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Objectives: To adopt a multi-state risk prediction model for critical

disease/mortality outcomes among hospitalised COVID-19 patients using

nationwide COVID-19 hospital surveillance data in Belgium.

Materials and methods: Information on 44,659 COVID-19 patients

hospitalised between March 2020 and June 2021 with complete data on

disease outcomes and candidate predictors was used to adopt a multi-state,

multivariate Cox model to predict patients’ probability of recovery, critical

[transfer to intensive care units (ICU)] or fatal outcomes during hospital stay.

Results: Median length of hospital stay was 9 days (interquartile range: 5–

14). After admission, approximately 82% of the COVID-19 patients were

discharged alive, 15% of patients were admitted to ICU, and 15% died in

the hospital. The main predictors of an increased probability for recovery

were younger age, and to a lesser extent, a lower number of prevalent

comorbidities. A patient’s transition to ICU or in-hospital death had in

common the following predictors: high levels of c-reactive protein (CRP)

and lactate dehydrogenase (LDH), reporting lower respiratory complaints and

male sex. Additionally predictors for a transfer to ICU included middle-age,

obesity and reporting loss of appetite and staying at a university hospital, while

advanced age and a higher number of prevalent comorbidities for in-hospital

death. After ICU, younger age and low levels of CRP and LDH were the main

predictors for recovery, while in-hospital death was predicted by advanced

age and concurrent comorbidities.

Conclusion: As one of the very few, a multi-state model was adopted to

identify key factors predicting COVID-19 progression to critical disease, and

recovery or death.
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Introduction

As of July 4, 2022, a number of 4,294,880 confirmed
cases of COVID-19 have been reported in Belgium, with
128,814 associated hospitalisations, and 31,977 deaths (1). This
unprecedented burden on the health care system exposed
the need for tools to facilitate informed clinical decision on
patients’ management, and resource allocation for effective
health systems, particularly during outbreaks of uncertain
aetiology and heterogeneous prognosis. A robust risk prediction
model of COVID-19 progression after hospitalisation, and the
identification of predicting factors for patients’ outcomes would
be key for not only delivering targeted treatments and strategies
in high-risk patients, and hereby potentially increase survival
while managing the pressure on the health care system, but also
needed for informed decision on futile medical care.

Toward this need, more than 100 prognostic models for
patients diagnosed with COVID-19 have been developed using
a variety of data sources from the early phases of the pandemic.
Most were discussed to carry a high risk of bias and lacking
external validation, as summarised in the living systematic
literature review of Wynants and co-workers (2). Standard
logistic regression was a frequently used tool to predict COVID-
19 severity, though likely to introduce important selection bias
if patient data are not available until discharge; a plausible
situation during a pandemic where data mainly cover active
cases who are still in the hospital. More recent COVID-19
risk prediction models, however, accounted for some of the
data complexity by considering time-to-event outcomes, hereby
incorporating the time elapsing before an event is experienced
or the observation is censored, either using Cox proportional
hazard models (3–9) or in a competing risk framework (10–
12). However, to the best of our knowledge, only a very few
prediction scores have been built using time-to-event data in
a multi-state setting that should fit better hospital progression,
as documented by an increasing number of studies using a
multi-state approach in the COVID-19 context (13–17).

A multi-state model framework allows for the simultaneous
investigation of clinically competing outcomes (e.g., discharged
alive versus in-hospital death), as well as an intermediate
progression to a critical disease state [transfer to intensive care
units (ICU)], while also accounting for censoring due to loss
of follow up (18). The analysis of patients’ progression during
hospitalisation is particularly challenged by the presence of
competing events, where the occurrence of one event prevents
the observation of another, and methods should account for this
if interested in the probability of failing from an event (19).
In addition, the probability of experiencing a certain event is
likely to be influenced by patient’s risk factors, including time-
dependent factors that are generally present with progression of
disease. When it is of interest to model non-fatal intermediate
events, the competing risk model can be easily extended
to a multi-state model for the analysis of successive events

(18). When analysing hospital data, especially in the context
of COVID-19, it is important to acknowledge the presence
of competing risks and intermediate events using adequate
statistical models to provide robust findings (17).

The objective of the present study is to adopt a tool
for multi-state risk prediction and identifying the key factors
predicting COVID-19 progression to critical disease status,
and subsequent recovery or death, using nationwide hospital
surveillance data from COVID-19 in Belgium. This model
aims to predict individual probabilities of experiencing an
intermediate (ICU stay) and final events (recovery or death)
after hospital admission, using survival methods in a multi-
state setting.

Materials and methods

Data source

Nationwide hospital surveillance data on COVID-19
patients in Belgium are since the beginning of the pandemic
routinely collected by Sciensano, the Belgian Institute of Public
Health. The methodology of the Belgian surveillance system
has been previously described in detail (20). Briefly, the
clinical survey collects individual data of patients hospitalised
in Belgium with confirmed COVID-19, as reported through a
structured questionnaire at hospital admission and discharge
(and a third questionnaire at ICU discharge if appropriate),
and hereby achieving a national coverage at patient level of
around 65%. Information reported at admission include patient
demographics (such as age, sex, residence in a retirement home),
type of the hospital at admission, date of hospital admission,
symptoms at admission, the presence of chronic pre-existing
comorbidities and risk factors, including current smoking.
Information reported at discharge include laboratory values at
admission, COVID-19 related treatment during hospital stay,
measures on critical disease state (such as the need for transfer
to ICU, invasive ventilation support and/or extracorporeal
membrane oxygenation (ECMO), with only dates available
for ICU transfer), development of complications [such as a
bacterial and/or fungal superinfection, pneumonia, and/or acute
respiratory distress syndrome (ARDS)], date of discharge, and
health status at discharge. The ICU occupancy (percentage of
recognized ICU beds occupied by confirmed- and suspected
COVID-19 patients) is reported through a different surveillance
system, the surge capacity survey (20).

This COVID-19 clinical surveillance was authorised by an
independent administrative authority protecting privacy and
personal data, and was approved by the ethical committee
of Ghent University Hospital (BC-07507), which waived the
informed consent because of the anonymous and retrospective
data analyses, and because it was considered an extra burden on
the hospitals during the pandemic. Ethical approval for present

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1027674
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1027674 November 22, 2022 Time: 17:5 # 3

Mertens et al. 10.3389/fmed.2022.1027674

data analyses was obtained from the Institutional Review Board
of the Institute of Tropical Medicine (ITM) after revision of the
research protocol (num. 1488/21, 06/04/2021).

