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Radioimmunoconjugates have been used for over 30 years in nuclear

medicine applications. In the last few years, advances in cancer biology

knowledge have led to the identification of new molecular targets specific

to certain patient subgroups. The use of these targets in targeted therapies

approaches has allowed the developments of specifically tailored therapeutics

for patients. As consequence of the PET-imaging progresses, nuclear medicine

has developed powerful imaging tools, based on monoclonal antibodies, to

in vivo characterization of these tumor biomarkers. This imaging modality

known as immuno-positron emission tomography (immuno-PET) is currently

in fastest-growing and its medical value lies in its ability to give a non-invasive

method to assess the in vivo target expression and distribution and provide

key-information on the tumor targeting. Currently, immuno-PET presents

promising probes for di�erent nuclear medicine topics as staging/stratification

tool, theranostic approaches or predictive/prognostic biomarkers. To develop

a radiopharmaceutical drug that can be used in immuno-PET approach, it

is necessary to find the best compromise between the isotope choice and

the immunologic structure (full monoclonal antibody or derivatives). Through

some clinical applications, this paper review aims to discuss themost important

aspects of the isotope choice and the usable proteic structure that can be used

to meet the clinical needs.
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Introduction

The original idea of personalized and tailored drugs, highly specific to a

pharmacological target, appeared at the beginning of the XXth century via the “magic

bullet” concept (1) brought by Paul Ehrlich (Nobel laureate in 1908). In oncologic field,

this postulate aims to optimize the risk-benefit ratio for the patients care. Yet, it was not

until the late 1970’s that the discovery of hybridoma technology by Georges Kohler and

Cesar Milstein (Nobel laureates in 1984) made it possible to apply this theory in clinical

practice. The hybridoma technology allowed biochemists and immunologists to produce

monoclonal antibodies (mAbs) which specifically recognize antigens on pathologic cells,

thereby providing the proof-of-concept for specific immunotherapeutic approaches to

treat cancer (2).
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With the concomitant progress in nuclear medicine, the

radiolabeled monoclonal antibody (mAb) quickly emerged

to specifically target antigens of abnormal cells, most often

cancerous. The discovery of overexpressed antigens in many

hematologic and solid tumors paved the way for the use of

gamma emitters such as iodine-131 (131I) radiolabeled mAbs for

tumor detection in nuclear medicine practice (3, 4). In parallel,

iodine-131 being also a beta minus emitter, the use of 131I-

mAbs has quickly found its place in therapeutic approaches,

mainly in hematologic neoplasms with real efficacy in B-cell

lymphoma (5). For almost three decades, mAbs have been

labeled with gamma emitters (such 131I or 111In) in planar

or Single Photon Emission Computed Tomography (SPECT)

imaging procedures. Despite the reliable and confident clinical

information, this modality suffers from several drawbacks

including poor sensitivity, poor spatial resolution and complex

scatter correction due to the collimator.

While Positron Emission Tomography (PET) was

revolutionizing diagnostic applications of nuclear medicine

with small organic molecules such as fluorodeoxyglucose

(FDG) radiolabeled with fluorine-18 (18F), PET approach

seemed unusable with long pharmacokinetic half-life mAbs.

The availability in the early 2000s (6–8) of longer half-life

isotopes such as iodine-124, copper-64 or zirconium-89 allowed

the fruitful association between the high specificity of mAbs

with the high resolution of PET leading to the Immuno-

PET approach. Comparatively to classical SPECT modality,

using of immuno-PET imaging combined several technical

advantages such as precise scatter correction, exact correction of

attenuation, accurate quantitative information, improved spatial

resolution with a better delineation of tumors and organs, and,

last but not least, higher sensitivity associated with the capacity

to perform a true whole-body imaging in a reasonable time.

The recent technological evolution in new PET detectors and

reconstruction algorithms (9–11) appeared to be also a key

factor for the immuno-PET clinical performance in terms of

both spatial resolution and signal-to-noise ratio.

