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We aimed to study the molecular mechanisms of chronic obstructive

pulmonary disease (COPD) caused by cigarette smoke more comprehensively

and systematically through di�erent perspectives and aspects and to explore

the role of protein acetylationmodification in COPD.We established the COPD

model by exposing C57BL/6J mice to cigarette smoke for 24 weeks, then

analyzed the transcriptomics, proteomics, and acetylomics data of mouse

lung tissue by RNA sequencing (RNA-seq) and liquid chromatography-tandem

mass spectrometry (LC-MS/MS), and associated these omics data through

unique algorithms. This study demonstrated that the di�erentially expressed

proteins and acetylationmodification in the lung tissue of COPDmicewere co-

enriched in pathways such as oxidative phosphorylation (OXPHOS) and fatty

acid degradation. A total of 19 genes, namely, ENO3, PFKM, ALDOA, ACTN2,

FGG,MYH1,MYH3,MYH8,MYL1,MYLPF, TTN, ACTA1, ATP2A1,CKM,CORO1A,

EEF1A2, AKR1B8,MB, and STAT1, were significantly and di�erentially expressed

at all the three levels of transcription, protein, and acetylation modification

simultaneously. Then, we assessed the distribution and expression in di�erent

cell subpopulations of these 19 genes in the lung tissues of patients with

COPD by analyzing data from single-cell RNA sequencing (scRNA-seq).

Finally, we carried out the in vivo experimental verification using mouse

lung tissue through quantitative real-time PCR (qRT-PCR), Western blotting

(WB), immunofluorescence (IF), and immunoprecipitation (IP). The results

showed that the di�erential acetylation modifications of mouse lung tissue
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are widely involved in cigarette smoke-induced COPD. ALDOA is significantly

downregulated and hyperacetylated in the lung tissues of humans and mice

with COPD, which might be a potential biomarker for the diagnosis and/or

treatment of COPD.

KEYWORDS

COPD, transcriptomics, proteomics, acetylomics, multi-omics associative analysis,

single-cell RNA sequencing

1. Introduction

The 2022 Global Initiative for Chronic Obstructive Lung
Disease (COPD) report considered that cigarette smoking is the
leading environmental risk factor for COPD (1). The smoke
produced by cigarette combustion contains a large number of
harmful components (2) that can induce oxidative stress in
lung cells (3), cause damage to mitochondria (4, 5), aggravate
protease–anti-protease imbalance (6, 7), cause autoimmune
response (8, 9), and also cause autophagy dysfunction of lung
cells and mitochondria (10–12). These comprehensive factors
lead to DNA and protein damage, inflammatory infiltration,
cell aging and apoptosis, destruction and remodeling of airway
structure, and participate in the progression of COPD.

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) has greatly promoted the determination of post-
translational modifications (PTMs) on the protein, such as
acetylation (13). Histone acetylation modification leads to
chromatin remodeling, regulates the transcriptional activity and
gene expression, and is largely independent of the regulation
of transcription by DNA methylation (14). Non-histone
acetylation modification can regulate RNA transcription, DNA
damage repair, and autophagy; alter the structure of the protein,
enzyme activity, and signal transduction; effectuate crosstalk on
the other types of PTMs, such as phosphorylation; and finally
affect the expression and function of proteins (15). Initially,
attention was focused on histone proteins with differentially
expressed acetylation modifications in COPD (16, 17), and
the role of differential acetylation modifications of non-histone
proteins induced by cigarette smoke has also attracted attention
in recent years (18, 19).

Single-cell RNA sequencing (scRNA-seq) is another
emerging technology that has attracted many researchers’
attention in recent years and is predicted to have a broader
application prospect, including the integration of scRNA-seq
data with other omics (scMultiomics) (20). Various advanced
high-throughput sequencing technologies have generated
several types of omics data. Although single-omics data,
such as genomics (21), epigenomics (22), transcriptomics
(23, 24), proteomics (25, 26), metabolomics (27, 28), and
scRNA-seq (29, 30), have contributed to clarifying the
mechanisms of COPD, the disease is still one of the three

leading causes of deaths worldwide, and the burden of COPD
is expected to increase in the next few decades (1). There
is no simple correspondence between transcription and
protein abundance; complex regulatory mechanisms affect

transcription, translation, PTMs, and metabolic processes, and
ultimately affect protein expression (31, 32). Although scRNA-
seq can decipher the regulatory correlations among genes
from various cell subpopulations and record the trajectories of

distinct cell lineages during development, it cannot reveal their
spatial distribution or functional characteristics (33). These

reasons indicate that a single-omics data set may not be able

to fully explain COPD. This finding indicated that there is an
urgent need for novel research ideas, such as combiningmultiple

omics data sets. Some studies on COPD have used this strategy

(34, 35), indicating that multi-omics data analysis is conducive

to identifying biomarkers and understanding the heterogeneity

of COPD. Li et al. showed that integrating multiple omics data
improves the accuracy of diagnosis and molecular subtype
prediction of COPD compared with single-omics data (36). In

addition, Lai et al. (37) and Pei et al. (38) correlated scRNA-seq
with other omics data to study the genetic characteristics and
pathogenesis of COPD.

In this study, we aimed to elucidate the molecular

mechanisms underlying lung injury in COPD mice at the levels
of gene transcription, protein translation, and PTMs through
multi-omics data associative analysis; reveal the role of protein
acetylation modification in COPD; and discover new potential
prevention and treatment targets of COPD. Also, we analyzed
the distribution of these genes in cell subpopulations of lung
tissue by scRNA-seq in order to select the appropriate genes
for subsequent experimental verification and lay a foundation
for further studies on the pathway mechanisms of COPD in
the future.

2. Materials and methods

2.1. Animals

In this study, six male specific pathogen-free (SPF) grade
C57BL/6J mice, 6 weeks old, were purchased from Charles River
(CRL) experimental Animal Center (Beijing, China; License
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key: SCXK, Beijing, 2016-0006). After 2 weeks of adaptive
feeding, the animals were randomly and equally divided into
the control group (control) and the cigarette smoke treatment
group (CS). Mice in the CS group were exposed to the smoke of
3R4F research cigarettes (Tobacco Research Institute, University
of Kentucky, Lexington, KY; 11mg TPM, 9.4mg tar, and
0.73mg nicotine per cigarette), 5 cigarettes and 30min one
time, twice a day, at an interval of 4 h, 5 days/week for 24
weeks, while the mice in the control group were free to breathe
fresh air. During the experiment, mice ate and drank freely
in a controlled environment: 12:12 h of light:dark cycle, a
humidity of 50–60%, and a temperature of 21–23◦C. During the
whole experiment, the animals were given humanitarian care in
accordance with the 3R principle. The study was approved by the
ethics committee of the Clinical Medical College of Yangzhou
University (Yangzhou, Jiangsu Province, China).