Study population

A total of 55,737 adult patients with a community- or
non-hospital-acquired SARS-CoV-2 infection confirmed by
polymerase chain reaction (PCR) and/or suggestive imaging
alterations on chest CT combined with typical clinical
presentation at admission in Belgium from March, 2020 to June,
2021 were considered for inclusion in the present study. From
this, excluded were patients with incomplete or implausible
dates of admission, ICU transfer and/or discharge (15%),
admitted to a psychiatric/categorical hospital (0.2%), and those
with missing data on complete sections of the surveys: i.e.,
missing all symptoms (0.1%), all comorbidities (0.2%), and
all laboratory values (6%), leaving 44,550 patients for the risk
prediction model after multiple imputation (MI). Missing data
among important potential candidate predictors were handled
by 10-fold MI using the “mice” package in R (21).

Similar analyses were performed in a dataset excluding
patients with missing data on any of the potential candidate
predictors (66%), this complete-case analysis included 18,994
hospitalised COVID-19 patients in Belgium with complete data
on necessary outcome variables for the prediction model (i.e.,
length of hospital stay, the time from admission to ICU for
those admitted to ICU, and status at discharge) and potential
candidate predictors.

Patient predictor variables

Candidate predictor variables were identified on the basis
of the presence of existing clinical vulnerability criteria,
as identified by the WHO, previous literature and expert
knowledge, and included the following variables measured at
hospital admission: patients’ demographics [age (in quartiles),
sex, residence in a retirement home], prevalent risk factors
and comorbidities (current smoking, pregnancy, obesity, high
blood pressure, diabetes, chronic renal disease, cardiovascular
disease, chronic lung disease, chronic liver disease, malignant
solid neoplasms, haematological cancers, immunosuppression,
and including the number of comorbidities in four categories),
symptoms at admission (fever, upper respiratory complaints,
lower respiratory complaints, gastro-intestinal complaints,
anosmia, loss appetite, and typical symptoms of viral infection),
laboratory values at admission [c-reactive protein (CRP), lactate
dehydrogenase (LDH), lymphocyte count; all in quartiles],
as well as hospital characteristics [hospital type (in three
categories) and ICU occupancy at admission and at ICU
admission (in quartiles)].

Patient outcome variables

Patients were considered to have recovered when their status
at discharged was reported as “recovered” or “other” (with the
latter representing recovery at home, a revalidation centre or
a nursing home), to have in-hospital death when reported as
“died,” and to be lost to follow-up when status at discharge
was “unknown” or “transferred”. Hospital length of stay was
calculated as the time in days starting from hospital admission
until date of hospital discharge (either recovery, in-hospital
death, or lost to follow-up). Only transfer to ICU was captured
in the database as a time-defined critical state of COVID-19,
with time to critical disease state calculated as time between
hospital admission and date of transfer to ICU. If ICU transfer
was on the same day as hospital admission, then we assumed
half a day in hospital before a transfer to ICU.

In the multi-state model, transfer to ICU was modelled as a
transient state, using time from admission to ICU, and recovery
and in-hospital death as absorbing states either after hospital
admission or via a transfer to ICU using hospital length of stay.

The multi-state prediction model
framework in the hospital setting

A multi-state model in the hospital setting describes
the course of hospital stay from admission to discharge,
including intermediate events of disease progression among the
hospitalised patients. The present analysis is built upon the same
set-up of the multi-state model as devised in our previous work
(17), but we have extended the multi-state methodology for the
deployment of a risk prediction model.

In our multi-state model, patients entered in one initial
state at day 0: State 1: “Hospitalisation.” From this State 1,
they can either transition to a transient state: State 2: “ICU”
(as a proxy for severe disease progression) or to one of the two
absorbing states: discharged alive (State 3: “Recovery”) or in-
hospital death (State 4: “Death”). From State 2, a transition to
State 3 or State 4 was once again possible. Hereby, this four-
state model incorporated five possible transitions: Transition
1: “Hospitalisation to ICU”, Transition 2: “Hospitalisation to
recovery”, Transition 3: “Hospitalisation to death”, Transition
4: “ICU to recovery”, and Transition 5: “ICU to death”, as
presented in Figure 1. In our model, being in the State 2 of
ICU stay reflected a past transfer to ICU, but not necessarily a
present stay at ICU, and also no back-transition to State 1 was
considered.

Training and testing set

The dataset is split 70/30 into a Training and Testing set.
The prediction models were built in the Training set (including
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the variable selection from predefined candidate predictors and
regression coefficient estimation). Predictions were made in the
Testing set with the accuracy of the prediction evaluated using
the Brier prediction error for multi-state models with pseudo-
values to handle the presence of right censoring (22).

Variable selection using the training set

Variable selection in the Training set was performed on
the stacked MI data (23) using an elastic net procedure with
alpha set to 0.5 and lambda within one standard error from the
optimal lambda, determined by a 10-fold cross-validation using
the “cv.glmnet” package in R (24).

Prediction model adoption in the
training set

This prediction model aims to predict individual state-
occupation probabilities for the intermediate and the absorbing

states at a future time t after hospital admission. To this end, we
performed an elastic net Cox regression model for the variable
selection of the five transition hazards, and subsequently, the
four state-occupation probabilities were predicted by combining
the (exponentiated) regression coefficients of the selected
variables with the cumulative baseline hazards, as estimated
by the Breslow estimator with the Aalen estimator of variance
(25). Hereafter, we fitted also on the Training data a multi-state
model without any covariates, i.e., a null model, with the aim to
compare predicting performance of the prediction model with
that of a null model.

Prediction of state-occupation
probabilities in testing set

The predictions of the state-occupation probabilities were
calculated in R using the “mstate” package with “msfit” function
to obtain the cumulative baseline hazards, and the “probtrans”
function to compute the transition probabilities (25) in the

FIGURE 1

Schematic representation of the multi-state model with four states and five transition events, including the event matrix for training and Testing
set. aNo event represents censored or absorbing state. bTraining set was taken in 10-fold for building the prediction model on stacked
multiple-imputed data. cTesting set for calculating prediction error includes complete cases only (excluding 57% of the Testing patients with
missing data on any of the predicting variables).
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Testing set for the model with the selected predictor variables
and the null model.

Risk prediction error measurement
using testing set

To evaluate the prediction performance of the model,
the prediction error based on the Brier Score was calculated
as a measure of predictive accuracy that evaluates both
discrimination and calibration simultaneously (26). Prediction
error was calculated up to 30 days after hospital admission,
since most of the patients had been discharged by then. Briefly,
the Brier score is a function of the differences between the
predictions and the observations and can be seen as the mean
squared error of these differences. With the use of pseudo-
values, the Brier score can also be estimated for survival models
derived from incomplete data because of right censoring (27).