Today, the overall performance of the immuno-PET

methodology is carried by different biological or imaging

parameters such target accessibility or imaging protocol

(time between injection and image acquisition, number of

acquisitions). The aim of this paper review is more focused on

the pharmacological choices to find the best matching between

the radionuclide parameters (physical, chemical, logistic) and

the mAb used (specificity, affinity, dose, mAb derivative,

pharmacokinetic. . . ). Immuno-PET is a fast-growing approach

(12) in many cancer pathologies (13). Currently, from an

imaging point of view, the management of patients suffering

from a tumor pathology is mainly driven on an initial diagnosis

made by conventional techniques combining CT/MRI and 18F-

FDG PET. In this care management, immuno-PET approach

finds a particularly effective place to provide some specific

information on the tumor phenotype, intra- and inter-tumor

heterogeneity and as prognostic/predictive indicator for targeted

therapies. It should be noted that in the specific case, where

the immuno-PET can be used to select only patients in whom

the treatment is likely to provide a benefit, the immuno-PET

falls into the scope of companion diagnostic. Some preclinical

proof-of-concept will be discussed in mAb derivatives section

and a clinical part will illustrate, through some typical

examples of results obtained with compounds (mAb and

immunological derivatives) allowing antigen targeting in solid

tumors, hematological and tumor microenvironment.

Isotope choice for immuno-PET

One of the immuno-PET key success is based on an

appropriate matching between the biological half-life of the

immunoprotein and the physical half-life of the isotope to

achieve the best contrast in pathologic tissues (14–16). Despite

the great variety of radionuclides which are positron emitters,

only few of them could be used in immuno-PET. For nuclear

medicine applications, the choice of the radionuclide is basically

based on three main criteria: physical characteristics, chemical

characteristics, and production/logistic. The list of isotopes used

(or considered) is summarized in Table 1. Indeed, intact mAbs

have a pharmacokinetic half-life of several days with a long

circulation time and required a long radionuclide half-life to

increase the tumor-to-background ratio such as iodine-124 or

zirconium-89. Copper-64 with its intermediate half-life can be

used for labeling a large size range of molecules like native mAbs

or their smaller derivatives [F(ab’)2, F(ab), minibody, ScFv,

nanobody or affibody structures]. Fluorine-18 and gallium-68

with their shorter half-life may be used to label small molecular

weight molecules such as mAb derivates or small synthetic

molecules for pretargeting approach (15).

Several additional considerations must also be taken to

rationalize the choice of a positron emitter. Positron energy

range is a key factor for intrinsic resolution of PET modality

because it has a direct and significant impact on the positron

travel distance before annihilation. As a consequence, a high-

energy positron will result in an intrinsic resolution loss. In

addition, existence of concomitant γ and/or β− emissions will

have a major impact on the staff and/or patient radiation dose.

It should be noted, to our knowledge, they are currently no

allowed maximal recommended activity limitation per isotopes.

Dosimetric studies are on progress and first results obtained with

trastuzumab showed an effective dose equivalent to the whole

body of 45 and 10.8 mSv, respectively for 89Zr and 64Cu (17, 18).

Of course, these preliminary results are only indicative because,

the dosimetric data are also under the dependence of the vector

pharmacokinetic profile, As consequences, the dosimetry for

smaller mAb derivatives like nanobodies is lower (shorter in vivo

stay, due to a fast renal clearance). For example, the dosimetry

induced by 185 MBq 68Ga-2Rs15d nanobody is close to the
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TABLE 1 Usable radionuclides for immuno-PET.

