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Evidence linking abnormalities in thiamine (vitamin B1) availability and metabolism

to the pathophysiology of Alzheimer’s Disease (AD) has focused attention on the

regulation of thiamine as a therapeutic target. A recently completed pilot clinical trial

in AD patients revealed that increasing blood thiamine to pharmacologically high levels

using benfotiamine has potential efficacy in treating persons with early AD. These

results support the underlying hypothesis that thiamine insufficiency promotes AD and

is a druggable target. A mechanistic understanding of thiamine’s cellular actions and

improved methods to deliver thiamine to the brain are fundamental to optimize the

use thiamine homeostasis as a target of engagement. Benfotiamine has a therapeutic

product profile in AD that includes raising blood thiamine to pharmacologically high

levels, with excellent safety and potential for clinical efficacy. It is a potentially widely

available treatment.

GRAPHICAL ABSTRACT

Summary of the study.
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The role of thiamine in memory/cognition and as the

cause of the brain and memory disorder Wernicke-Korsakoff

syndrome (WKS) has been well known since the 1930’s (1), and

data support a role in AD (2). Multiple batteries of memory

tests demonstrate clinical similarities of AD and WKS (2).

The activities of thiamine dependent enzymes are reduced in

the brains of WKS patients (3) and in patients with AD (4,

5). Generally, the reductions in activities are not related to

abundance in protein levels of relevant enzymes. This suggests

that there is likely to be adequate enzyme, but inadequate

thiamine availability (4, 6). We do not regard AD as WKS (e.g.,

the thiamine deficiency in WKS is caused by excessive alcohol

intake). However, Wernicke syndrome with similar symptoms

caused by thiamine deficiency is not necessarily associated

with alcohol (7). Nevertheless, evidence suggests that there are

mechanisms that may be involved in both diseases, and that

thiamine deficiency is surprisingly common, particularly in the

elderly, as reviewed below.

Experiments with thiamine deficient rodents support the

hypothesis that thiamine is important in AD. Thiamine

deficiency in normal and transgenic rodent models of AD

leads to multiple AD like changes including: decreased brain

glucose utilization (8), increased inflammation (9) and neuron

loss (10), diminished cholinergic function (11) and exacerbated

formation of plaques and tangles (12). Thiamine can prevent

injury in Wernicke’s syndrome, WKS and in animal models if

thiamine is given before damage is irreversible (13). As discussed

below, these observations stimulated studies to test whether

pharmacologically high thiamine levels are beneficial in animal

models of AD and/or in AD.

Brain thiamine deficiency can exist without nutritional

thiamine deficits. Assessing thiamine status is difficult because

individuals’ requirements differ (14). The best method to

assess thiamine status with blood measures is to determine

the concentrations of thiamine, thiamine pyrophosphate (TPP)

and thiamine monophosphate, as well as the TPP effect on

transketolase activity (15–17). In tissues, activities transketolase

and α-ketoglutarate dehydrogenase are good markers of

thiamine status (13, 18). Multiple conditions can alter thiamine

transport to the brain or its utilization or mobilization in

or between cellular compartments without altering blood

thiamine status. Conditions leading to tissue-level thiamine

deficiency were the topics of a recent volume (19) and include:

reduced thiamine intake (e.g., diet, gluten free diets, dialysis,

celiac disease, bariatric surgery, excessive vomiting), increased

thiamine excretion (e.g., diabetes), altered ability to use thiamine

caused by at least 30 drugs, genetics (e.g., mutations in organic

cation transporter 1 modulates multiple cardiometabolic traits

through effects on thiamine content), and virus’s (e.g., feline

leukemia virus inhibits the thiamine transporter) (20) and

liver cirrhosis (21). Indeed, the thiamine transporter declines

with AD (22). High peripheral thiamine can overcome these

abnormalities by increasing tissue thiamine availability.

Thiamine has many actions. TPP’s critical role as a

cofactor in key enzymes of the brain energy metabolism

including transketolase (controls the pentose shunt), the

pyruvate dehydrogenase complex [PDHC, links glycolysis to

the tricarboxylic acid cycle (TCA)] and alpha ketoglutarate

dehydrogenase complex (KGDHC, controls the TCA cycle) has

been known for decades. Thiamine has many other actions

including acting as an antioxidant, an anti-inflammatory,

as a regulator of transcription etc. The non-coenzyme

regulatory binding of thiamine and its esters has been

demonstrated for the transcriptional regulator p53, poly(ADP-

ribose) polymerase, prion protein PRNP, and a number of key

metabolic enzymes that do not use TPP as a coenzyme (23, 24).