Pseudo-values were calculated in the Testing set, by directly
modelling state-occupation probabilities in the Testing set by
using a pseudo-value regression (28, 29). This approach replaces
all observations, censored or not, with pseudo-values that are
estimated by recalculating the Aalen-Johansen estimator derived
from the entire Testing set and a Testing set with leave-one-out,
repeatedly for each individual. This leave-one-out jack-knife
method for the Aalen-Johansen estimator of the marginal state-
occupation probabilities permits to assign pseudo-values for the
state-occupation probabilities to each individual at each time
point. In this way, a pseudo-value reflects the extent to which the
overall marginal estimator is affected by the presence or absence
of that individual in the set. This implies that pseudo-values are
intuitively related to the covariates at the individual level, and
thus contain information on how covariates of that individual
affect the overall marginal estimator.

Subsequently, in the Testing set, the Brier prediction
error estimated with pseudo-values for the state-occupation
probabilities was calculated (22). The prediction errors were
calculated for predictions made with the prediction models as
well as for predictions made with the null model (i.e., the non-
parametric multi-state model derived from the Training set) in
order to quantify the relative reduction in the prediction error
after covariate-inclusion.

Building the nomogram

The selected predictor variables of the transition hazards
were incorporated in a nomogram to predict the 2-, 3-, 7- and
14-day probability for the transitions from hospital admission
to ICU-admission, to recovery and to in-hospital death. These
days were chosen based on the distribution of time from hospital
admission to ICU admission and total hospital length of stay,
in particular day 2 and 3 mainly reflecting the need for an ICU

transfer as 75% of the ICU patients are transferred before or at
day 3 after hospitalisation, and day 7 and 14 mainly reflecting
potential clinical outcomes of recovery or in-hospital death,
in case of no transfer to ICU, as approximately one-third of
the patients will have been recovered or died after 1 week of
hospitalisation and up to 75% after 2 weeks. Using the “rms”
package in R, the nomogram function provided for each variable
a point score, ranging from 0 to 10 (low to high risk) and
attributed according to the predictive importance of the selected
variables on the specific transition probability, as represented by
the format of the axes (30, 31).

Results

Descriptive characteristics of the study
population

Patient’s characteristics were similar to those reported earlier
in analyses using the Belgian COVID-19 surveillance data
(17, 32–35) (Table 1). Approximately 85% of the hospitalised
COVID-19 patients were aged ≥ 50 years and more than half
of them were men. In general, the most frequent reported
symptoms were lower respiratory complaints (69.7%), followed
by fever (49.7%) and other symptoms typically associated
with a viral infection (43.1%). A number of patients had
a least one comorbidity with arterial hypertension (40.6%),
cardiovascular disease (32.7%) and diabetes mellitus (23.8%) as
the most common. Median length of hospital stay was 9 days.
Approximately 15% of the patients were admitted to ICU with
a median time from hospital to ICU admission of 1 day, and
a total of 80.3% recovered, 16.9% died in the hospital and only
2.8% were lost to follow-up.

Compared to non-ICU patients, the ICU-patients were
slightly younger, and more frequently males, more likely to
report symptoms of fever, lower respiratory complaints, and
loss of appetite (but less gastro-intestinal complaints), to
suffer from pre-existing conditions (particularly obesity, arterial
hypertension, and diabetes mellitus), and to present lower levels
of lymphocyte and higher levels of LDH and CRP. In addition,
median length of hospital stay was more than double for those
admitted to ICU (median 17 days in ICU-patients vs. 8 days in
non-ICU-patients; data of non-ICU patients; not shown), and
more patients experienced an in-hospital death (33.4 vs. 14.1%).

Compared with patients that recovered, the patients who
died in the hospital were older, more frequently males, and
more likely to report less symptoms (but more lower respiratory
complaints), to suffer from pre-existing conditions, and to
present lower levels of lymphocyte and higher levels of LDH and
CRP. Median length of hospital say did not differ by final health
states, but as compared with patients that recovered, the patients
with an in-hospital death were more often transferred to ICU
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TABLE 1 Description of the information of COVID-19 patients according to health states during hospitalisation available from the Belgian
COVID-19 hospital surveillance database between March 2020 and June 2021.

Hospitalisation Admission to ICU Final health states

Recovery In-hospital death Lost to follow-up
(N = 44,550) (N = 6,520) (N = 35,772) (N = 7,536) (N = 1,242)

Age (years)

18–49 7,227 (16.2%) 939 (14.4%) 6,922 (19.4%) 107 (1.4%) 198 (15.9%)

50–69 14,460 (32.5%) 3,019 (46.3%) 12,745 (35.6%) 1,189 (15.8%) 526 (42.4%)

70–79 9,398 (21.1%) 1,797 (27.6%) 7,254 (20.3%) 1,843 (24.5%) 301 (24.2%)

80+ 13,465 (30.2%) 765 (11.7%) 8,851 (24.7%) 4,397 (58.3%) 217 (17.5%)

Median (IQR) 70 (56, 82) 66 (56, 74) 67 (53, 79)] 82 (73, 87) 66 (56, 75)

Residence in retirement home 5,728 (12.9%) 301 (4.6%) 3,599 (10.1%) 2,077 (27.6%) 52 (4.2%)

Sex (males) 24,219 (54.4%) 4,375 (67.1%) 19,045 (53.2%) 4,412 (58.5%) 762 (61.4%)

Missing 129 (0.3%) 15 (0.2%) 105 (0.3%) 21 (0.3%) 3 (0.2%)

Symptoms at admission

Lower respiratory 31,067 (69.7%) 5,419 (83.1%) 24,576 (68.7%) 5,594 (74.2%) 897 (72.2%)

Fever 22,131 (49.7%) 3,770 (57.8%) 17,833 (49.9%) 3,670 (48.7%) 628 (50.6%)

Typical viral infection 19,228 (43.2%) 2,912 (44.7%) 16,105 (45.0%) 2,637 (35.0%) 486 (39.1%)

Gastro-intestinal 11,538 (25.9%) 1,488 (22.8%) 9,966 (27.9%) 1,305 (17.3%) 267 (21.5%)

Anosmia 2,965 (6.7%) 435 (6.7%) 2,677 (7.5%) 195 (2.6%) 93 (7.5%)

Upper respiratory 3,150 (7.1%) 470 (7.2%) 2,740 (7.7%) 324 (4.3%) 86 (6.9%)

Loss of appetite 574 (1.3%) 238 (3.7%) 500 (1.4%) 69 (0.9%) 5 (0.4%)

Pre-existing conditions

Cardiovascular disease 14,572 (32.7%) 2,058 (31.6%) 10,281 (28.7%) 3,915 (52.0%) 376 (30.3%)

Arterial hypertension 18,066 (40.6%) 2,890 (44.3%) 13,636 (38.1%) 3,913 (51.9%) 517 (41.6%)

Diabetes mellitus 10,609 (23.8%) 1,843 (28.3%) 8,020 (22.4%) 2,267 (30.1%) 322 (25.9%)