Radionuclides Half-life Positron

emission β
+

intensity

(Mean

energy)

Main other

emission type

(energy; intensity)

Chemical Binding Production way

68Ga 67.7min 88.9% (829.5 keV) γ (1077 keV; 3.22%) Metallic Complexation

(DOTA,

HBEDCC)

Cyclotron→ generator

18F 109.7min 96.7% (249.8 keV) / Halogen Covalent

(direct/prosthetic)

Cyclotron

44Sc 3.97 h 94.3% (632.0 keV) γ (1157 keV; 99.9%) Metallic Complexation

(DOTA)

Cyclotron

64Cu 12.7 h 17.5% (278.0 keV) γ (1346 keV; 0.47%)

β− (190.7 keV; 38.5%)

Metallic Complexation

(DOTA, NOTA,

TEAPA)

Cyclotron

86Y 14.7 h 31.9% (660.0 keV) γ (637 keV; 32.6%)

γ (1076 keV; 82.5%)

γ (1153 keV; 30.5%)

γ (1920 keV; 20.8%)

Metallic Complexation

(DOTA, DTPA)

Cyclotron

76Br 16.2 h 55.0% (1180 keV) γ (559 keV; 74.0%)

γ (657 keV; 15.9%)

γ (1216 keV; 8.8%)

γ (1854 keV; 14.7%)

Halogen Covalent

(Direct)

Cyclotron

89Zr 78.4 h 22.7% (395.5 keV) γ (909 keV; 99.0%) Metallic Complexation

(DFO)

Cyclotron

124I 4.18 d 22.7% (820 keV) γ (602 keV; 62.9%)

γ (722 keV; 10.3%)

γ (1690 keV; 11.1%)

Halogen Covalent

(Direct/prosthetic)

Cyclotron

dosimetry due to the classical 370 MBq 18F-FDG injection with,

respectively, 4 and 7 mSv (19).

The chemical nature of the isotope presents a direct

impact on the immunoprotein radiolabeling (20). Classically in

radiopharmaceutical practices, radionuclides may belong to the

radiohalogen or radiometal family, Radiohalogens like iodine-

131 could be directly radiolabeled to the amino-acid chain on an

aromatic residue (such histidine or more usually on a tyrosine)

after gentle oxidation of iodide (21). This effective method

presents some limits (mAb sensitive to oxidizing environment,

low stability of radioactive mAb,. . . ) and indirect radiolabeling

could be envisaged. The indirect radiohalogen labeling is based

on the use of prosthetic group intermediate (5, 22–25) like

Bolton-Hunter reagent, organostanyl compound or iodonium

salts (26–29).

Radiometals form very stable coordination complexes

with a great variety of ligands, including linear

diethylenetriaminepentaacetic acid (DTPA) derivatives,

macrocyclic [1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA) polyaminocarboxylic or

desferrioxamine (DFO) derivatives] (30–32). These ligands are

transformed in bifunctional chelating agent (BCA) capable

of reacting with proteins to form a stable covalent bond with

lysine residue, cysteine residue or synthetic bioorthogonal

[click-chemistry approach (33)].

Finally, the production way of the isotope has consequences

on the cost and in the availability of the radionuclide. The

great majority of positron emitters are produced by cyclotron

accelerator with a relatively high usual production cost. The

half-life of the radionuclide presents a direct impact on the

logistic because of decay during the transport. To circumvent

this constraint a cyclotron network was built close to nuclear

medicine departments for the short half-life isotopes (fluor-18;

scandium-44; copper-64). These particular supply chain leads

to a particular production schedule without daily availability

of all isotopes. To solve this problem, some isotopes like

Gallium-68 can be put in generator form (in this case,

industrial supplier used germanium-68 with a longer half-life to

produce in nuclear medicine department the desired gallium-68

by filiation).
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MAbs and derivatives

The discovery of hybridoma technology by Köhler et al.

(34) originally allowed the production of antigen-directed

specific mAbs. This discovery paved the way for immuno-

PET development but has appeared to be limited by the

immunogenicity due to the murine origin of the amino-acid

sequence (35). To circumvent this first hurdle, chimeric then

humanized mAbs were designed by molecular biology and

enabled less immunogenic approach with a better tolerance

profile for the patients (36). The murine, chimeric and

humanized mAbs are entire (intact) immunoglobulin G (IgG)

with a long pharmacokinetic half-life and high weight (150 kDa)

which reduces their capacity to diffuse inside the tumor mass.