2.2. Lung function measurement

The lung function of the two groups of mice was measured
by a forced oscillatory small-animal ventilator (flexiVent,
SCIREQ) in the Function Experiment Center of the Clinical
Medical College of Yangzhou University. To ensure the accuracy
of data, the measurement process was operated by the same
person. That is, the mice were anesthetized before tracheostomy,
and the endotracheal intubation was connected with the small-
animal ventilator. The parameters were as follows: performed
quasi sinusoidal ventilation, tidal volume: 10 ml/kg, respiratory
rate: 150 times/min, I:E ratio: 2:3, and PEEP: 3 cmH2O.
Then, the airway resistance (RN), tissue damping (G), tissue
elasticity (H), peak expiratory flow (PEF), forced expiratory
volume in 100ms (FEV0.1), forced vital capacity (FVC), and
FEV0.1/FVC ratio were measured and recorded. Each mouse
was tested repeatedly six times, and the average value of each
item was considered.

2.3. Histopathological analysis and
morphometry

The left lower lung tissue of mice was fixed with 4%
formaldehyde for 24 h, embedded in paraffin after dehydration,
sectioned (5-µm thick, hematoxylin and eosin [H&E]), and
stained with H&E after dewaxing and rehydration. The
stained sections were observed, evaluated, and photographed
by experienced pathological researchers at 100× and 400×
magnification under the optical microscope (OLYMPUS BX53,
with the image analysis software Stream). The Image-Pro Plus
(Media Cybernetics, Rockville, MD, USA) was used to analyze
the images, and the mean linear intercept (MLI) was measured:
six images from different shooting fields of each sample (did not

contain airways and/or blood vessels) were overlaid with an 11-
horizontal line template. The intercepts of the alveolar walls with
lines were enumerated, and then the total length of the 11 lines
was divided by the average number of intercepts (39).

2.4. Transcriptomics

According to the manufacturer’s instructions, total RNA
was extracted and purified from the left upper lung tissue of
each mouse and amplified by polymerase chain reaction (PCR).
The constructed library was examined on an Agilent 2100
Bioanalyzer and ABI StepOneplus Real-Time PCR System and
sequenced on the Illumina HiSeq platform. The clean reads
were obtained by removing low-quality reads, adapters, and
poly-N sequences from the raw reads. The clean reads were
matched to the reference genome sequence (GRCm38) using
HISAT2-software, new transcripts were predicted, and single-
nucleotide polymorphism (SNP), insertion-deletion (InDel),
and differential splicing genes (DSG) were identified. The new
transcript with protein coding potential was added to the
reference gene sequence to form a complete reference sequence
and then the gene expression was calculated. Finally, the quality
of data from each sample and the differentially expressed genes
between different samples were analyzed (40). Due to a large
amount of transcriptome differential analysis data, Benjamini–
Hochberg adjustment was performed on p-value to further
reduce the false-positive rate. Subsequently, we defined genes
with more than a 2-fold difference and p< 0.001 after correction
as significantly differentially expressed genes.

2.5. Proteomics

An appropriate amount of the right lower lung tissue
of each mouse was ground and homogenized, and the
supernatant was collected by centrifugation to determine the
protein concentration using the BCA method. After trypsin
digestion, the peptide was desalted on the Strata X C18 SPE
column (Phenomenex) and vacuum dried. The peptide was
reconstituted in 0.5M TEAB and processed using the TMT kit,
according to the manufacturer’s protocol. The tryptic peptides
were fractionated by high pH reverse-phase HPLC and separated
on a gradient of 8–32% acetonitrile (pH 9.0) over 60min into
60 fractions; these were pooled into 18 fractions and dried by
vacuum centrifugation.

For LC-MS/MS analysis, the tryptic peptides were
solubilized in solvent A (aqueous solution containing 0.1%
formic acid and 2% acetonitrile). The gradient comprised
an increase from 9 to 23% of solvent B (aqueous solution
containing 0.1% formic acid and 90% acetonitrile) in 0–26min,
from 23 to 35% in 26–34min, and 23 to 80% in 34–37min,
then held at 80% for the last 3min; a constant flow rate of 300
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nl/min was maintained on the EASY-nLC 1000 UPLC system
throughout these processes. The peptides were subjected to an
NSI source, followed by Orbitrap Fusion mass spectrometry.
The electrospray voltage was set at 2.0 kV. The scanning range
of primary mass spectrometry was set to 350–1,550 m/z, and
the scanning resolution was set to 60,000. The scanning range
of the secondary mass spectrometry was fixed at 100 m/z,
and the secondary scanning resolution was set at 30,000. The
DDA program was selected as the data acquisition mode. The
automatic gain control (AGC) was set at 5E4 to improve the
effective utilization of mass spectrometry. The signal threshold
was set to 5,000 ions/s, and the maximum injection time was
set to 100ms. To avoid repeated scanning, a data-dependent
procedure was alternated between the scans with dynamic
exclusion of 30 s.

Maxquant search engine (version 1.5.2.8) was used to
process the resulting data searched against the mouse SwissPort
database concatenated with the reverse decoy database to
calculate the false discovery rate (FDR) caused by random
matching, and common contamination databases were added
to eliminate the influence of contaminated proteins. Trypsin/P
was specified as the cleavage enzyme allowing up to two missing
cleavages. The minimum length of the peptide was set to seven
amino acid residues. The mass tolerance for precursor ions was
set at 20 ppm in the first search and 5 ppm in themain search and
was set for fragment ions at 0.02 Da. The quantitative method
was set to TMT-10plex, and FDR was adjusted to < 1%. It was
defined as a significantly differentially expressed protein if the
ratio of change was > 1.3 or < 1/1.3 and p < 0.05.