Chronic renal disease 5,981 (13.4%) 770 (11.8%) 4,109 (11.5%) 1,739 (23.1%) 133 (10.7%)

Chronic liver disease 1,139 (2.6%) 229 (3.5%) 856 (2.4%) 254 (3.4%) 29 (2.3%)

Chronic lung disease 6,853 (15.4%) 1,141 (17.5%) 5,084 (14.2%) 1,539 (20.4%) 230 (18.5%)

Neurological disorders 3,637 (8.2%) 361 (5.5%) 2,613 (7.3%) 950 (12.6%) 74 (6.0%)

Cognitive disorders 4,329 (9.7%) 214 (3.3%) 2,935 (8.2%) 1,320 (17.5%) 74 (6.0%)

Missing 2914 (6.5%) 549 (8.4%) 2,112 (5.9%) 729 (9.7%) 73 (5.9%)

Immunosuppressive condition 903 (2.0%) 214 (3.3%) 703 (2.0%) 177 (2.3%) 23 (1.9%)

Cancer

Solid malignancies 4,193 (9.4%) 506 (7.8%) 3,014 (8.4%) 1,059 (14.1%) 120 (9.7%)

Haematological 870 (2.0%) 182 (2.8%) 582 (1.6%) 268 (3.6%) 20 (1.6%)

Transplant 199 (0.4%) 64 (1.0%) 157 (0.4%) 33 (0.4%) 9 (0.7%)

Missing 8,488 (19.1%) 1,222 (18.7%) 6,358 (17.8%) 1,939 (25.7%) 191 (15.4%)

Obesity 5,765 (12.9%) 1,430 (21.9%) 4,660 (13.0%) 860 (11.4%) 245 (19.7%)

Missing 2,914 (6.5%) 549 (8.4%) 2,112 (5.9%) 729 (9.7%) 73 (5.9%)

Number of comorbidities

0 10,861 (24.4%) 1,343 (20.6%) 10,029 (28.0%) 555 (7.4%) 277 (22.3%)

1 11,231 (25.2%) 1,723 (26.4%) 9,359 (26.2%) 1,528 (20.3%) 344 (27.7%)

2 9,973 (22.4%) 1,548 (23.7%) 7,617 (21.3%) 2,080 (27.6%) 276 (22.2%)

3+ 12,485 (28.0%) 1,906 (29.2%) 8,767 (24.5%) 3,373 (44.8%) 345 (27.8%)

Risk factors

Pregnancy 479 (1.1%) 32 (0.5%) 465 (1.3%) 1 (0.0%) 13 (1.0%)

Current smoker 2,359 (5.3%) 371 (5.7%) 1,907 (5.3%) 359 (4.8%) 93 (7.5%)

Missing 17,491 (39.3%) 2,654 (40.7%) 13,885 (38.8%) 3,094 (41.1%) 512 (41.2%)

Laboratory parameters at admission [Median (IQR)]

Lymphocytes (n/mmł) 800 (390, 1270) 720 (350.1136) 850 (440, 1320) 620 (260.1040) 610 (10.1080)

(Continued)
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TABLE 1 (Continued)

Hospitalisation Admission to ICU Final health states

Recovery In-hospital death Lost to follow-up
(N = 44,550) (N = 6,520) (N = 35,772) (N = 7,536) (N = 1,242)

Missing 2,310 (5.2%) 449 (6.9%) 1,813 (5.1%) 431 (5.7%) 66 (5.3%)

LDH (IU/L) 334 (254, 457) 426 (318, 583) 321 (247, 432) 403 (296, 567) 377 (275, 534)

Missing 4,658 (10.5%) 585 (9.0%) 3,774 (10.6%) 743 (9.9%) 141 (11.4%)

CRP (mg/dL) 62 (25, 122) 198 (52, 180) 57 (21, 110) 96 (47, 166) 85 (33, 151)

Missing 390 (0.9%) 28 (0.4%) 358 (1.0%) 25 (0.3%) 7 (0.6%)

Hospital characteristics

Hospital type at admission

GH 31,069 (69.7%) 3,898 (59.8%) 24,856 (69.5%) 5,356 (71.1%) 857 (69.0%)

GHU 9,608 (21.6%) 1,547 (23.7%) 7,626 (21.3%) 1,662 (22.1%) 320 (25.8%)

UH 3,866 (8.7%) 1,073 (16.5%) 3,286 (9.2%) 515 (6.8%) 65 (5.2%)

Missing 7 (0.0%) 2 (0.0%) 4 (0.0%) 3 (0.0%) 0 (0%)

ICU occupancy [%, Median
(IQR)]a

0.43 (0.25, 0.66) 0.41 (0.24, 0.62) 0.42 (0.25, 0.64) 0.46 (0.25, 0.68) 0.50 (0.26, 0.69)

Missing 309 (0.7%) 15 (0.2%) 247 (0.7%) 53 (0.7%) 9 (0.7%)

Clinical features

Hospital length of stay [days,
Median (IQR)]

9 (5, 15) 17 (10, 28) 9 (5, 14) 9 (5, 16) 8 (4, 16)

ICU transfer 6520 (14.6%) 6520 (100%) 3,816 (10.7%) 2,177 (28.9%) 527 (42.4%)

Time from hospital
admission to ICU admission
[days, Median (IQR)]

– 1 (0, 3) – –

Final health status

Discharged alive 35,772 (80.3%) 3,816 (58.5%) 35,772 (100%) 0 (0.0%) 0 (0.0%)

In-hospital death 7,536 (16.9%) 2,177 (33.4%) 0 (0.0%) 7,536 (100%) 0 (0.0%)

Lost to follow-up 1,242 (2.8%) 527 (8.1%) 0 (0.0%) 0 (0.0%) 1,242 (100%)

Values are numbers and percentage, or median and interquartile values. CRP, c-reactive protein; GH, general hospital; GHU, General Hospital with University characteristics; ICU,
intensive care units; IQR, interquartile range; LDH, lactate dehydrogenase; UH, university hospital.
aICU occupancy taken at admission for hospitalised patients without a transfer to ICU, and for ICU patients taken at the time of their ICU transfer instead.

(28.9 vs. 10.6%), and also the patients that were lost-to-follow-
up were more often transferred to ICU (42.4%).

Risk prediction models in a multi-state
setting

The estimates for the transition hazards for the risk
prediction model of COVID-19 disease progression, as applied
to 31,205 patients included in the training set, are presented in
Table 2.