To adapt these properties (pharmacokinetic and

distribution), biochemists and immunochemists have developed

some immunoconjugate derivatives exhibit reduced half-lives

and improved tumoral penetration. The overall characteristics

of these protein structures are summarized on Table 2.

The first improvement was the use of mAbs fragments like

F(ab’)2 and F(ab). These smaller protein fragments consist in

the reduction/digestion of initial mAbs by enzymes (pepsin

and papain). The F(ab’)2 and F(ab) fragments are smaller

(110 and 50 kDa, respectively) than the native mAbs but

preserve the affinity and the specificity for the tumor antigen.

F(ab’)2 fragments of mAbs were radiolabeled with 64Cu in

preclinical studies in breast cancer (37) or in lymphoma

(38) animal models. Results showed a rapid and sustained

uptake in tumor with promising and encouraging perspectives

for the clinical evaluation of malignant pathologies while

delivering a lower total body radiation dose compared to

the entire mAbs. F(ab) fragments radiolabeled with 68Ga

(39) or 64Cu (40) showed similar results with a shorter

pharmacological half-life. In terms of biodistribution, F(ab)

fragments present the characteristic of having a mass weight

lower than the renal size cut-off (30–50 kDa) and consequently

of being eliminated by the urinary tract (41). As consequence,

F(ab) fragments cause high and persistent localization of the

radioactivity in the kidney which could be reduced by a

metabolizable linker between F(ab) fragment and isotope part

of the construct (42).

Building on these successes, immunochemical engineers

have turned to small synthetic proteins which contains only the

antigen recognition domain of the initial mAb such minibodies,

fusion protein-like single chain variable fragments (ScFv) or

nanobodies. Minibodies consist of constant heavy chain (CH)

and variable light (VL) and variable heavy (VH) domains, ScFv

constructs are made of solely VL/VH domains and nanobodies

has only the VH domains. 124I and 89Zr radiolabeledminibodies

validated the feasibility proof-of-concept of immuno-PET in

prostate cancer animal model (43). In breast cancer animal

model, ScFv fragments radiolabeled with 68Ga (44) showed in

vivo promising results. On their sides, nanobodies are subjects T
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of intense preclinical research (45–47). These engineered

antibody-based proteins demonstrate their capacity to be used

in nuclear medicine field with β+ emitters for immuno-

PET applications (48, 49). To date, the proof-of-concept was

validated at a preclinical level and exploratory work in human

is started (50).

More recently, synthetic proteins (three-helix scaffold)

generated from a phage display library were produced with

a high affinity against an antigenic structure. These proteins,

named affibodies, have been prepared against different cancer

targets for PET applications and were studied in vitro with

promising results (51–53).

To optimize the tumor-to-background ratio, recent

advances of nuclear medicine demonstrate the great interest of

pretargeting approach (54). This technic involves a preliminary

injection of a non-radioactive bispecific antibody followed

by an injection of a radiolabeled bivalent hapten (peptide or

small organic molecule). This system allows to bypass the slow

clearance of bispecific mAbs. In this particular case, a bispecific

mAb recognizes the tumor antigen with a high specificity by

one of its two recognition domains. The second recognition

domain is used to bind the radioactive hapten which is injected

after the bispecific mAb within an optimal delay. The unbound

hapten is rapidly cleared from the blood circulation via the renal

system and allows, de facto, an increase of the immuno-PET

image contrast. The hapten approach is not the only one

feasible for pretargeting and bio-orthogonal reactions based on

click-chemistry has recently been considered with successful

results in preclinical studies (55, 56). The mAb (entire IgG

or derivative) is in vitro prefunctionalized with a chemical

clickable function. The intra-venous injection of this compound

is followed by the injection of a radioactive compound with

clickable complementary function and a specific covalent bond

between these two components is in vivo formed. The relatively

short pharmacokinetic half-life of the radioactive clickable

moiety allows the use of shorter half-life isotopes and a renewed

interest for fluorine-18 in immunoPET applications (57).