The accumulated data indicate that the molecular mechanisms

of the neurotropic action of thiamine are more complex than

originally believed (24).

Optimal methods to increase brain thiamine. These

observations stimulated trials of high-dose thiamine in AD in

the 1990’s (25, 26). While these trials were underpowered with a

small number of patients they suggested some beneficial effects

of high-dose thiamine (27). However, sustained higher thiamine

levels cannot be achieved with thiamine in its usual preparations

and the failure of thiamine treatment in previous studies

can potentially be attributed to limitations of bioavailability.

Pharmacokinetic and pharmacodynamic studies in humans and

animals show that thiamine prodrugs such, as fursultiamine and

benfotiamine, increase thiamine bioavailabilitymuch better than

thiamine (28, 29). In an animal model of plaques, benfotiamine

and fursultiamine increased blood thiamine about 150 and 50

times, respectively, and both elevate TMP and TDP about five-

fold. While brain thiamine doubled, brain TMP and TPP were

not altered. In the P301S mouse model of tangle formation,

benfotiamine dramatically increased blood and liver thiamine

with only modest effects in brain (about 20%) (30). In a

Streptozotocin (STZ) model of AD, benfotiamine increased

brain TPP about 50% (31).

Thiamine alters neurofilaments, a characteristic feature

of AD. In non-transgenic mice, thiamine deficiency causes

accumulation of neuritic clusters containing neurofilaments

(10, 32, 33). In APP/PS1 transgenic mice, the thiamine

deficiency induced abnormalities in neurites co-localized with

APP-like protein and neurofilament (12). Thiamine deficiency

induces a loss of axonal brain neurofilaments (34, 35).

Benfotiamine/thiamine reverses the abnormal neurofilaments

and neurites in tangles (30) or plaques (36).

Plaque formation is sensitive to thiamine levels in animal

models. Thiamine deficiency exacerbates amyloid plaque

pathology in Tg19959 transgenic mice, which over express a

double mutant form of the amyloid precursor protein-APP.

The area occupied by plaques in the cortex, hippocampus,

and thalamus is enlarged by 50, 200, and 200%, respectively.

Thiamine deficiency increases amyloid beta peptide1-42 levels

by about three-fold and beta-secretase protein levels by 43%

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1033272
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gibson et al. 10.3389/fmed.2022.1033272

(12). Genetically reducing the thiamine dependent KGDHC by

one half increases amyloid beta peptide and promotes plaque

formation in mice (37). KGDHC dependent succinylation

blocks alpha secretase and this block promotes Aβ42 plaque

formation and amyloid beta aggregation (38). Free radical

production due to reduced KGDHC activates beta secretase

(37). The most compelling evidence of thiamine’s role in plaque

formation is that benfotiamine reduces plaque formation and

improves memory in transgenic mice in a dose dependent

manner (36).

Total tau and tau phosphorylation are sensitive to thiamine

levels. Thiamine deficient humans with WKS syndrome have

tangles (39, 40). In mice, thiamine deficiency increases

phosphorylation of tau (12). Treatment with benfotiamine,

diminishes phosphorylation of tau. This has been demonstrated

in at least three different animal models of AD. Benfotiamine

diminished the phosphorylation of tau in amousemodel bearing

mutant human APP (33). In a mouse model of tangle formation

(P301S), benfotiamine dose-dependently diminishes tangles

(30), and improves behavioral outcomes (30, 36). Furthermore,

a decline in transketolase activity in the P301S mice suggests

that the brains of these transgenic mice are significantly

thiamine deficient (30). This was rather surprising since tangles

in these models are associated with this tau gene exon 10

mutation. Benfotiamine and diminishes phosphorylation of tau

in the hippocampus in the streptozotocin (STZ) model of

AD (31).

Compelling data links Advanced Glycation Endproducts

(AGE) modifications to AD. AGE, also referred to as

glycotoxins, are a diverse group of permanent carbohydrate

modifications. They are created by the chemical addition of

carbohydrates to proteins and lipids when glucose levels are

not controlled in the cell (41, 42), a known risk factor for AD

(43, 44). As AGE is persistent, AGE production is particularly

problematic in the brain due to its slow protein turnover leading

to accumulation of these toxins over the lifespan (45, 46).

Further, there is a large group of crosslinking AGE which can

form intra and inter-protein connections aggregating proteins

(47), a hallmark of AD.