Recovery after hospital admission (transition 2) was
strongly positively predicted by pregnancy (HR: 1.28,
95% CI: 1.23–1.33), reporting symptoms of anosmia
(1.17, 1.15–1.19), presenting high levels of lymphocytes
(1.16, 1.14–1.17), while inversely by advanced age (50–
69 years: 0.79, 0.78–0.80; 70–79 years: 0.51, 0.50–0.52;
80+ years: 0.34, 0.34–0.35), presenting two or more
comorbidities (2: 0.85, 0.84–0.87; 3+ years: 0.82, 0.80–0.84),
and in particular neurological disorders (0.83, 0.81–0.84),

haematological malignancies (0.85, 0.82–0.88), cognitive
disorders (0.87, 0.86–0.89), chronic lung disease (0.89, 0.88–
0.90) and chronic renal disease (0.90, 0.87–0.92), as well as
presenting high levels of CRP (0.82, 0.81–0.83) and of LDH
(0.89, 0.88–0.90).

Strong predictors for an increased probability of ICU
transfer (transition 1) were presenting high values for
CRP (2.10, 2.05–2.15) and LDH (2.02, 1.98–2.07), being
admitted to a University Hospital (1.88, 1.83–1.94), reporting
symptoms of loss of appetite (1.74, 1.65–1.85), suffering
from obesity (1.46, 1.43–1.49), reporting symptoms of lower
respiratory complaints (1.38, 1.35–1.42) and being male
(1.30, 1.27–1.33), while a lower risk was observed for
aged 80+ years (0.43, 0.41–0.45), residence in a retirement
home (0.63, 0.61–0.66), suffering from cognitive disorders
(0.68, 0.65–0.71), and overloaded ICU occupancy (0.79, 0.77–
0.81).

The probability of in-hospital death after hospital admission
(transition 3) was mainly positively predicted by advanced age
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TABLE 2 Hazard ratios and 95% confidence intervals for transitions of COVID-19 disease progression in a multi-state risk prediction setting using
the Training dataset with 10-fold multiple imputation.

Predictors Transition 1 Transition 2 Transition 3 Transition 4 Transition 5
Hospitalisation

→ ICU
Hospitalisation

→ Recovery
Hospitalisation →

In-hospital death
ICU →

Recovery
ICU →

In-hospital death

Age (years)

50–69 vs. < 50 1.20 (1.17; 1.24) 0.79 (0.78; 0.8) 0.63 (0.61; 0.65) 1.17 (1.09; 1.26)

70–79 vs. < 50 1.14 (1.10; 1.18) 0.51 (0.5; 0.52) 2.27 (2.18; 2.37) 0.45 (0.44; 0.47) 1.78 (1.65; 1.92)

80+ vs. < 50 0.43 (0.41; 0.45) 0.34 (0.34; 0.35) 4.50 (4.34; 4.68) 0.50 (0.47; 0.53) 3.08 (2.84; 3.33)

Sex (males) 1.30 (1.27; 1.33) 0.98 (0.97; 0.99) 1.23 (1.2; 1.26) 0.90 (0.88; 0.93)

Residence in retirement home 0.63 (0.61; 0.66) 0.93 (0.91; 0.94) 1.86 (1.81; 1.90) 1.67 (1.57; 1.78)

Symptoms at admission

Lower respiratory 1.38 (1.35; 1.42) 1.33 (1.30; 1.36) 0.95 (0.92; 0.98) 1.07 (1.03; 1.12)

Fever 1.04 (1.02; 1.06) 0.96 (0.95; 0.97) 0.96 (0.94; 0.99) 0.94 (0.90; 0.97)

Typical viral infection 0.90 (0.89; 0.92) 1.04 (1.03; 1.05) 0.93 (0.91; 0.96) 0.87 (0.84; 0.9)

Gastro-intestinal 0.81 (0.79; 0.83) 1.07 (1.06; 1.08) 0.81 (0.79; 0.84) 1.08 (1.05; 1.11) 0.97 (0.93; 1.01)

Anosmia 0.84 (0.81; 0.88) 1.17 (1.15; 1.19) 0.75 (0.70; 0.8) 1.04 (0.99; 1.09) 0.89 (0.83; 0.96)

Upper respiratory 0.90 (0.87; 0.94) 1.00 (0.99; 1.02) 1.02 (0.97; 1.06) 0.83 (0.77; 0.89)

Loss of appetite 1.74 (1.65; 1.85) 0.94 (0.82; 1.07) 1.55 (1.45; 1.65) 0.86 (0.76; 0.98)

Pre-existing conditions

Cardiovascular disease 1.03 (1.00; 1.05) 0.95 (0.94; 0.96) 1.25 (1.22; 1.28) 0.99 (0.96; 1.03) 1.10 (1.06; 1.15)

Arterial hypertension 1.12 (1.10; 1.14) 1.00 (0.97; 1.02) 0.97 (0.94; 1.00) 0.90 (0.86; 0.94)

Diabetes mellitus 1.06 (1.04; 1.08) 0.97 (0.96; 0.98) 1.05 (1.02; 1.08) 0.95 (0.91; 0.98) 1.09 (1.04; 1.14)

Chronic renal disease 0.92 (0.91; 0.93) 0.95 (0.91; 1.00) 1.23 (1.17; 1.29)

Chronic liver disease 1.13 (1.07; 1.19) 0.90 (0.87; 0.92) 1.45 (1.36; 1.54) 1.19 (1.10; 1.29)

Chronic lung disease 1.01 (0.99; 1.04) 0.89 (0.88; 0.90) 1.01 (0.98; 1.04) 0.86 (0.82; 0.89) 1.27 (1.22; 1.33)

Neurological disorders 0.86 (0.82; 0.89) 0.83 (0.81; 0.84) 1.24 (1.2; 1.28)

Cognitive disorders 0.68 (0.65; 0.71) 0.87 (0.86; 0.89) 1.15 (1.12; 1.18) 1.04 (0.96; 1.12)

Immunosuppressive condition 0.98 (0.95; 1.01) 0.9 (0.83; 0.97) 1.03 (0.94; 1.14)

Cancer

Solid malignancies 0.88 (0.85; 0.91) 0.90 (0.89; 0.92) 1.27 (1.23; 1.31) 0.96 (0.91; 1.01) 1.03 (0.98; 1.10)

Haematological 1.18 (1.11; 1.25) 0.85 (0.82; 0.88) 1.32 (1.24; 1.4) 0.97 (0.89; 1.05) 1.52 (1.4; 1.66)

Transplant 1.23 (1.12; 1.35) 0.96 (0.85; 1.09) 1.27 (1.09; 1.48)

Obesity 1.46 (1.43; 1.49) 0.94 (0.91; 0.98) 0.92 (0.88; 0.96)

Number of comorbidities

1 vs. 0 1.10 (1.08; 1.13) 0.92 (0.91; 0.93) 1.05 (1.00; 1.10) 1.13 (1.06; 1.20)

2 vs. 0 1.08 (1.05; 1.10) 0.85 (0.84; 0.87) 1.17 (1.11; 1.23) 0.90 (0.86; 0.94) 1.23 (1.14; 1.33)