2.6. Acetylomics

The processes of protein extraction, trypsin digestion,
and TMT labeling were consistent with proteomics. HPLC
fractionation was also similar to proteomics, except that peptides
were combined into 4, but not 18, fractions before being dried
by vacuum centrifugation. In addition, there was an additional
process of affinity enrichment between HPLC fractionation and
LC-MS/MS analysis. To enrich the acetylated peptides, tryptic
peptides dissolved in NETN buffer (100mMNaCl, 1mMEDTA,
50mMTris–HCl, 0.5% NP-40, pH 8.0) were incubated with pre-
washed antibody beads at 4◦C overnight, with gentle shaking.
Then, the beads were washed four times with NETN buffer and
twice with deionized water. The bound peptides were eluted
from the beads with 0.1% trifluoroacetic acid. Finally, the eluted
fractions were combined and vacuum-dried. The resulting
peptides were desalted with C18 ZipTips (Millipore) before LC-
MS/MS analysis, according to the manufacturer’s instructions.
The processes of LC-MS/MS analysis and database search were
similar to those described in proteomics, except that there
were only a very few different parameter settings. Similarly, we
defined significantly differentially expressed protein acetylation

modification according to the standard of the ratio of change >

1.3 or < 1/1.3 and p < 0.05.

2.7. Multi-omics associative analysis

2.7.1. Transcriptomics and proteomics
associative analysis

2.7.1.1. Protein annotation

First, we screened the proteins quantified at both
transcriptome and proteome levels. The protein ID was
converted to UniProt ID, and the GO ID was matched with
UniProt ID in order to obtain the corresponding information
from the UniProt-GOA database (http://www.ebi.ac.uk/GOA/)
for Gene Ontology (GO) annotation, according to GO ID. If no
protein information was queried in the database, an algorithm
software based on protein sequence—InterProScan (version
5.14-53.0, http://www.ebi.ac.uk/interpro/)—would be used
to predict the GO function of the protein. Next, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) online service
tool KAAS (version 2.0, http://www.genome.jp/kaas-bin/kaas_
main) was used to annotate the screened proteins and matched
into the corresponding pathways in the database by KEGG
mapper (version 2.5, http://www.kegg.jp/kegg/mapper.html).

2.7.1.2. Protein functional enrichment

All the differential expressions on at least one level of
transcriptome and proteome were screened and divided into
groups according to different expression trend types in the
transcriptome and proteome (up-up, up-down, up-unchanged,
down-unchanged, down-down, down-up, unchanged-up, and
unchanged-down) to study the potential correlation between
different regulatory relationships and specific functions. Briefly,
GO functional enrichment was performed separately with the
differentially expressed genes and proteins in various groups
and classified into three categories: cellular compartment (C-
C), biological process (B-P), and molecular function (M-F).
Similarly, the KEGG database was used to identify the enriched
pathways for different groups. The two-tailed Fisher’s exact
test (Perl module, version 1.31, https://metacpan.org/pod/Text::
NSP::Measures::2D::Fisher) was used in the enrichment test; p<

0.05 was considered significant.

2.7.1.3. Enrichment-based clustering

All the functional enrichments and pathways that were
significant (p < 0.05) in at least one regulatory relationship
group were screened. The filtered p-value data matrix was first
transformed by a logarithm of -log10; then, the transformed
data matrix was converted by z-transformation. These z scores
were clustered by one-way hierarchical clustering (Euclidean
distance, average linkage clustering) in Genesis. The cluster
membership was visualized by heat maps using the heatmap (R
package, https://cran.r-project.org/web/packages/cluster/).
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2.7.2. Proteomics and acetylomics associative
analysis

2.7.2.1. Acetylomics analysis

All the proteins corresponding to the differentially expressed
acetylation modification sites were annotated and functionally
enriched with GO and KEGG; InterPro domain database (http://
www.ebi.ac.uk/interpro/) was used to annotate the protein
domains, then enrichment-based clustering was performed
using the methods described earlier. The subcellular localization
was annotated by the Wolfpsort software (version 0.2, http://
www.genscript.com/psort/wolf_psort.html). Soft MoMo (motif-
x algorithm, version 5.0.2, http://meme-suite.org/tools/momo)
was used for motif analysis to analyze the motif characteristics
of the modification sites.

2.7.2.2. Proteomics and acetylomics

associative analysis

All the identifiers of differentially expressed proteins
and proteins corresponding to the differentially expressed
acetylation sites (defined as proteome and modification,
respectively) were collected. These proteins were searched
against the STRING database version 11.0 for protein–protein
interactions. Only interactions between the proteins belonging
to the searched data set were selected, and the external
candidates were excluded. STRING defines a metric termed
“confidence score” to define the interaction confidence. Next,
we fetched all interactions with a confidence score of ≥

0.7 (high confidence) and defined the number of proteins
interacting with other differentially expressed proteins as
“degree.” The interaction network forming STRING was
visualized in the Cytoscape software, and a graph theoretical
clustering algorithm—molecular complex detection (MCODE,
plugin of Cytoscape)—was utilized to analyze the densely
connected regions (proteins with the highest “degree”). Finally,
we carried out functional enrichment on most proteins in these
densely connected regions (marked by dotted circles).

2.8. Single-cell RNA sequencing
(scRNA-seq) data analysis

The scRNA-seq data (GSE136831) of whole lungs
dissociated from Homo sapiens were downloaded from the
National Center of Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo/). To analyze accurately, we selected eight samples of
patients with COPD as the COPD group and eight samples
of healthy humans as the control group from GSE136831
(41). These samples were age and sex matched, and at least
1,500 cells were detected in each sample. The quality control
standard was that the cells expressed at least 500 and at most
8,000 genes, the proportion of mitochondria was <20%, and
the total RNA detected was <80,000, following which the

doublets generated due to the excessive number of genes and
RNA detection were removed. The data were standardized
and scaled using the Seurat R package. The top 2,000 highly
variable genes and the top 10 significant PCs were used to
perform the dimension reduction cluster analysis downstream.
The cell subpopulations in lung tissue were identified based on
the expression of classical correlative biomarkers. The genes
from various cell subpopulations with the absolute value of the
differential expression (log2) between the two groups > 0.25
were defined as significantly differentially expressed genes (p
< 0.05).

2.9. Quantitative real-time PCR
(qRT-PCR)

RNAsimple total RNA kit (DP419; Tiangen Biotech Co.,
Ltd., Beijing, China) was used to extract the RNA from
a part of the right upper lung tissue of mice. The cDNA
was generated from 0.4 µg of RNA using the HiScript III
RT SuperMix for qPCR (+gDNA wiper; R323-01; Vazyme
Biotech Co., Ltd., Nanjing, Jiangsu, China). Next, we used
AceQ R© Universal SYBR R© qPCR Master Mix (Q511-02;
Vazyme Biotech Co., Ltd.) and ABI Step One Plus real-time
fluorescence quantitative PCR instrument (Applied Biosystems,
Foster City, CA, USA) for qRT-PCR. GAPDH was used as the
internal normalization control, and the difference between
the two groups was analyzed using the 2−11Ct method.
The primer sequences were as follows: ALDOA-mouse,
forward: 5′-GGAACCAATGGCGAGACAACTACC-3′, reverse:
5′-GGCAAAGTCGGCTCCATCCTTC-3′; and GAPDH-
mouse: forward: 5′-GGCAAATTCAACGGCACAGTCAAG-3′,
reverse: 5′-TCGCTCCTGGAAGATGGTGATGG-3′.

