the Denovo dataset can be seen in two

different categories as done previously in terms of Barman’s

dataset on the basis of specificity and sensitivity differences.

Individually there exist differences of 5.84, 6.59, 2.35, 2.23, and

2.64% across Yang et al. (31) predictor, Yang et al. (36) CNN,

Fatma et al. (29), Asim et al. (38) LGCA-VHPPI, and proposed

meta-predictor. Due to less difference (<3%) in the specificity

and sensitivity scores, Alguwzizani et al. (32), Fatma et al. (29),

Asim et al. (38) LGCA-VHPPI, and the proposedmeta-predictor

can be considered less biased toward type I and type II errors as

compared to the other two predictors i.e., Yang et al. (31) RF and

Yang et al. (36) CNN that are more biased toward type II error

due to high specificity and low sensitivity scores.

5.1.3. Proposed MP-VHPPI predictor
performance comparison with existing
predictors on coronavirus dataset

Due to the recent pandemic of Coronavirus, it is important

to analyze the performance of a predictor on Coronavirus and

human proteins. Table 5 shows the performance values of the

proposed meta predictor, Yang et al. (36) CNN, and Asim et al.

(38) LGCA-VHPPI, across Coronavirus and human proteins

dataset (36), in terms of 8 distinct evaluation measures.

Out of two existing predictors, Yang et al., a predictor based

on CNN achieve better accuracy 90.64%. Whereas, Asim et al.

(38) LGCA-VHPPI predictor shows better performance in terms

of, sensitivity of 93.6%, precision of 85.67%, AU-PRC 38.01%,

and f1 score of 85.07%. Due to the highly imbalanced number

of samples for interactive and non-interactive classes in the

Coronavirus dataset, Yang et al. (36) predictor perform poorly as

evidenced by its extremely low sensitivity, precision, F1, andAU-

PRC scores. The proposed meta predictor outperforms existing

predictors in terms of accuracy by a margin of 0.54%, 1.98% in

sensitivity, 0.34% in precision, 2.2% in f1 score, 9.06% in terms

of AU-PRC, and 2.95% in AU-ROC. Only in terms of MCC,

Asim et al., LGCA-VHPPI predictor (38) perform better than

the proposed meta predictor by achieving an increment of 12%.

Individually, there exist differences of 81.69, 43.56, and

43.84% in specificity and sensitivity scores for Yang et al. (36)

predictor, Asim et al. (38) LGCA-VHPPI predictor, and the

proposed meta predictor. On the basis of that, it can be inferred

that the proposed meta-predictor and Asim et al. (38) LGCA-

VHPPI predictor are less biased toward type I and type II errors.

Whereas, Yang et al. (36) predictor is biased toward type II error

due to high specificity and low sensitivity scores.

5.2. Proposed predictor performance
comparison with existing predictors on
unseen viruses test sets

To assess the applicability of the VHPPI predictors on

unseen viruses where predictors are trained on different types of

viruses and evaluation is performed on the test sets that contain

viruses (Influenza A virus subtype H1N1, and Ebola virus

EBV) that are not part of the training sets. Table 6 compares

the performance values of the proposed meta-predictor with 4

existing predictors i.e., Zhou et al. (30) SVM, Tsukiyama et al.

(21) LSTM-PHV, Dong et al. (23) predictor, and Asim et al.

(38) LGCA-VHPPI.

Over the TR1-TS1 dataset, out of 4 existing predictors

Tsukiyama et al. (21) LSTM-PHV performs better in terms of

accuracy 86.7% and MCC 73.7%, Dong et al. (23) predictor

shows the highest precision 86.28%, f1 score 86.40%, and

AUROC 94.61%. Asim et al., LCGA-VHPPI shows the highest

performance in terms of specificity and sensitivity i.e., 83.82

and 91.48%. Whereas, Zhou et al. (30) predictor show the least

performance across all evaluation measures except sensitivity.

In comparison to the existing predictors, the proposed meta

predictor outperforms existing predictors across 7 evaluation

measures. It achieves an increase of 3.56% in accuracy, 6.44%

in specificity, 3.58% in sensitivity, 5.16% in precision, 3.79% in

F1 score, 7.99% in MCC, and 2.09% in AUROC. Three out of 4

existing predictors, Tsukiyama et al. (21) LSTM-PHV, Zhou et al.
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TABLE 5 Performance comparison of the proposed predictor with the existing Yang et al. (36) predictor over the Coronavirus dataset.