Example of clinical
proof-of-concept

Antigen targeting in solid tumors

One of the first clinical proof of immuno-PET interest

has been reported by Divgi et al. (58) with a chimeric mAb

(cG250, girentuximab) directed toward the carbonic anhydrase

IX (CAIX) cell-surface antigen particularly overexpressed in

clear cell renal cell carcinoma (ccRCC). In this phase I

clinical study, the mAb was 124I-radiolabeled and shows a

very good sensitivity and specificity (respectively 94 and 100%)

for ccRCC. Consolidated results obtained during the REDECT

trial (Divgi JCO 2013) showed more robust results with

sensitivity and specificity (respectively 86.2 and 85.9%). As

consequences, immuno-PET can accurately and non-invasively

assess the initial diagnostic of cancer without the inherent

risk of biopsies. Despite this promising results, iodine-124

has physics drawbacks and zirconium-89 has been preferred

in many subsequent clinical trials with girentuximab (59,

60). CAIX is also upregulated in various solid tumors and

many clinical trials are currently underway for different

tumor sites such as urothelial/bladder cancer (61) or triple

negative breast cancer (OPALESCENCE Study Clinicaltrials.gov

identifier NCT 04758780).

One of the first studied antigen for nuclearmedicine purpose

is the carcinoembryonic antigen (CEA). Different anti-CEA

mAbs have been radiolabeled for therapeutic applications with
131I or for SPECT imaging with 111In. It is quite natural

that it has been used in various immuno-PET studies. For

example, AMG211 mAb was a bispecific antibody directed

toward CEA and CD3 (62). AMG211 has been radiolabeled

with 89Zr to evaluate the tumor uptake in relapsed/refractory

gastrointestinal adenocarcinoma patients (Clinicaltrials.gov

identifier NCT 02760199). M5A mAb is also an anti-CEA

mAb and was radiolabeled with 124I for the detection of

CEA positive colorectal cancer that has spread to the liver

(Clinicaltrials.gov identifier NCT 03993327) or with 64Cu for

the diagnosis of CEA positive rectal cancer (Clinicaltrials.gov

identifier NCT 05245786) or in gastrointestinal, lung, medullary

thyroid and breast cancers (Clinicaltrials.gov identifier NCT

02293954). CEA can also be targeted by a bispecific mAb for a

pretargeting approach. TF2 is an engineered bispecific mAb of

157 kDa formed by the Dock-and-Lock
R©

procedure from the

anti-hapten Fab fragment recognizing the histamine-succinyl-

glycine (HSG) motif and two humanized anti-CEA fragments.

During the procedure (iTEP-CMT; Clinicaltrials.gov identifier

NCT 02293954), non-radioactive TF2 mAb was injected in

medullary thyroid carcinoma patients and 24 h later, 68Ga-di-

HSG hapten was injected. The preliminary results demonstrated

a promising sensitive and specific imaging method (63, 64) with

a requirement in terms of optimization, both for the dosing (TF2

and hapten) and administration schedules (64). Similar and

encouraging results were obtained in other CEA overexpressed

solid tumors such colon (65) or breast cancer (66) with this

pretargeted immuno-PET approach.

Finally, as another example to illustrate the large and

recent evolution of immuno-PET capacities, cancer antigen

6 (CA6) can be targeted with a radiolabeled Fab (67). CA6

is a neuraminidase-sensitive and periodic acid-sensitive sialic

acid glycoconjugate often overexpressed in various carcinoma

such pancreas, ovary, breast and bladder (68). 64Cu-anti-

CA6-Fab was clinically used in ovarian and breast cancer

(Clinicaltrials.gov identifier NCT 02708511).