2.10. Western blotting (WB) analysis

RIPA lysis buffer (P0013B; Beyotime Biotechnology,
Shanghai, China) containing phenylmethanesulfonylfluoride
(P0100; Solarbio Science & Technology Co., Ltd., Beijing,
China) was used to extract the total protein from the remaining
right upper lung tissue of mice. The supernatant was collected
after centrifugation at 4◦C at 12,000 rpm for 15min, and
the protein concentrations were determined by a BCA
protein quantification kit (E112-02; Vazyme Biotech Co.,
Ltd.). The protein was denatured by loading buffer (FD002;
Fude Biological Technology Co., Ltd., Hangzhou, Zhejiang,
China) and separated by electrophoresis on 10% SDS-PAGE
(E303-01; Vazyme Biotech Co., Ltd.) and transferred to 0.2-
µm polyvinylidene fluoride membranes (ISEQ00010; Merck
Millipore, Billerica, MA, USA). The membranes were blocked
in Quick Block Liquid (P0252; Beyotime Biotechnology) at
room temperature for 15min. The block liquid was eluted
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with Tris-buffered saline containing 0.1% Tween 20 (v/v;
TBST). Subsequently, the membranes were probed with
primary antibodies (ALDOA rabbit polyclonal antibody,
AF6189, 1:10,000 dilution; beta-tubulin rabbit monoclonal
antibody, AF1216, 1:2,000 dilution; Beyotime Biotechnology)
at 4◦C overnight and incubated with the corresponding
secondary antibody [horseradish peroxidase-labeled goat
anti-rabbit IgG (H+L), A0208, 1:5,000 dilution; Beyotime
Biotechnology] at room temperature for 2 h after elution with
TBST. The immunoreactive bands were visualized using the
hypersensitive ECL chemiluminescence kit (P0018S; Beyotime
Biotechnology) and quantified on a Bio-Rad ChemiDoc XRS+
chemiluminescence gel imaging system with the Image Lab
software (Bio-Rad Laboratories, Hercules, CA, USA).

2.11. Immunofluorescence (IF) staining

The paraffin blocks were sectioned and dewaxed. After
antigen retrieval, the sections were incubated by primary
antibody (ALDOA polyclonal antibody, 11217-1-AP, 1:200
dilution; Proteintech, Wuhan, Hubei, China) at 4◦C overnight,
washed three times with phosphate-buffered saline (PBS), and
incubated with the secondary antibody [Goat anti-rabbit IgG
(H+L) Fluor594-conjugated, S0006, 1:500 dilution; Affinity
Biosciences] at room temperature, in the dark, for 1 h. Washed
3 times with PBS, the nuclei were stained using a DAPI
staining kit (KGA215; KeyGEN BioTECH Co., Ltd., Nanjing,
Jiangsu, China) at room temperature, in the dark, for 5min.
Next, the coverslips were mounted with an antifade mounting
solution (Invitrogen, Carlsbad, CA, USA). Finally, sections were
scanned with a digital pathological section scanner (Olympus
VS200, Japan). The OlyVIA software was used to analyze the
observed sections and randomly capture six images of non-
overlapping visual fields at 200× magnification from each
sample. The fluorescence intensity of the positively stained cells
was evaluated with the Image J software (National Institutes
of Health).

2.12. Immunoprecipitation (IP)

IP kit (P2197M; Beyotime Biotechnology) was used to
carry out the IP experiments according to the manufacturer’s
instructions. The protein was extracted from the lung tissue
of mice with a lysis buffer containing protease inhibitor
and deacetylase inhibitor (P1112; Beyotime Biotechnology).
An appropriate amount of protein A+G agarose gel beads
was incubated with the indicated antibody (11217-1-AP;
Proteintech) at 50µg/ml at room temperature for 1 h.
Subsequently, the protein samples were added to the mixture
and incubated at 4◦C overnight. The supernatant was discarded,
and the agarose beads were washed on ice with RIPA lysis buffer.

The resulting immunoprecipitated complexes were denatured
by loading buffer and analyzed by immunoblotting (primary
antibody: pan acetyl-lysine rabbit polyclonal antibody, AF5632,
1:1,000 dilution; Beyotime Biotechnology; secondary antibody:
A0208, 1:5,000 dilution; Beyotime Biotechnology). Next, the
expression of ALDOA was visualized, and the immunoreactive
bands were analyzed as described earlier.

2.13. Statistical analysis

qRT-PCR, WB, and IP were repeated at least three times.
All data were processed using the SPSS software, version 23.0
(Chicago, IL, USA), and the results are presented as mean
± standard error of the mean (mean ± SEM). Two-group
comparisons were analyzed using the Student’s t-test. Wilcoxon
rank-sum test was used to compare the results between the two
groups and the Kruskal-Wallis test to determine the difference
among groups. A p-value < 0.05 indicated a statistically
significant difference.

3. Results

3.1. The lung function of mice treated
with cigarette smoke was impaired

The results of the pulmonary function test showed that
FEV0.1 (1.611 ± 0.0447ml, 0.9469 ± 0.0097ml, p = 0.0001),
FVC (1.757 ± 0.0514ml, 1.349 ± 0.005ml, p = 0.0014),
and FEV0.1/FVC ratio (0.9174 ± 0.0016, 0.7023 ± 0.0056,
p < 0.0001) decreased significantly in the CS group, while
the differences in PEF (40.86 ± 1.815 ml/s, 38.1 ± 1.428
ml/s, p = 0.2969) and airway resistance (Rn; 0.2153 ±

0.0043 cmH2O.s/ml, 0.2589 ± 0.0228 cmH2O.s/ml, p =

0.1337) were not significant, the tissue damping (G; 3.804
± 0.0927 cmH2O.s/ml, 3.227 ± 0.1582 cmH2O.s/ml, p =

0.0345), and tissue elastance (19.65 ± 0.6328 cmH2O.s/ml,
15.97 ± 0.3311 cmH2O.s/ml, p = 0.0068) of the CS
group decreased significantly, indicating airflow restriction and
impairment of lung tissue elasticity in the CS group (Figure 1,
Supplementary Table 1).