3+ vs. 0 0.82 (0.80; 0.84) 1.12 (1.05; 1.19) 0.97 (0.91; 1.03) 1.40 (1.25; 1.57)

Pregnancy 0.91 (0.81; 1.03) 1.28 (1.23; 1.33) 0.77 (0.51; 1.16)

Current smoker 0.95 (0.94; 0.97) 1.00 (0.96; 1.04) 1.03 (0.98; 1.07) 1.06 (1.00; 1.12)

Laboratory parameters at admission

Lymphocytes (n/mmł)

Q2 vs. Q1 0.98 (0.97; 0.99)

Q3 vs. Q1 0.89 (0.87; 0.91) 1.05 (1.03; 1.06) 0.83 (0.81; 0.85) 1.10 (1.07; 1.14) 0.89 (0.85; 0.92)

Q4 vs. Q1 0.88 (0.86; 0.90) 1.16 (1.14; 1.17) 0.79 (0.77; 0.82) 1.17 (1.13; 1.21) 0.98 (0.94; 1.03)

LDH (IU/L)

Q2 vs. Q1 1.04 (1.01; 1.08)

Q3 vs. Q1 1.31 (1.28; 1.34) 0.98 (0.97; 0.99) 1.19 (1.15; 1.23) 0.93 (0.90; 0.96)

Q4 vs. Q1 2.02 (1.98; 2.07) 0.89 (0.88; 0.90) 1.81 (1.75; 1.86) 0.81 (0.78; 0.83) 1.20 (1.16; 1.25)

CRP (mg/dL)

Q2 vs. Q1 0.92 (0.91; 0.94) 1.16 (1.12; 1.2) 0.96 (0.91; 1)

Q3 vs. Q1 1.26 (1.23; 1.29) 0.90 (0.89; 0.91) 1.40 (1.35; 1.44) 0.87 (0.84; 0.91) 1.03 (0.98; 1.08)

Q4 vs. Q1 2.10 (2.05; 2.15) 0.82 (0.81; 0.83) 1.93 (1.87; 2.00) 0.76 (0.72; 0.79) 1.11 (1.07; 1.16)

(Continued)
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TABLE 2 (Continued)

Predictors Transition 1 Transition 2 Transition 3 Transition 4 Transition 5
Hospitalisation

→ ICU
Hospitalisation

→ Recovery
Hospitalisation →

In-hospital death
ICU →

Recovery
ICU →

In-hospital death

Hospital characteristics at admission

Hospital type

GHU vs. GH 1.16 (1.14; 1.19) 1.16 (1.11; 1.20)

UH vs. GH 1.88 (1.83; 1.94) 1.04 (1.02; 1.05) 0.94 (0.9; 0.99) 1.09 (1.05; 1.13) 0.69 (0.65; 0.73)

ICU occupancy

Q2 vs. Q1 1.01 (1.00; 1.02)

Q3 vs. Q1 0.88 (0.86; 0.90) 1.14 (1.11; 1.17)

Q4 vs. Q1 0.79 (0.77; 0.81) 0.97 (0.96; 0.98) 1.09 (1.06; 1.11) 0.92 (0.90; 0.95)

CRP, c-reactive protein; GH, general hospital; GHU, General hospital University; ICU, intensive care units; LDH, lactate dehydrogenase; UH, university hospital; Q, quartile.
aICU occupancy taken at admission for hospitalised patients without a transfer to ICU, and for ICU patients taken at the time of their ICU transfer instead.

FIGURE 2

Prediction error of the multi-state prediction model as compared with a null model, calculated using the Brier score, overall (A) and stratified by
state (B).

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.1027674
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1027674 November 22, 2022 Time: 17:5 # 10

Mertens et al. 10.3389/fmed.2022.1027674

(70–79 years: 2.27, 2.18–2.37; 80+ years: 4.50, 4.34–4.68), a
residence in retirement home (1.86, 1.81–1.90), presenting high
levels of CRP (1.93, 1.87–2.00) and LDH (1.81, 1.75–1.86),
reporting symptom of lower respiratory complaints (1.33, 1.30–
1.36), presenting two or more comorbidities (2: 1.17, 1.11–1.23;
3+: 1.12, 1.05–1.08), and in particular chronic liver disease
(1.45, 1.36–1.54), haematological (1.32, 1.24–1.40) and solid
(1.27, 1.23–1.31) malignancies, cardiovascular disease (1.25,
1.22–1.28) and chronic neurological disorders (1.24, 1.20–1.26),
while inversely by reporting symptoms of anosmia (0.75, 0.70–
0.80) and of gastro-intestinal complaints (0.81, 0.79–0.84), and
presenting high values of lymphocytes (0.79, 0.77–0.82).

For the transition to recovery after a transfer to ICU
(transition 4), advanced age was identified as a strong inverse
predictor (50–69 years: 0.76, 0.72–0.79; 70–79 years: 0.45, 0.44–
0.47, 80+ years: 0.50, 0.47–0.53) as well as high levels of CRP
(0.76, 0.72–0.79) and LDH (0.81, 0.78–0.83), while reporting
loss of appetite (1.55, 1.45–1.65) as a positive predictor. For
the transition to in-hospital death after a transfer to ICU
(transition 5), the predictors for a higher probability were
advanced age (70–79 years: 1.78, 1.65–1.92; 80+ years: 3.08,
2.84–3.33; residence in retirement home: 1.67, 1.57, 1.78) and
suffering from comorbidities (2: 1.23, 1.14–1.33; 3+ year: 1.40,
1.25–1.57), and in particular haematological malignancies (1.52,
1.40–1.66), chronic lung disease (1.27, 1.09–1.48), transplant
(1.27, 1.22, 1.33) and chronic renal disease (1.23, 1.17–1.29),
while staying at a university hospital (0.69, 0.65–0.73) was the
main predictor for a lower probability.

Figure 2 shows the performance of the risk prediction model
in the Testing set as compared to a null model. Overall, the
prediction error for both the null and full model was increasing
during the first days after hospitalisation, and started decreasing
after 7 days to flatten after day 20. At 7 days after hospital
admission, the prediction error was 0.64 for the null and 0.53
for the full model, pointing to a proportional reduction of 16%
which was, on average, also observed for the following days.
Stratified by health state, the prediction errors were taking a
different course over time for each state, and followed the flow
of patients during the hospital stay, i.e., a fast increase and a
flattened decrease for the state of hospitalisation and ICU as well
as for the state of recovery but at a slower speed, while only a
flattened increase in prediction error for the state of in-hospital
death.