One of the most widely used mAbs in clinical practice

is trastuzumab. Trastuzumab is directed against Human

Epidermal growth factor Receptor 2 (HER2) which is
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particularly overexpressed in breast cancer. In 2010, Dijkers

et al. (69) reported a feasibility study of 89Zr-trastuzumab in

HER2-positive metastatic breast cancer and has shown the

immuno-PET capacity to detect most of the known lesions

and some that had remained unnoticed with other diagnostic

modalities (CT, MRI or bone scans). Based on this first

encouraging results, many clinical trials (70, 71) have been

conducted to evaluate the tumor uptake of 89Zr-trastuzumab in

breast tumor and in their metastatic lesions. The results have

shown medium sensitivity of 75.8% (57.7–88.9%) and specificity

of 61.5% (31.6–86.1%). These scattering of preliminary results

seems to be explained by the high liver uptake which is strongly

dependent of the non-radiaocative mAb injected. Indeed,

when the authors remove the liver metastases from their

interpretation, the SUVmax appears to be significantly higher

in HER2 positive compared to HER2 negative patients. In

this study, immuno-PET approach demonstrated its ability to

identify the intrapatient heterogeneity of 89Zr-trastuzumab

uptake in 20% of patient with multiple lesions. This intrapatient

heterogeneity could be explained by sampling error during

biopsy, heterogeneous intratumoral distribution of HER2

antigen or expression change of HER2 status since the last

biopsy (72). Nevertheless, 89Zr-trastuzumab has the potential

to characterize the whole body HER2 status of all the tumor

and metastatic sites thus obviating repeated tissue biopsies to

assess the intrapatient heterogeneity. Another advantage of the

immuno-PET in these clinical circumstances is that it allows a

quantitative evaluation of the target expression to optimize the

future therapeutic dose and allows a better evaluation of the

in-vivo penetration (ability to cross the physiologic barrier) of

mAbs in the tumor mass comparatively to the ex-vivo glass-slide

immunohistochemistry (IHC) provided by cytology (73). A

possible future for this dose finding may be clinically translated

to predict and to monitor the HER2-targeted therapeutics

treatments (74). The tumor uptake of 89Zr-trastuzumab is

related to the target concentration but there is still a pitfall due

to the small range for distinguishing IHC classes 1 to 3 with

relatively constant SUV. Currently, the whole-body quantitative

imaging objective with HER2 immuno-PET has not been

reached and requires a normalization of the non-radioactive

trastuzumab mass dose injected to minimize the accumulation

in health tissue and to maximize the contrast with cancer lesions

(69, 73). Nevertheless, this quantitative approach of the in

vivo status of HER2 in patients with metastatic breast cancer

is proving to be an interesting tool in predictive of respond

and benefit for women (ZEPHIR clinical trial) which receiving

antibody drug conjugate such trastuzumab emtansine (T-DM1)

as second line treatment of HER2+ metastatic breast cancer

(75, 76). The ZEPHIR clinical trial categorized patients into

4 subgroups in function of the tracer uptake (18F-FDG and
89Zr-trastuzumab) patterns and allows a very good prognostic

in response evaluation. To optimize the radiation safety and

patient radiation dose, copper-64 was used by Mortimer

et al. (77–79). 64Cu-trastuzumab using in HER2 positive

breast cancer patients showed a rapid tumor and metastasis

uptake of the radiolabeled mAb in a similar way than 89Zr

(80). A promising clinical trial (Clinicaltrials.gov identifier

NCT 05376878) is currently in progress to determine the

ability of 64Cu-trastuzumab immuno-PET to detect positive

brain metastases of breast cancer. HER2 antigen is also

overexpressed in ∼20% of esophagogastric adenocarcinoma

and 89Zr-trastuzumab showed promising results (safe and

high-quality images) in patients with HER2 positive tumors

(81). Same promising results were obtained in gastric cancer

with 64Cu-trastuzumab (Clinicaltrials.gov identifier NCT

01939275). In regards of the nanobodies applications, a phase

I study confirmed the capacity of 68Ga-HER2-nanobody to

provide safe and informative uptake in breast carcinoma (82).