Approach ACC SN SP PR F1 MCC AU-PRC AU-ROC

Yang et al. (36) CNN 90.64 16.37 98.06 45.81 24.12 - 32.9 -

Asim et al. (38) LGCA-VHPPI 90.11 93.6 50.04 85.67 85.07 22.21 38.01 80.0

Proposed MP-VHPPI 91.18 95.58 51.74 86.01 87.27 10.08 47.07 82.95

Bold values denote the highest performance figures.

TABLE 6 Performance comparison of the proposed MP-VHPPI with existing virus-Host PPI Predictors over 4 datasets developed by Zhou et al. (30),

to assess the applicability of the unseen viruses.

Dataset Approach ACC SN SP PR F1 MCC AU-ROC

TR1-TS1 Zhou et al. (30) (SVM) 77.95 89.76 66.14 72.61 - 57.5 88.6

Tsukiyama el al. (21) LSTM-PHV 86.7 90.6 82.9 84.1 - 73.7 91.2

Dong et al. (23) LSTM – 86.51 – 86.28 86.40 – 94.61

Asim et al. (38) LGCA-VHPPI 83.82 91.48 83.82 85.34 83.64 69.14 94.0

Proposed MP-VHPPI 90.26 95.06 90.26 91.44 90.19 81.69 96.70

TR2-TS2 Zhou et al. (30)(SVM) 78.00 90.67 65.33 72.34 - 57.9 86.7

Tsukiyama el. al. (21) LSTM-PHV 84.0 93.3 74.7 78.7 - 69.2 94.1

Dong et al. (23) LSTM – 92.53 – 90.93 91.23 – 96.80

Asim et al. (38) LGCA-VHPPI 86.58 93.11 86.57 88.35 86.42 74.9 96.0

Proposed MP-VHPPI 94.30 97.07 94.30 94.39 94.29 88.69 97.77

TR3-TS1 Zhou et al. (30) (SVM) 77.43 88.98 65.88 72.28 - 56.4 88.4

Tsukiyama el al. (21) LSTM-PHV 85.7 89.2 82.2 83.3 - 71.6 92.1

Asim et al. (38) LGCA-VHPPI 83.29 91.2 83.28 85.31 83.05 68.57 94.0

Proposed MP-VHPPI 90.53 95.06 90.53 90.78 90.51 81.31 95.98

TR4-TS2 Zhou et al. (30) (SVM) 81.67 94.67 68.67 75.13 - 65.6 89.0

Tsukiyama el al. (21) LSTM-PHV 90.0 91.3 88.7 89.0 - 80.0 95.6

Asim et al. (38) LGCA-VHPPI 85.57 92.59 85.57 87.65 85.37 73.19 96.0

Proposed MP-VHPPI 93.62 96.71 93.62 93.64 93.62 87.27 98.14

The performance values of the existing predictors i.e., Zhou et al. (30) and Tsukiyama et al. (21) (LSTM-PHV) are taken from their corresponding studies (21, 30).

(30) SVM, and Asim et al. (38) LGCA-VHPPI, are biased toward

type 1 error due to lower specificity (82.9, 66.14, and 83.82%)

and higher sensitivity scores (90.6, 89.76, and 91.48%) with

differences of 7.7, 23.62, and 7.66%. In comparison, the proposed

meta predictor is robust and generalizable due to the small

difference between specificity and sensitivity scores i.e., 4.8%,

and overall higher sensitivity, specificity, AUROC, accuracy, and

MCC scores.

Over the TR2-TS2 dataset, out of four existing predictors

Tsukiyama et al., LSTM-PHV performs better in terms of

sensitivity 93.3%, whereas Dong et al. (23) predictor performs

better in terms of precision 90.93%, f1 score 91.23%, and

AUROC 96.80%. Asim et al. (38) LGCA-VHPPI predictor

performs better in terms of accuracy 86.58%, specificity 86.57%,

and MCC 74.9%. Zhou et al. (30) predictor, shows the least

performance across all the evaluation metrics except sensitivity

at 90.67%. The proposed meta predictor outperforms existing

predictors across all of the evaluation measures. Overall, the

proposed meta predictor achieves a gain of 7.72% in accuracy,

3.77% increase in sensitivity, 7.73% in specificity, 3.46% in

precision, 3.06% in F1, 13.79% in MCC, and 0.97% in AUROC.

Among these predictors, the predictors of Tsukiyama (21), Zhou

et al. (30), and Asim et al. (38) LGCA-VHPPI, are prone to

type 1 error due to high sensitivity and low specificity scores.