3.2. Histopathological changes of lung
tissue in mice treated with cigarette
smoke

H&E staining showed that the alveolar cavities were larger,
part of the alveolar septa were broken, alveolar cavities were
fused, emphysema was formed (Figure 2A), and the MLI was
significantly larger in the lung tissue of mice treated with
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FIGURE 1

Lung function measurement of mice from cigarette smoke treatment group and control group. (A) Forced expiratory volume in 100ms (FEV0.1).

(B) Forced vital capacity (FVC). (C) Ratio of FEV10.1 to FVC. (D) Peak expiratory flow (PEF). (E) Airway resistance (Rn). (F) Tissue damping (G). (G)

Tissue elastance (H). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

cigarette smoke than in the control group (32.12 ± 0.8859µm,
46.3± 0.7706µm, p= 0.0003; Figure 2B).

3.3. Multi-omics associative analysis

3.3.1. Transcriptomics and proteomics
associative analysis

A total of 23,024 transcripts and 6,153 proteins were
quantified in the transcriptome and proteome, respectively.
Out of these, 5,822 genes were quantified at both the
transcriptome and proteome levels. Compared with the control
group, 2,479 differentially expressed genes were defined in
the transcriptome of the cigarette smoke treatment group, of
which 553 were upregulated and 1,926 were downregulated.
A total of 564 differentially expressed proteins were defined

in proteomics, of which 188 were upregulated and 376 were
downregulated (Figure 3A). As mentioned previously, genes
and proteins differentially expressed in at least one omics
were subdivided into eight groups according to the different
trends (Supplementary Table 2). Among these, only 162 genes
were differentially expressed with consistent trends at both the
transcriptome and proteome levels (135 down-down, 27 up-up)
and listed in Table 1 together with the number of genes in each
group. The expression of genes quantified in both transcriptome
and proteome was combined, drawn into a scatter diagram, and
the correlation between the two omics data was calculated (R =

0.53; Figure 3B).
In GO functional enrichment, the differential expression

of transcriptomics and proteomics was mainly concentrated
in groups of unchanged-down, down-down, and unchanged-
up (Figures 3C–E). In the C-C dimension, differentially
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FIGURE 2

Histopathological analysis and morphometry of mouse lung

tissues from cigarette smoke treatment group and control

group. (A) Hematoxylin–eosin staining of mouse lung tissues

from two groups. (B) Mean linear intercept of mice from two

groups. ***p < 0.001.

expressed genes and proteins were enriched in organelle
components, such as mitochondria, especially the respiratory
chain, in the unchanged-down group; the down-down group
was mainly enriched in the components of skeletal muscle;
the unchanged-up group was mainly enriched in lipoprotein
particles and extracellular space (Figure 3C). In the B-P
dimension, differentially expressed genes and proteins in the
unchanged-down group were mainly enriched in the BPs
related to the respiratory electron transport chain (ETC) and
lipid metabolism; in response to infection, development, and
differentiation of skeletal muscle in the down-down group; and
in the biological processes related to lipid metabolism in the
unchanged-up group (Figure 3D). In the M-F dimension, the
differential expression was mainly enriched in the activity of
respiratory chain-related enzymes and binding of related factors
in the unchanged-down group; the binding of skeletal muscle-
related factors in the down-down group; and in the activity
of lipid metabolism-related enzymes and binding of related
factors in the unchanged-up group. Interestingly, we enriched
the pathways related to the activity and binding of peptidase
and endopeptidase in the down-up group, which were related
to proteolysis (Figure 3E).

In KEGG pathway enrichment, the differential expression
of transcriptomics and proteomics were mainly concentrated
in the down-down, unchanged-down, and down-unchanged
groups (Figure 3F). In the down-down and down-unchanged
groups, the pathways related to inflammation and immunity
were mainly enriched, and in the unchanged-down group, the
pathways related to fatty acid and amino acid metabolism,
mitochondrial respiratory electron chain, and nervous system
diseases were enriched. Additionally, we enriched the PPAR
signaling pathway in the up-down group, the hypertrophic
cardiomyopathy (HCM) in the up-unchanged group, the
transcriptional dysregulation in cancer in the down-up group,
and the complement and coagulation cascade in the unchanged-
up group.

3.3.2. Acetylomics analysis

Among all the quantified proteins and acetylation
modification sites, acetylomics identified 444 upregulated
sites of 255 proteins and 89 downregulated sites of 62 proteins
in the cigarette smoke treatment group compared with
the control group (Figure 4A, Supplementary Table 3). The
subcellular structure localization of proteins corresponding
to differentially expressed acetylation modification sites was
mainly the cytoplasm, mitochondria, nucleus, and extracellular
(Figure 4B).

The GO functional enrichment showed that proteins
corresponding to differential acetylation sites were mainly
enriched in the cellular components such as extracellular space,
extracellular matrix (ECM), basement membrane, contractile
fiber, and myofibril; the biological processes related to fatty
acid metabolism, cell respiration, and skeletal muscle; and
the molecular functions of the bindings related to fatty
acid metabolism and the enzymatic activity of acyl-CoA
dehydrogenase (Figures 4C–E).

The KEGG pathway enrichment (Figure 4F) was mainly
enriched in the citrate cycle (TCA cycle), fatty acid metabolism,
amino acid metabolism, ECM-receptor interaction, focal
adhesion, tight junction, and the Pl3k-Akt signaling pathway.

In addition, the protein domain enrichment of proteins
corresponding to differential acetylation sites was mainly
focused on laminin, epidermal growth factor (EGF), myosin,
and acyl-CoA (Figure 4G).

3.3.3. Proteomics and acetylomics associative
analysis

As described earlier, we collected 508 proteins and
annotated them, proteins with high interaction confidence
and “degree” were mainly enriched in pathways, such as
oxidative phosphorylation (OXPHOS), fatty acid degradation,
complement and coagulation cascade, and HCM (Figure 5,
Supplementary Table 4). Interestingly, these four pathways
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FIGURE 3

Transcriptomics and proteomics associative analysis. (A) Number of di�erentially expressed genes and proteins in transcriptome and proteome.

Green means significantly downregulated genes and proteins, orange means significantly upregulated genes and proteins. (B) Scatterplot of

transcript and its corresponding protein expression. The horizontal axis shows the protein expression and the vertical axis shows the transcript

(Continued)
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FIGURE 3 (Continued)

expression (convert to log2 ratio format), the color of the point indicates the density of the point, “R” means the correlation degree between

transcriptome and proteome. (C–E) Transcriptomics and proteomics associative analysis based on GO functional enrichment. The color of the

heat map indicates the p-value transformed by log10 and Z score, the redder color indicates that the enrichment is more significant. (F)

Transcriptomics and proteomics associative analysis based on KEGG pathway enrichment. Similarly, the color of the heat map indicates the

p-value transformed by log10 and z score, and the redder color indicates the more significant enrichment.