State probabilities of a reference
patient versus a high-risk patient

Risk prediction outcomes were visualised using plots for
the cumulative hazards for the five possible transitions and the
final state-occupation probabilities, and in this case for a high-
risk patient versus a reference patient (Figure 3). Overall, the
cumulative hazards for recovery were markedly greater than

that of in-hospital death as well as that of the transfer to
ICU, which was associated with an increased hazard for in-
hospital death and decreased hazard for recovery (Figure 3A).
Transition hazards were, however, different between a high-
risk and a reference patient. For a high-risk patient, a lower
hazard to recovery was observed, independently of transfer to
ICU, as well as a higher transition hazard for a transfer to
ICU and in-hospital death after hospitalisation and after ICU.
Similarly, patients with a high-risk profile had higher state-
occupation probabilities for ICU, starting immediately after
hospital admission and slowly levelling off at 5 days after
hospital admission, and also had a higher probability for in-
hospital death along with a lower probability for recovery
(Figure 3B). However, for both patient profiles, the state-
occupation probabilities of recovery were higher than those
of in-hospital death, by which the recovery probability were
showing an increase over time that stabilised after 15–20 days of
hospitalisation and those of in-hospital death a gentle increase
over the 30-day hospital stay.

Nomogram

Using the first three transitions in a competing risk
framework, a nomogram was built assigning a score to each
of the selected predictor variables associated with the recovery,
ICU admission, and in-hospital death, respectively (Figure 4).

The transition from hospital admission to recovery was
mainly predicted by age, receiving a number of 10 points
when younger than 80+ plus 6.3 points when younger than
70–70 years and plus 2.2 points when younger than 50–69 years,
and to a lesser extent by pregnancy (2.3 points) and the number
of comorbidities (1.8 plus 1.5 plus 0.8 points when having less
than 3 comorbidities, less than 2, and less than 1, respectively)
and in particular the comorbidity of chronic neurological
disorders (1.8 point when absent; Figure 4A). Points were lower
than 1.5 for all other predictor variables relevant for recovery
after hospital admission.

For a transition from hospital admission to ICU admission,
the higher numbers of points were assigned to being of non-
advanced age (10 when younger than 80+ plus 5.5 when not
having a residence in a retirement home), high levels of CRP
(8.8) and LDH (8.4) followed by hospital type (7.5 when
admitted to university hospital), reporting the symptom of loss
of appetite (6.6), and the lower points were for having not having
cognitive disorders (4.5), but suffering from obesity (4.5) and
reporting the symptom of lower respiratory complaints (3.9),
and being male (3.1; Figure 4B). Points were lower than 3 for
all other predictor variables relevant for ICU admission.

For the transition from hospital admission to in-hospital
death, the higher numbers of points were assigned to advanced
age (10 when 80+ , 5.5 when 70–79 years, and 4.1 for residence
in retirement home), followed by high levels of CRP (4.4) and
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FIGURE 3

Plots for the cumulative transition hazards (A) and state-occupation probabilities (B) in a multi-state model considering a high-risk patient (tick
solid line) versus a reference patient (thin solid line). The reference patient represents an average patient characterised by being male, aged
between 55 and 69 years old, admitted to a general hospital with a medium-high ICU occupancy at hospital admission, experiencing lower
respiratory complaints, having zero co-morbidities, being a non-smoker, and presenting high levels of lymphocyte and medium-high levels
(Q3) of lactate dehydrogenase (LDH) and C-reactive protein (CRP). The high-risk patient represents an existing patient with the worst risk profile,
while having the same age, sex, hospital type and ICU occupancy at admission as the reference patient.
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FIGURE 4

(Continued)
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FIGURE 4

Nomograms to predict the transition probability for admission to recovery (A), ICU (B), and in-hospital death (C) after 2, 3, 7, and 14 days of
hospitalisation in COVID-19 hospitalised COVID-19 patients. Patients’ values are located on the axis of each variable where 0 refers to “No” and
1 “Yes”; drawing an upward line at 90◦ angle to determine the number of points for that particular variable. The sum of these numbers of points
is located on the total score axis; drawing a downward line at 90◦ angle to determine the probability of experiencing that particular transition at
day 2, 3, 7, and 14.

LDH (3.9), and the comorbidity of chronic liver disease (2.5;
Figure 4C). Points were lower than 2 for all other predictor
variables relevant for in-hospital death after hospital admission.

For example, using the nomogram for calculating the
transition probabilities for the first three transitions at 7 days
after hospital admission for a reference patient resulted in a
transition probability for ICU of 10%, for recovery of 50%
and for in-hospital death less than 5%, while for the high-
risk patient the transition probabilities of 40, 30, and 10%,
respectively, corresponding with Figure 3B. Estimated c-index
for the individual transitions, as illustrated by the nomograms,
was 0.677 for the risk prediction of ICU transfer, and 0.629 and
0.766 for predicting recovery and in-hospital death, respectively,
after hospital admission.

Complete-case analysis

Patient’s characteristics of the complete-cases only did not
differ from the 44,550 patients used for the MI (Supplementary
Table 1). Less predictors were selected for each transition in

the complete-case analysis (Supplementary Table 2), while
showing a similar reduction in prediction error (data not
shown). Predictors selected in both the imputed and complete-
case dataset had regression coefficients pointing toward the
same direction, and often of the same or a marginally weaker
strength for the complete-case analysis.

Discussion

In this study, a multi-state prediction model has been
adopted for one of the first times to identify predictive factors of
COVID-19 outcomes after hospitalisation, including recovery,
ICU transfer (as proxy for critical disease state) and death,
in a multi-state framework. Our findings indicate that all
possible transitions are predicted by a different set of variables
with varying magnitudes, but having in common the following
variables: sex, age, levels of CRP and LDH, complaints related
to the lower respiratory tract, and pre-existing comorbidities.
The risk prediction model had good performance with 15%
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reduction in prediction error as compared to a null model
derived from the Training set.

This study identified age, sex, symptoms of lower respiratory
complaints, higher levels of CRP and LDH, as well as living in a
retirement home, as the set of variables predicting progression
to critical/fatal COVID-19, however varying in terms of hazard
ratios for critical disease state and in-hospital death. These
findings align with those of a meta-analysis using data of 69,762
patients, which reported age, cerebrovascular disease, CRP, LDH
and cardiac troponin I as relevant prognostic factors for severe
COVID-19 outcomes (36). In addition, an umbrella review
and meta-analysis summarising estimates for 42 pre-existing
comorbidities reported an increased risk of severe COVID-19
outcomes in patients with diabetes, obesity, cardiovascular
disease, chronic obstructive pulmonary disease and dementia
as well as liver cirrhosis and active cancer from studies
conducted in Europe and US (37). In accordance with these
results, our analysis found obesity to be a relevant predictor
for ICU admission, and cardiovascular disease, chronic liver
disease, neurological disorders and malignancies for in-hospital
mortality, while recovery was predicted to be significant, but
modestly lower for patients with one or more pre-existing
conditions. Pre-existing comorbidities were also associated
with higher mortality among COVID-19 patients previously
admitted to ICU along with increasing age, high levels on
disease severity scores, and disrupted immune-response (38).
Also, in this study, increasing age and suffering from pre-
existing conditions were selected to be of prognostic relevance
for patients admitted to ICU with COVID-19. A note of caution
is due here since results are based on a limited sample size of
6,520 ICU patients (15% of the total cohort).