For instance, the difference in specificity and sensitivity scores

of Zhou et al. predictor is 25.34%, 18.6% for Tsukiyama et al.

(21) LSTM-PHV, and 6.54% for Asim et al. (38) LGCA-VHPPI

predictor. Due to these big differences, these predictors do not

generalize well against the human and Ebola virus protein data.

Whereas, the proposed meta-predictor has a smaller difference

of 2.77% between specificity and sensitivity values, which makes

it more generalizable than existing predictors.

Out of three existing predictors, the LSTM-PHV predictor

performs better across TR3-TS1 in terms of 2 different

evaluation metrics i.e., 85.7%, 71.6%, for accuracy, and

MCC. Similarly, Asim et al. (38) LGCA-VHPPI shows better
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performance in terms of sensitivity 91.2%, specificity 83.28%,

precision 85.31%, and AU-ROC 94.0%. On the other hand,

the proposed meta predictor outperforms existing predictors

on 7 different evaluation measures by significant margins. The

proposed meta predictor achieves a raise of 4.83% in accuracy,

3.86% in sensitivity, 7.25% in specificity, 5.47% in precision,

9.71% in MCC, 7.46% in f1, and 1.98% in AUROC. Similar to

the previous cases, existing predictors are again prone to type

1 errors due to high sensitivity and low specificity scores with

differences of 23.1, 7, and 7.92% for Zhou et al. (30), LSTM-

PHV (21), and LGCA-VHPPI (38) predictors. Comparatively,

the proposed meta-predictor has a smaller difference of 4.53%

between specificity and sensitivity scores, which makes the

proposed meta-predictor more suitable for VHPPI prediction.

Over the TR4-TS2 dataset out of three existing predictors,

LSTM-PHV (21) achieves better results across 4 evaluation

measures i.e., 90.0%, 88.7%, 89.0%, 80.0%, in terms of accuracy,

specificity, precision, and MCC. LGCA-VHPPI (38) excels in

terms of AU-ROC 96.0%. Whereas, Zhou et al. (30) SVM shows

a better sensitivity score of 94.67%. The proposed predictor

achieves performance gains of 3.62% in accuracy, 2.04% in

sensitivity, 4.92% in specificity, 4.64% in precision, 8.25% in

f1 score, 7.27% in MCC and 2.14% in AU-ROC. There exists

a difference in the specificity and sensitivity scores of these

predictors which are 26% for Zhou et al. predictor and 7.02% for

Asim et al. (38) LGCA-VHPPI, which makes them more biased

toward type I error due to high sensitivity and lower specificity

scores. Comparatively, LSTM-PHV and the proposed meta

predictor have a lower difference in specificity and sensitivity

scores of (<3.1%), which suggests that for the TR4-TS2 dataset,

both of the predictors are able to generalize well over positive

and negative class samples.

6. Discussion

Since the last decade, the development of machine and

deep learning-based computational approaches for virus-host

protein-protein interaction prediction has been an active area

of research (21, 22). In the marathon of developing robust

computational VHPPI predictors, the aim of each newly

developed predictor has been to utilize raw virus-host protein

sequences and precisely discriminate interactive viral-host

protein sequences from non-interactive ones. However, most

predictors have been evaluated on a limited type of viruses

and hosts, such as 6 different predictors have been evaluated

on the Barman dataset that contains 5 different viruses and

human proteins as hosts. Seven predictors are evaluated on

the Denovo dataset which is comprised of 10 different viruses

and human proteins as hosts, and 2 predictors are evaluated

on the Coronavirus virus. Only 4 predictors are evaluated on

the Zhou et al. (30) dataset, which consists of 332 viruses and

29 host proteins. These datasets are more suitable to evaluate

the robustness, generalizability, and predictive performance of

a computational predictor. These datasets were developed with

the objective to train models on different types of viruses and

evaluate them on the particular viruses which were not part of

the training set.

Over unseen virus-host protein-protein interaction

prediction datasets, the performance of existing predictors is

comparably low, as compared to their performance on Barman

and Denovo datasets. Recently, we developed a machine

learning-based predictor namely LGCA-VHPPI (38), which

produced state-of-the-art performance on both Barman and

Denovo datasets. We evaluated our predictor on Zhou et al.

(30) datasets, where it showed a relatively lower performance as

compared to its performance on Barman and Denovo datasets.