TABLE 1 Grouping according to types of di�erence trends between transcriptomics and proteomics.

Group Number of
genes

Gene name

Down-down 135 ALDOA, CYTH4, PADI2, TPM1, IFIT3, PTPN6, TRIM34A,MFAP5, SLC2A4, LPXN, IKZF1,
SPL10, B2M, SP100, STAT2, H2-Q7, BVL, BST2, LSP1, TREX1, S100A4, CORO1A, RNF213,
ADSSL1, ACTN2, AK1, BIN1, PYCARD, STEAP4, ASPN, PLD4, PTPRC, ITGAL, CAP3,MYO1G,
DOCK2, CD74,MNDAL, FMOD, PFKM, TMEM38A, TAP1,MPZ, PYHIN1, SRL, SEPT1, SBSN,
SH3BGR, H2-AB1, H2-AA, CD48, TRIM72, SMYD1, HSPB6,MB,MYOM1, IRGM1, H2-EB1,
TUBB2B, THY1, CSRP3, OBSCN, IFIT1, FSCN1, STFA1, PDLIM3, OAS1A, CALML3,
SERPINB2, CD274, TOP2A, OAS3, STAT1, PGAM2, GVIN1, S100A14, FLNC, GBP2, LDB3,
ANO5, EEF1A2, TPM2,MNDA, TTN, CMYA5, ZBP1, ABCB4, GZMA, ADA, ENO3,MYOM3,
GBP5, IIGP1, TGTP1, PYGM,MZB1,MYBPH, CMA1, ASPRV1, LY6D, FHL3, GBP4,HIST1H1A,
MYH3, PRG2, KLHL41,MYL1, SYPL2, APOBEC2, CKM, RPTN, KRT14, SERPINB12, CASQ1,
ACTN3, PKP1, SERPINB5, ATP2A1,MYL3,MYBPC2, TGM3, TNNT3,MYLPF,MYOZ1,
LGALS7, TNNI2, PVALB,MYOT,MYH4, SPRR3, TNNC2, ACTA1,MYH1,MYH8, and CALM4

Unchanged-down 186

Up-down 5

Down-unchanged 1,782

Up-unchanged 521

Down-up 10

Unchanged-up 141

Up-up 27 FGA, AGT, PMVK, FGG, SERPINA3K, GCLC, FKBP5, PLAT, ORM1, SEC14L4, TXNRD1,
HMOX1, AKR1B8, AHSG, LPL, SERPINA3N, CBR3, LYVE1, TIMP3, QSOX1, LSS, SFTPD,
TCN2, ATP7B, TINAGL1,MMP3, and SERPINA3M

Numbers of genes in each group and genes with consistent differential expression trends (down-down, up-up) were shown in this table. Specific genes in other 6 groups with inconsistent
differential expression trends are listed in Supplementary Table 2.

were also significantly enriched in the associative analysis of

transcriptomics and proteomics. Then, we intersected the
508 proteins with transcriptomics and proteomics data, and
19 genes were differentially expressed in transcriptomics,

proteomics, and acetylomics simultaneously. In all, nine
genes, namely, ENO3, PFKM, ALDOA, ACTN2, FGG,

MYH3, MYH8, MYL1, and TTN, were involved in these
four pathways, while the other 10 genes, namely, ACTA1,
ATP2A1, CKM, CORO1A, EEF1A2, AKR1B8, MB, MYH1,
MYLPF, and STAT1, were not involved in either of the
pathways. Moreover, the associative analysis identified 35
genes differentially expressed in proteomics and acetylomics,
but not in transcriptomics; of these, NDUFS1, NDUFA5,
SDHA, and UQCRB were enriched in the OXPHOS pathway,
while ACADV1, ETFA, HADHB, SUCLA2, ACADM, HADHA,
ACADS, ACAT1, and ACAA2 were enriched in the fatty acid
degradation pathway.

3.4. Single-cell RNA sequencing
(scRNA-seq) analysis

According to the expression of representative biomarkers,
we identified 14 cell subpopulations from scRNA-seq data
(GSE136831; Figures 6A, B) and analyzed the distribution of the
19 genes mentioned in this data set (Supplementary Table 5).
Among these genes, AKR1B8 is not expressed in Homo sapiens.
The results showed that only ALDOA and CORO1A were
differentially expressed in the lungs of COPD patients, which
was consistent with the trend of the difference (downregulated)
of our transcriptome data. In addition, both genes were
downregulated in proteomics and upregulated in acetylomics.
ALDOA was widely expressed in various cell subpopulations
and downregulated in alveolar type 2 cells (AT2), goblet cells,
B lymphocytes (B cell), natural killer cells (NK cells), and
fibroblasts (Fibs; Figure 6C).

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2022.1030644
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gao et al. 10.3389/fmed.2022.1030644

FIGURE 4

Acetylomics analysis. (A) Volcano map of acetylation modification sites di�erentially expressed between cigarette smoke treatment group and

control group. The horizontal axis represents the di�erential expression between two groups (log2 format), and the vertical axis represents the

significance of di�erential expression (p-value, log10 format), red dots represent significantly upregulated modification sites, while blue dots

represent significantly downregulated modification sites. (B) Subcellular structural localization of proteins corresponding to di�erential

acetylation modification sites. (C–E) GO functional enrichment of proteins corresponding to di�erential acetylation modification sites. The size

of the circle represents the number of enriched proteins, and the color of the circle represents the significance of enrichment (p-value). (F)

KEGG pathway enrichment of proteins corresponding to di�erential acetylation modification sites. The size of the circle represents the number

of enriched proteins in each pathway, and the color of the circle represents the significance of enrichment (p-value). (G) Protein domain

enrichment of proteins corresponding to di�erential acetylation modification sites. Similarly, the size of the circle represents the number of

enriched proteins in each domain, and the color of the circle represents the significance of enrichment (p-value).
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FIGURE 5

Proteomics and acetylomics associative analysis. The size of the circle represents the value of degree (number of proteins interacting with

di�erentially expressed proteins), the larger the circle, the higher the degree. The colors of the circle represent up/downregulation in proteome

and modification.