Despite the very large number of clinical trials using

small molecules, the Prostate-Specific Membrane Antigen

(PSMA) can also be targeted by mAbs. PSMA is particularly

overexpressed in prostate adenocarcinoma and J591 mAb was

firstly radiolabeled by 124I then by 89Zr (83). The first-in-

human use of 89Zr-J591 (84) showed a correlation between

the uptake of 89Zr-J591 and the tumor aggressiveness. These

first results were confirmed by a phase I/II clinical trial and

demonstrated a superior targeting of bone metastases lesions

compared to conventional imaging modalities (85). In prostate

cancer, 64Cu radiolabeled anti-PSMA engineered humanized

mAb (HuX592r) is currently under clinical trial (CUPID Study,

Clinicaltrials.gov identifier NCT 04726033) to determine the

safety, pharmacokinetic, whole body distribution and radiation

dosimetry of this possible new immuno-PET modality.

Encouraging results were observed with the epidermal

growth factor receptor (EGFR) where 89Zr-cetuximab (86) has

provided additional information on advanced head and neck

cancer (ARTFORCE study, Clinicaltrials.gov identifier NCT

01504815) for an enlightened choice of the most effective

treatment between cisplatin or cetuximab (87, 88).

Antigen targeting in hematologic cancers

Blood cells and hematopoietic stem cells located in bone

marrow are well-known to be radiosensitive. As a consequence,

hematological diseases such as B-cell non-Hodgkin lymphoma

or multiple myeloma are highly studied malignancies in

nuclear medicine. Twenty years ago, overexpressed B-

lymphocyte antigen CD20 provided an interesting target for

β− radioimmunotherapy (RIT) applications with 90Y or 131I

radiolabeled mAbs. At the same period, 86Y has gained interest

as an interest surrogate for immuno-PET complement of
90Y-ibritumomab-tiuxetan RIT (89). Due to the 86Y physical

drawbacks, 89Zr-ibritumomab-tiuxetan was preferred for

immuno-PET clinical trial. Rizvi et al. (90) conducted a

prospective clinical study to analyze the biodistribution and
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the radiation dosimetry of 89Zr-ibritumomab-tiuxetan prior

and after 90Y-ibritumomab-tiuxetan RIT. This study has

confirmed the potential value of immuno-PET to predict and

to optimize RIT as individualized treatment. CD20 antigen is

overexpressed in diffuse large B-cell lymphoma, commercial

rituximab mAb has an indication on this pathology and can

be functionalized with desferrioxamine derivatives for 89Zr

radiolabeling (91). 89Zr-rituximab clinical trial showed a strong

correlation between the tumor uptake and CD20 expression

(92) with a promising expectation to predict the benefit of

“cold” rituximab therapy and to guide individualized treatment.

To date, a clinical trial with 64Cu-rituximab (Clinicaltrials.gov

identifier NCT 01598558) was scheduled but withdrawn

without explications in non-Hodgkin lymphoma and could,

in a near future, provide new information for immuno-PET

development. Daratumumab is a mAb that targets CD38,

an antigen overexpressed in nearly all myeloma cells. 89Zr-

daratumumab was synthesized and showed in a first-in-human

study (Clinicaltrials.gov identifier NCT 03665155) a highly

sensitive detection of multiple myeloma. These preliminary

results allowed a good bone localization before therapy, the

quantification of the disease burden before therapy, the best

responders for “cold” daratumumab therapy and a detection

of minimal residual disease after therapy (93). Daratumumab

was also 64Cu radiolabeled by Krishnan et al. and has allowed

whole body images of the multiple myeloma expansion. This
64Cu-daratumumab clinical study (Clinicaltrials.gov identifier

NCT 03311828) showed a better concordance (94) between

biopsy results and 64Cu-daratumumab than classical 18F-FDG

(uptake due to inflammatory region). A future phase II clinical

trial is scheduled to determine the sensitivity and the specificity

of 64Cu-daratumumab in multiple myeloma.