This motivated us to develop an improved predictor that makes

the best use of raw viral host protein sequences to perform better

not only on Barman and Denovo datasets but also produce

a similar performance for unseen viral-host protein-protein

interaction predictions.

In viral and host protein sequences, the distribution of

amino acids is almost similar across interactive and non-

interactive classes. However, an amino acid occurrence at the

same position across the sequences of interactive and non-

interactive classes varies. The prime reason behind the biaseness

of existing viral-host protein-protein interaction predictors

toward type I or type II errors is their inability to capture

position specific discriminative distribution of amino acids

across both classes. To better illustrate this phenomenon, we

perform amino acid distribution analysis across both classes

with the help of Two Sample Logo (79). Virus and host

protein sequences are huge in length and visualizing the amino

acid distribution across entire sequence lengths is not feasible

at all. Hence, for the purpose of visualization, we take 20

amino acids from the start of virus protein sequences and

20 amino acids from the start of host protein sequences.

Using reduced 40 amino acids based sub-sequences, Figure 3

illustrates the amino acid distribution across interactive and

non-interactive classes for 7 different datasets. It can be seen

that the distribution of amino acids is approximately similar

in interactive and non-interactive classes. Considering Barman’s

dataset as an example (Figure 3A), in interactive and non-

interactive samples, there are overlapping amino acids at every

position i.e., for position 2, interactive samples contain one

of the following amino acid, H, A, E, G, S whereas, non-

interactive samples also contain one of the following amino

acid, A, E, G, S. In both classes occurrence of 4 amino

acids is the same while few samples of the interactive class

contain amino acid H, a similar trend exists at other locations

as well. Furthermore, other datasets also contain a similar

distribution of amino acids as in the Barman dataset. It can

be concluded that, across all 7 datasets, we observe the limited

discriminative distribution of amino acids and because of that

existing predictors lack in performance due to the utilization of
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sub-optimal sequence encodingmethods that generate statistical

vectors by neglecting most of the discriminative features

about the distribution of amino acids in interactive and non-

interactive classes. It is noteworthy to mention that the prime

goal of visualizing the amino acid distribution across both

classes is to demonstrate the significance of most effectively

characterizing viral host protein sequences. However, we have

taken entire viral-host protein sequences in our study to

generate statistical vectors using physico-chemical properties

based sequence encoders, informative feature space using

dimensionality reduction algorithm, discriminative feature

space using tree based classifiers, and final prediction using

SVM classifier. A comprehensive performance comparison of

the proposed predictor with VHPPI predictors proves that

the proposed predictor manages to capture position specific

discriminative distribution of amino acids across both classes.

Furthermore, it is important to mention that all the amino

acids are either polar or non-polar in nature and can carry

charges, such as out of 21 unique amino acids, 11 amino

acids are polar in nature, 4 AAs carry a positive charge (R,

D, H, K), 2 AAs carry a negative charge (D, E), and 5

AAs are neutral (C, Q, S, T, Y). Whereas, 10 amino acids

are non-polar in nature (A, G, I, L, M, F, P, W, Y, V).

Irrespective of positions aware occurrences, considering the

overall distribution of amino acids in the protein sequence,

charges can be computed by utilizing the physicochemical

properties. Overall charge information of amino acids along

with their distribution information can extract and encode more

discriminative patterns.

Figure 4 shows different clusters of 7 benchmark datasets

for the intrinsic analyzes of the statistical vectors generated

through APAAC and Qsorder sequence encoders. These clusters

are computed by first reducing the dimensions of statistical

vectors through principal component analysis (PCA) and then

by t-distributed stochastic neighbor embedding (TSNE). In

Figures 4A,B, rows represent clusters of interactive and non-

interactive classes based on statistical vectors generated through

individual encoders (APAAC, Qsorder), and a combination

FIGURE 3

Distribution of amino acid sequences across 7 di�erent datasets. For each dataset the distribution of amino acids is shown across interactive and

non-interactive protein samples, (A) Barman dataset (B) Denovo dataset (C) Coronavirus dataset (D) TR1-TS1 dataset (E) TR2-TS2 dataset (F)

TR3-TS1 dataset (G) TR4-TS2 dataset.
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FIGURE 4

Formation of clusters with representations of protein sequences based on (A) APAAC and Qsorder encoders without dimensionality reduction

(B) APAAC and Qsorder encoders with dimensionality reduction (C) the positive class probabilities through ET and RF classifiers.

of both encoders. Whereas, the columns represent 7 different

benchmark datasets namely, Barman, Denovo, Coronavirus.