Elevated AGE and their receptor, RAGE, occur in the brain

and periphery of AD patients and are found in both plaques and

tangles (48–53). High concentrations of AGE are predictive of

long-term decline in cognition-related daily living performance

in patients with AD as measured by clinical dementia rating

(CDR) or mini-mental status exam (MMSE) (40). Some AGE,

such as pentosidine, a cross-linking AGE, have been shown

to correlate with cognitive functioning in healthy individuals

(53, 54). AGE have also been linked to APOE genotype, with

APOE4 carriers holding greater AGE compared to APOE3

carriers, and the APOE4 molecule binding with greater affinity

to AGE (55–59).

AGE are sensitive to thiamine deficiency and

supplementation. Thiamine deficiency increases AGE, whereas

elevating thiamine diminishes AGEs (60, 61). Even marginal

thiamine deficiency increases AGE (61). Benfotiamine/thiamine

diminishes AGE. The thiamine dependent enzyme transketolase

can be activated by thiamine to reduce AGE (62). The

activation of transketolase accelerates the precursors of AGEs

toward the pentose phosphate pathway thereby reducing the

production of AGE including carboxymethyllysine (CML)

and pentosidine (63). In addition to activating transketolase,

thiamine increases transcription of transketolase (64). A second

well-established pathway for thiamine to diminish AGE is

through the increased expression of the enzymes involved

in the glyoxalase system, particularly glyoxalase 1 (GLO-1),

which breaks down AGE precursors, primarily methylglyoxal

(65). Since AGE including MG-H1 and carboxyethllysine

(CEL) can be produced from methylglyoxal, the reduction

in methylglyoxal by benfotiamine, reduces the AGE that are

produced by this pathway. The most compelling evidence

that interactions are potentially important to AD is that

benfotiamine diminished AGE in parallel with encouraging

clinical outcomes (66).

Thiamine also affects inflammation and microglial

activity. Thiamine deficiency promotes inflammation whereas

thiamine/benfotiamine diminish inflammation. Thiamine

deficiency activates microglia (67, 68). Thiamine deficiency

increases glial fibrillary acidic protein (GFAP) and inflammation

in parallel with neuronal loss (33). Astrocytes as measured by

GFAP are amajor target of thiamine deficiency (9, 12). Thiamine

deficiency in APP mutant mice increases GFAP expression and

this parallels plaque formation (12) and dramatically increases

brain p53 levels. Pro-inflammatory cytokines inhibit thiamine

uptake (69). Thiamine/benfotiamine diminishes GFAP. In the

STZ model of AD, benfotiamine reverses the inflammation,

diminishes GFAP, and is protective (28). The action of thiamine

as an anti-inflammatory factor has an important effect and

has been shown to inhibit p53 intracellular activity, during

re-replication and apoptosis (70). Thiamine’s connection

to inflammation is demonstrated by 12,500 references in

google scholar.

These results stimulated a single site blinded Phase 2a

randomized placebo-controlled pilot trial of benfotiamine to

provide preliminary evidence of feasibility, safety, and efficacy.

The trial tested whether a twelve-month treatment with

benfotiamine would delay clinical decline in amyloid positron

emission tomography (PET)- positive patients with amnestic

mild cognitive impairment MCI (MMSE ≥ 26) or mild AD

(26>MMSE>21) compared to placebo (52). The primary

clinical outcome was Alzheimer’s Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog-11) and secondary outcomes

were the clinical dementia rating (CDR) score and brain glucose

uptake measured by fluorodeoxyglucose (FDG)-PET. The trial

showed that benfotiamine at a dose of 600mg per day is safe

and very well tolerated in patients with early AD. The treatment

delivery achieved a 161-fold mean increase in blood thiamine.
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In the intent to treat population(ITT), the benfotiamine arm

showed 43% reduction in the ADAS -Cog decline of the placebo

group (p= 0.125), with a larger effect size in the CDR where the

benfotiamine arm was 79.2% less than the decline in the placebo

arm (P = 0.0129) (66).

Plasma measures from study participants revealed multiple

metabolites/lipids as novel potential biomarkers that might

be pharmacologically responsive to benfotiamine treatment.

Two dozen biomarker candidates including thiamine, tyrosine,

tryptophan, lysine, and 22 lipid species, mostly belonging to

phosphatidylcholines reflected reversal of changes related to AD

progression. The results suggest potential mechanistic pathways

that underlie the benefit of benfotiamine in AD (71).

These encouraging results indicate the need for further

research into the cellular mechanisms to optimize the treatment

response as well as moving benfotiamine treatment into testing

in larger, multicenter Proof of Concept clinical trials.
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