Debate continues regarding the role of smoking status with
COVID-19 severity. A recent meta-analysis including 517,020
patients from 109 studies found smoking to be significantly
associated with ICU admission (OR: 1.73; 95% CI: 1.36, 2.19)
and increased mortality (OR: 1.58, 95% CI: 1.38, 1.81) (39),
in agreement with previous meta-analyses (40–42), while not
confirmed by other meta-analyses (43–45) and recent large
retrospective cohort studies (46, 47). This discrepancy could
be attributed to the mediating role of comorbidities and
their risk factors (46, 47) as well as the lower than expected
prevalence of smoking among COVID-19 patients (44, 46,
47). The latter also validates the lower risk of SARS-CoV-2
infection observed among smokers (RR: 0.74; 95% CI: 0.58,
0.93), as established in a meta-analyses based on 45 studies
providing data on SARS-CoV-2 infection in adults (45). The
smoking rate of patients is, however, considered as insufficient
to judge any association between smoking and COVID-19
because of the higher probability of smokers for being tested
owing to symptoms similar to COVID-19 (48). In our study,
smoking was not identified as a relevant strong predictor for
COVID-19 severity (i.e., weak HRs only seen in the dataset
with 10-fold MI), which concurs with the recorded lower

smoking prevalence among included hospitalised COVID-19
patients (8.1%) as compared to the national prevalence (16.1%),
as inquired by the Belgian Health Interview Survey of 2018
(49). However, with this apparently low proportion of smokers
requiring hospitalisation for their COVID-19, caution must
be applied, as an “unknown” smoking status was recorded
for around 40% of the patients considered for inclusion,
without any reason provided but presumably more likely among
smokers. In general, it appears that, if existing, any predictive
value of current smoking status on critical/fatal COVID-19
outcomes is likely to be small, but this needs to clarified with
more accurate data.

Considering the choice of the methodology for the
predictive models, a systematic review, including 107 risk
prediction models for severe COVID-19 outcomes, concluded
that many of the proposed models carry a high risk of bias
because of inappropriate statistical methods ignoring time-to-
event and the presence of competing risks (2). Integrating
competing risk models into a multi-state framework allows
simultaneous modelling of time-to-event outcomes and disease
progression, and hereby enables the calculation of transition
and state occupation probabilities, adding an extra layer of
information (18, 50). Like this, the multi-state model more
accurately describes the evolution of hospitalised patients, by
accounting for intermediate events of disease progression that
likely influence disease outcomes over time, i.e., time and event-
related dependencies of disease progression. Similar to a smaller
sample size study covering only one region of Spain (51), the
present study devised the multi-state framework for building a
risk prediction model for COVID-19 critical state (ICU transfer)
and death versus recovery, and consistently co-morbidities were
more frequently observed to be the more prevalent among those
experiencing worst COVID-19 outcomes, like hospitalisation,
and subsequently in-hospital death. In addition, we thereby
identified male sex, high levels of CRP and LDH as well as
reporting lower respiratory complaints as common important
predictive factors for transitioning to ICU or in-hospital
death after hospitalisation due to SARS-CoV-2 infection, with
additionally middle-age, obesity, reporting loss of appetite and
staying in a university hospital for a transfer to ICU, while
advanced age and a higher number of comorbidities for in-
hospital death.

The use of the nationwide hospital surveillance data, along
with appropriate statistical models fitting the hospital setting,
are of crucial importance for informed evidence-based clinical
decision-making. In the present study, the underlying time-
to-event analyses allowed prediction of the state-occupation
probabilities through the transition hazards and cumulative
hazards, i.e., an indirect approach by which variable selection
for the prediction model occurred at the level of transition
hazards of the time-to-event models instead of state-occupation
probabilities. Alternatively, a pseudo-value regression model
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would offer the possibility to directly model the state-
occupation probabilities for intermediate and absorbing state,
and modelling this only for a predefined future time t after
hospital admission, as chosen in advance (28, 29). Further,
information on when the event occurred, as needed to account
for time dependencies, was in our data only reported for
hospital admission and discharge (i.e., in-hospital death vs.
recovery) and for admission to ICU, and therefore this latter
was the only intermediate event considered as a proxy for
critical disease progression. Also, the lack of information on
withdrawal and/or the Limitation of Life-Sustaining Therapies
might limit overall conclusions. However, with the large number
of hospitalised COVID-19 patients in Belgium, it is anticipated
to have a sufficient number of events per variable to, despite
the presence of low-prevalence predictors, eliminate bias in the
regression coefficients and improve predictive accuracy for all
five transitions considered (52, 53). Albeit the large sample
size of our study allowed us to use a random split approach
for internal validation, other internal validation tests, such
as bootstrapping or cross-validation, should be used to fully
account for overfitting and optimism in model performance
(54). The Brier score, used for the overall evaluation of the
model performance as well as the individual transitions, limited
comparison with other established published prediction models,
though this evaluation supported by providing the c-index
for the individual transitions as illustrated in the nomogram.
This prediction model is based on patient’s electronic medical
files relying on the clinicians’ report of clinical observations
and anamnesis and medical registration personnel reporting
accurately, which might vary across hospitals and during the
peak periods of the pandemic. In this respect, an important
limitation is the number of missing values without any reason
for the incomplete data, in particular an issue for current
smoking. A complete-case analysis was performed to confirm
the results obtained after MI, but warrants caution because of
the underlying assumption of missing at random. Finally, the
model’s flexibility for adaptation to other settings and countries
remains to be examined, by way of an external validation
judging not only discrimination but also calibration and clinical
utility in a dataset with a minimum of 100 events collected
using appropriate study designs and representative of the target
population (55).

In conclusion, integrating the standard Cox models into a
multi-state framework allows the study of separate competing
outcomes simultaneously as well as the disease progression
through intermediate states. This paper shows the application
of the multi-state framework for the deployment of a risk
prediction model for COVID-19 disease progression after
hospitalisation. Each transition, i.e., from hospitalisation to
critical disease state, and subsequently to recovery or in-hospital
death, has its own set of variables with varying magnitudes,
and commonly including sex, age, levels of CRP and LDH,

complaints related to the lower respiratory tract, and pre-
existing comorbidities as predicting variables. The deployment
in a risk score to predict the first three potential transitions
shows the potential to be utilised by potential stakeholders, such
as health care providers and policy makers, for informed clinical
decision on patients’ management, and resource allocation for
effective health systems.
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