TR1-TS1, TR2-TS2, TR3-TS1, and TR4-TS2. Overall, statistical

vectors from APAAC and Qsorder without dimensionality

reduction lead to the formation of overlapping clusters for

interactive and non-interactive classes. This overlapping reveals

that generated statistical vectors are almost similar and

contain less discriminative information about interactive and

non-interactive classes, as shown in Figure 4A. Furthermore,

this overlapping behavior among clusters exists due to

the extraction of some irrelevant and redundant features

by different physicochemical properties. To eradicate such

type of information, we utilize the feature agglomeration

method with the objective to transform generated statistical

vectors into a more informative and discriminative feature

space. Comparatively, statistical representations of APAAC and

Qsorder with dimensionality reduction lead to the formation

of slightly unique yet heavily dependent clusters as shown

in Figure 4B. Though these encodings could be used for

classification purposes, however, still the performance would

not be very promising. In addition, the clusters do not seem

independent because a single human protein that interacts with

some viral proteins, might not interact with some other viral

proteins. This means that positive and negative class samples

can have very similar representations due to the presence of

such proteins. Although dimensionality reduction produces

better feature space, however still clusters are not very much

separable. To further improve the performance of the predictor,

we perform iterative representation learning, where we pass

3 different statistical representations separately to RF and ET

classifiers and take their predicted class probabilities to develop

a new feature space. The generated feature space leads to

the formation of unique and independent clusters as shown

in Figure 4C, which suggests the presence of comprehensive

discriminatory features for interactive and non-interactive

VHPPI pairs. Due to the discriminative and informative nature

of the newly generated feature space, we utilize this feature

space to train the SVM classifier for virus-host protein-protein

interaction prediction.

Overall, as compared to state-of-the-art predictors,

the proposed predictor has shown a slight performance

improvement on Barman and Denovo datasets, and significant

performance improvements on SARS-CoV-2 datasets and the

other 4 datasets namely, TR1-TS1, TR2-TS2, TR3-TS1, and TR4-

TS2. We believe that the performance of the proposed predictor

can be further improved by incorporating representations

learned through diverse types of language models such as BERT,

and XLNET.
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7. Web-server

To facilitate the biological community, we provide an

interactive, and user-friendly web server for the proposed meta-

predictor which is available at https://sds_genetic_analysis.

opendfki.de/MP-VHPPI/. This web server can be used to

predict virus-host protein-protein interactions across 7 different

datasets by using raw human and virus protein sequences. In

addition, the online web server allows the user to train the

proposed meta-predictor from scratch on all of the datastets.

Moreover, it also provides 7 different benchmark datasets that

are used in this study.

8. Conclusion

The prime objective of this research is the development

of a robust machine learning-based computational framework

capable of precisely predicting viral-host protein-protein

interactions across a wide range of hosts and viruses. The

proposed meta predictor makes use of APAAC and QS order

sequence encoders for statistical representation generation

and feature agglomeration method to refine feature space.

Furthermore, the meta predictor utilizes the predictions of

random forest and extra tree classifiers to feed the SVM classifier

that makes final predictions. Experimental results reveal the

competence of APAAC and QS order encoders for most

effectively generating numerical representations of sequences

by capturing amino acids sequence order and distributional

information. We have observed dimensionality reduction

method removes irrelevant and redundant information which

slightly improves the performance of classifiers. The process

of iterative representation learning in which predictions of RF

and ET classifiers are passed to the SVM classifier significantly

improves the accuracy of interaction predictions. The proposed

meta predictor has evaluated over 7 benchmark datasets where

it outperforms existing predictors with a significant margin

of 3.07, 6.07, 2.95, and 2.85%, in terms of accuracy, MCC,

precision, and sensitivity, respectively. We believe that the

deployment of the proposed meta-predictor as a web interface

will assist researchers and practitioners in analyzing the complex

phenomenon of VHPPIs at a larger scale to unravel substantial

drug targets and optimize antiviral strategies.

9. Limitations

Comprehensive performance analysis reveals that the

proposed MP-VHPPI predictor manages to outperform existing

viral-host protein-protein interaction predictors across 7

benchmark datasets by a decent margin. Although the use of

different strategies at the level of representation learning reduces

the prediction error decently, however, the proposedmodel lacks

robustness as it is biased toward type II error. In the future, we

will optimize the predictive pipeline of the proposedMP-VHPPI

predictor with an aim to enhance robustness.
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