3.5. ALDOA was downregulated and
hyperacetylated in the lung tissue of
COPD mice

The results of qRT-PCR showed that ALODA mRNA
expression in the lung tissue of mice from the COPD group
was significantly downregulated (Figure 7A). Moreover, WB
showed that the protein expression level of ALODA was reduced
in the COPD group (Figure 7B). Consistently, IF showed that
fluorescence staining of ALDOA in the COPD group was
lower than that in the control group (Figure 7C). These results
indicated that ALDOA was downregulated in the lung tissue of

COPD mice. In addition, the calculation of the ratio of gray
values of acetylated ALDOA and ALDOA by IP showed that the
overall acetylation level of ALDOA in the lung tissue of COPD
mice was increased, but not significant (p= 0.186; Figure 7D).

4. Discussion

The results of lung function measurement, H&E staining,
and MLI showed that the model was reliable and credible.
Although 2,479 differential genes and 564 differential proteins
were defined, only 161 of these were differentially expressed
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FIGURE 6

Analysis of scRNA-seq analysis data. (A) Uniform manifold approximation and projection (UMAP) of the distribution of di�erent cell

subpopulations. (B) Expression of classical biomarkers related to 14 cell subpopulations. (C) Distribution and expression of the 19 genes

(Continued)
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FIGURE 6 (Continued)

identified by associative analysis of multi-omics data in 14 cell subpopulations identified by analyzing scRNA-seq data of lung tissue from COPD

patients and healthy humans. The orange violin plots represent the control group of healthy humans, and the green ones represent the group of

patients with COPD. The height of violin plots represents the expression of genes, while the width represents the proportion of cells expressing

these genes in cell subpopulations.

at both the transcriptional and protein levels with a consistent
trend, and the transcriptome and proteome were moderately
correlated (R = 0.53). This phenomenon indicated that there
were some potential regulatory mechanisms that led to an
incomplete correspondence between transcription and protein
expression, while the associative analysis was meaningful.

Transcriptomics and proteomics associative analysis showed
that the differential expression of COPD mice induced by
cigarette smoke was enriched in pathways related to the
mitochondrion, energy metabolism, inflammation, immune
regulation, and skeletal muscle. These pathways were closely
related to COPD and extrapulmonary injury (42–46).

Our acetylomics data showed that the proteins in the lung
tissue of COPD mice were mainly hyperacetylated and enriched
in the pathways related to energy metabolism, mitochondrial
function, ECM, and cell proliferation, and the differential
acetylation sites were mainly distributed in the protein domains,
such as laminin, EGF, and acyl-CoA. Laminin is a kind of non-
collagenous glycoprotein, and polymerization of laminin is a
key step in the basement membrane assembly (47). Basement
membranes are ECMs for cell adhesion and can regulate the
differentiation of cells and the maintenance of tissue structure
(48). ECM is closely related to COPD, and ECM disorder
can lead to lung tissue remodeling and aggravate and advance
disease progression (49). The main components of the basement
membrane include laminins, proteoglycans, and collagens
(especially collagen IV), and EGF can stimulate the synthesis
and secretion of collagen and regulate fibrin. Interestingly, we
also found significant upregulation of acetylation modification
of collagens, such as COL4A2, COL6A1, and COL6A2, in our
acetylomics data and also enriched Pl3k-Akt signaling pathway
through KEGG pathway enrichment. One study showed that
the degradation and formation of collagen increased during
the exacerbation of COPD (50). Another study revealed that
collagen and laminin promote the proliferation, migration, and
adhesion of airway smooth muscle cells in rats with COPD by
upregulating the Pl3k-Akt signaling pathway (51). In addition,
our data also identified the high acetylation modification of
FGG (fibrinogen), which has the potential to predict the risk
of COPD (52). These studies showed that ECMs were involved
in the process of COPD, but whether it was related to their
acetylation difference needs to be investigated further. Acyl-
CoA dehydrogenase short chain (ACADS) may be a risk factor
for COPD (53). Short chain acyl-CoA dehydrogenase (SCAD)
is encoded by ACADS, and ACADS gene variants cause the
mutation of SCAD, leading to mitochondrial damage and

excessive production of reactive oxygen species (ROS) (54,
55). Our acetylomics data showed significant differences in
acetylation modification in ACADS and ACADSB, but not in
acetyl-CoA oxidase (ACOX); similarly, no study has yet assessed
the correlation between ACOX and COPD, indicating that the
differential acetylation of ACADS rather than ACOX may be
involved in COPD.

The two most significant pathways enriched by
proteomics and acetylomics associative analysis were oxidative
phosphorylation (OXPHOS) and fatty acid degradation, both
closely related to the function of the mitochondria. Several
studies have proved that smoking-induced mitochondrial
damage is one of the major mechanisms of COPD. The
main features of mitochondrial damage are a decrease in the
membrane potential and ATP production, excessive production
of ROS, and decreased superoxide dismutase 2 (SOD2) in
the mitochondria, which can cause inflammatory infiltration,
damage to mitophagy, cell aging, and apoptosis (56–58). The
mitochondrial dysfunction also reduced epithelial repair and
corticosteroid responsiveness in the lung epithelium (44).
Inflammatory mediators and ROS can also affect the structure
and function of mitochondria sequentially in a vicious circle
(59). Some studies showed that mitochondria DNA (mtDNA)
in plasma and urine is associated with the severity and clinical
phenotype of COPD (60, 61).

OXPHOS is composed of complexes I–V (CI–CV),
which can form supercomplexes (SCs), such as the SC
I+III2+IV, respirasome (62). Complex I (NADH-ubiquinone
oxidoreductase) is essential for OXPHOS, participates in
electron transfer and membrane potential generation, and
provides electrons for respiration and ATP synthesis (63).
Complex II consists of four subunits of SDHA-D, and studies
have shown that complex II can directly and indirectly (during
the reverse electron transfer [RET] through CI) participate in
the generation of ROS (64–66); however, some other studies
have shown that the loss of CII function increases the ROS
(67, 68). Complex III (ubiquinol-cytochrome c oxidoreductase)
also produces ROS (69). Most forms of SCs contain CIII,
which, in turn, reduces the ROS formation at CI (62, 70), while
the functional defect of CIII can reduce the stability of CI,
CIV, and SCs and is related to the increase in ROS (71). The
regulatory relationship between CIII and ROS is inconsistent,
similar to CII. A previous study showed that nicotine inhibits
myofibroblast through CIII with increased MitoROS, resulting
in dysregulated repair during injurious responses (72). Complex
IV (cytochrome c oxidase, COX) is the regulatory center of
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FIGURE 7