Antigen targeting of the tumor
microenvironment

Recent advances in oncology have revealed the greatest

interest of the tumor microenvironment in the disease

proliferation process. Tumormicroenvironment is an important

site of immunologic response and tumor-infiltrating T-cell

can be targeted by an anti-CD8 minibody radiolabeled

with 89Zr (89Zr-DfIABM2C). Phase I clinical trial showed

promising results in 15 patients to predict early response

to immunotherapy (95). The tumor response is under the

regulation of immune check point and recent advances in this

immunologic field showed the great importance of PD1/PDL1

system (96). Research on these immune check points has

identified the program cell death protein (PD1) and the

program cell death ligand (PDL1) to have a key role in this

process. Overexpression of PD1/PDL1 axis is associated with a

poorly patient prognostic in a large range of cancers (97, 98).

The potential interest of non-invasive PET imaging of tumor

PD1/PDL1 expression is therefore of prime importance for the

patient care (99). One of the most used mAb specifically for

PD1 is pembrolizumab which could be radiolabeled with 89Zr.
89Zr-penbrolizumab remained stable in blood circulation with

a classical accumulation in liver and spleen tissues (100). Some

clinical trials (Clinicaltrials.gov identifiers NCT 02760225; NCT

03065764) were done (or in progress) with 89Zr-penbrolizumab

and has shown uptake in tumor lesions correlated with

treatment response (101). This study was performed in a small

patient cohort (14 patients enrolled) and show promised results

but need to be confirmed by a larger clinical trial. Similar

results were obtained with 89Zr-atezolizumab (directed against

PDL1) in lobular breast cancer during the ImaGelato clinical

study (Clinicaltrials.gov identifier NCT 04222426) (102) or with
89Zr-durvalumab in non-small cell lung cancer (103).

To provide increase oxygen and nutrients supply for

the growing tumor, tumor cells induct neoangiogenesis by

vascular endothelial growth factor (VEGF) secretion. VEGF

receptors located at the surface of the endothelial cells can be

targeted by mAbs such bevacizumab. 89Zr-labeled bevacizumab

was prepared and administered in patients with non-small

cell lung cancer and showed a correlation between tumor-

uptake and progression-free survival and overall survival after

treatment (104).

Conclusion

Today, the immuno-PET field is rapidly progressing and

allows to provide essential information for the care management

of each patient. To meet the need of personalized medicine

era where each patient is unique, immuno-PET provides

repeatable, non-invasive whole-body information of biomarkers

mapping. Many preclinical developments and clinical proof-of-

concepts have been done or are ongoing. The recent clinical

developments of immuno-PET have confirmed the potential

of mAbs (and their derivatives) as companion diagnostic to

determine, whether or not, a patient will respond to a targeted

therapy. Nevertheless, the majority of proof-of-concept clinical

studies have been performed on small patient samples and

require larger studies to confirm their potential as predictive

imaging biomarkers. Currently, the main limitation for these

clinical studies with great patient numbers are often limited by

the costs and the availability limitation of isotopes.

The original phenotypic information provided by immuno-

PET currently allows in vivo access of several pieces of

information on the tumor aggressivity associated to a patient

outcome prognostic. The power of this molecular imaging

modality seems to be able to show very informative data on

the intra-tumor and intra-patient variability on molecular

biomarkers expression and consecutively in phenotypic

heterogeneity of the entire disease burden. Moreover, in
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comparison with “gold-standard” biopsies, immuno-PET

allows to acquire in-vivo knowledge of the intra-tumoral

penetration/biodistribution of the mAb without inherent-risk

of tumor seeding during needle biopsy (105).

Beyond the image information, immuno-PET is attractive to

study the in-vivo behavior of antibody-based therapies and for

understanding their therapeutic efficacities. Within the scope of

theranostic approach, the use of β+/β− pair (respectively for

diagnostic then therapy) radiolabeling the same mAb is very

promising because the same distribution/pharmacokinetic is

expected. Immuno-PET allows in theranostic the determination

of the patient dosimetry to optimize the cumulated activity and

to predict the therapy response by a quantitative measurement

of the tumor-antibody uptake. Molecular imaging by immuno-

PET with mAbs or their derivatives will play a pivotal role in

the close oncologic future to tailor a customized therapy for

each patient.
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