In vivo experimental verification of ALDOA. (A) The mRNA level of ALDOA in COPD mice lung tissue determined by qRT-PCR. (B) The protein

expression level of ALDOA in lung tissue of mice with COPD determined and quantified by Western blot analysis. (C) IF staining of lung of COPD

mice at 200× magnification, and the density quantified with Image J. (D) The acetylation level of ALDOA in lung tissue of mice with COPD

determined and quantified by IP. *P < 0.05, **P < 0.01.
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OXPHOS that can transfer reducing equivalents derived from
CI or CII to free energy of oxidation through CIII and release
electrochemical potential. This energy is used by the ATP
synthase (CV) to synthesize ATP, and in turn, OXPHOS will
be inhibited at a high ATP/ADP ratio (73). Moreover, COX
is regulated by hypoxia (74) and isoforms of supernumerary
subunits (75). Cloonan et al. showed that sustained expression
of IRP2 increased the activity and expression of COX in the
lung of mice, which led to mitochondrial dysfunction and
the formation of COPD; thus, COX may be decisive for the
regulation of mitochondrial iron in response to CS (76). In
addition, complexes of the ETC also have different regulatory
effects in immunity (77). Our proteomics and acetylomics
associative analysis revealed the extensive differential expression
of OXPHOS (mainly downregulation) and the differentially
expressed acetylation modification in CI (NDUFS1, NDUFA5,
and ACAD9), CII (SDHA), CIII (UQCRB and UQCRC1),
CIV (COX5B and COX6B1), CV (ATP5F1, ATP5F1A, and
ATP5F1D), and ATP synthase inhibitor, such as ATP5IF1. This
finding suggested that the differential acetylation modification
might play a critical role in the lung injury of COPD induced by
cigarette smoke, althoughmost of the OXPHOS-related proteins
were not differentially expressed in our transcriptome data.

Fatty acid degradation is also closely related to
mitochondria, and activated fatty acids can only be oxidized
inside mitochondria and generate acetyl-coenzyme A. COPD
can be accompanied by an imbalance of fatty acid metabolism
in the lung, and metabolic reprogramming can also provide
a feedback loop and regulate the progress of COPD; for
example, by promoting inflammation and airway smooth
muscle cell (ASMC) hyperplasia (43, 45, 78). Our proteomics
and acetylomics associative analysis found extensive differential
acetylation modification in the fatty acid degradation pathway,
indicating that protein acetylation modification contributes
to the interaction between fatty acid degradation and COPD.
Among these, ENO3 and PFKM were differentially expressed
in the three levels of transcription, protein, and acetylation.
Nonetheless, we did not find any relevant study on the
correlation between these two genes and COPD, although one
study showed that ENO3 might be involved in lung injury
caused by zinc chloride smoke (79).

Briefly, cigarette smoke can cause differential acetylation
modification of proteins related to OXPHOS and fatty acid
degradation, damage the electron transmission of the respiratory
chain, and synthesize ATP, leading to the dysfunction of
mitochondria of lung cells and promoting the formation and
progress of COPD through a series of mechanisms as described
earlier. Moreover, Zhang et al. and Guan et al. showed that
SIRT3 and SIRT1 regulate the function of mitochondria of
lung cells and inhibit oxidative stress, cell aging, apoptosis,
and airway remodeling to reduce the lung injury of COPD
induced by cigarette smoke (80, 81). Thus, regulating the
acetylation modification sites of OXPHOS and fatty acid

degradation-related proteins in this study may become a
potential method of treating COPD.

Aldolase A (ALDOA) is a key enzyme of glycolysis,
which can regulate metabolism and proliferation and is
associated with the progression, immune infiltration, and
prognosis of a variety of cancers, including lung cancer (82–
84). ALDOA may be a biomarker to distinguish between
lung cancer and COPD (85). Bai et al. revealed that ALDOA
could limit mitochondrial autophagy and maintain NLRP3
inflammasome activity by controlling AMPK activation, leading
to mitochondrial damage and inflammatory infiltration (86).
This study showed that ALDOA was downregulated in the lung
tissue of COPD; this might be a feedback regulation mechanism
for mitochondrial damage and inflammation caused by cigarette
smoke. Concurrently, both the omics data and the experimental
verification results showed that the downregulation of ALDOA
protein was not as obvious as at the transcriptional level,
which might be insufficient to offset the inflammation and
mitochondrial damage in the lung of COPD. Our acetylomics
data showed that four lysine sites of ALDOA in the lung
tissue of COPD mice were significantly hyperacetylated (147K,
log2 = 0.7338; 230K, log2 = 0.5499; 14K, log2 = 0.4957;
42K, log2 = 0.4478). Consistently, IP showed that the
proportion of acetylated ALDOA in the lung tissue of COPD
mice was increased, although the results were not statistically
significant. The phenomenon is not contradictory, and IP
reflects the overall acetylation level of protein but cannot
accurately measure the acetylation modification of each lysine
site as LC-MS/MS. Nonetheless, hyperacetylation may affect
the expression, structure, and function of ALDOA, which
needs further exploration. Zhou et al. study showed that
SIRT2 inhibition promoted the protein degradation of ALDOA
(87), which supported our hypothesis, although whether this
regulation was caused by the hyperacetylation of ALDOA

directly caused by SIRT2 inhibition is yet to be clarified.
Nevertheless, the present study has some limitations.

Multi-omics associative analyses of data of transcriptomics,
proteomics, acetylomics, and scRNA-seq verified the differential
expression of ALDOA in the lung tissue of COPD mice via

in vivo qRT-PCR, WB, IF, and IP; however, the in vitro

experiments are yet lacking. Therefore, an in-depth insight into
the molecular and pathway mechanisms of COPD is required in
the near future.

5. Conclusion

We carried out the multi-omics associative analysis of
transcriptomics, proteomics, and acetylomics. The results
proved that protein acetylation modification plays a critical
role in the lungs of COPD mice and is mainly related
to mitochondrial function and energy metabolism. We also
identified some acetylated differentially expressed proteins
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related to COPD, such as ALDOA. Next, we preliminarily
verified these genes by scRNA-seq analysis and understood
their differential expression in the lung tissues of patients with
COPD. Finally, we conducted an in vivo verification of the
ALDOA expression in the lung tissue of COPD mice. These
results suggested that the downregulation and hyperacetylation
of ALDOA may be breakthrough points in the study of
COPD. Moreover, our study showed that gene transcription
and protein are not simple correspondences. Although there
were some limitations, this study verified some previous
findings and obtained new results. This finding indicated
that multi-omics associative analysis has a unique efficacy in
generating a new understanding of the classical mechanisms
of diseases and identifying novel potential diagnostic and
therapeutic targets through different data integration methods
from traditional bioinformatics.
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