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A training dataset that is limited to a specific endoscope model can overfit

artificial intelligence (AI) to its unique image characteristics. The performance

of the AI may degrade in images of di�erent endoscope model. The domain

adaptation algorithm, i.e., the cycle-consistent adversarial network (cycleGAN),

can transform the image characteristics into AI-friendly styles. We attempted

to confirm the performance degradation of AIs in images of various endoscope

models and aimed to improve them using cycleGAN transformation. Two

AI models were developed from data of esophagogastroduodenoscopies

collected retrospectively over 5 years: one for identifying the endoscope

models, Olympus CV-260SL, CV-290 (Olympus, Tokyo, Japan), and PENTAX

EPK-i (PENTAX Medical, Tokyo, Japan), and the other for recognizing

the esophagogastric junction (EGJ). The AIs were trained using 45,683

standardized images from 1,498 cases and validated on 624 separate cases.

Between the two endoscope manufacturers, there was a di�erence in

image characteristics that could be distinguished without error by AI. The

accuracy of the AI in recognizing gastroesophageal junction was >0.979

in the same endoscope-examined validation dataset as the training dataset.

However, they deteriorated in datasets from di�erent endoscopes. Cycle-

consistent adversarial network can successfully convert image characteristics

to ameliorate the AI performance. The improvements were statistically

significant and greater in datasets from di�erent endoscope manufacturers

[original → AI-trained style, increased area under the receiver operating

characteristic (ROC) curve, P-value: CV-260SL→ CV-290, 0.0056, P = 0.0106;

CV-260SL → EPK-i, 0.0182, P = 0.0158; CV-290 → CV-260SL, 0.0134, P <

0.0001; CV-290 → EPK-i, 0.0299, P = 0.0001; EPK-i → CV-260SL, 0.0215,
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P = 0.0024; and EPK-i → CV-290, 0.0616, P < 0.0001]. In conclusion,

cycleGAN can transform the diverse image characteristics of endoscope

models into an AI-trained style to improve the detection performance of AI.

KEYWORDS

endoscopes, artificial intelligence, deep learning, generative adversarial network,

domain adaptation algorithm

1. Introduction

Deep learning (DL) technology has significantly improved

the image recognition capabilities of artificial intelligence

(AI) (1). Moreover, lesion detection in endoscopic images

using DL-based AI has exhibited remarkable results (2, 3).

However, AI performance is significantly influenced by the

nature of the data it was trained on. Each endoscopic

image exhibits distinct characteristics determined by the

endoscope model (4). The unique image properties further

affect AI performance. Several previously developed AIs

have been studied using images from a limited number of

endoscope models (5–7). If the nature of the dataset used

to validate the performance of the AI differs from that

of the training dataset, it may cause errors (8). Therefore,

outstanding performance may be degraded in images from

other endoscope models. To develop practical AIs that can

be applied generally, whether the image characteristics of

various endoscope models that are not trained for AI affect

performance should be investigated. Furthermore, the technical

methods should be evaluated to overcome the identified

performance degradation.

Deep learning-based domain adaptation algorithms,

including cycle-consistent adversarial networks (CycleGAN),

can interconvert the different image characteristics (9).

This can be used to transform images into AI-trained styles

and improve detection performance. The esophagogastric

junction (EGJ) is a recommended site to be pictured

during esophagogastroduodenoscopy (EGD) in clinical

guidelines and is important for the diagnosis of reflux

esophagitis or Barrett’s esophagus (10, 11). In addition,

the imaging characteristics of the squamous epithelium of

the esophagus and columnar epithelium of the stomach

appear together in pictures of the EGJ, which is crucial for

AI development.

In the present study, we constructed EGD datasets for

three different endoscope models. We checked whether

AI can distinguish the models and investigated whether

the image characteristics of the models influenced the

EGJ detection performance of AI. Additionally, we

determined whether this could be corrected using a domain

adaptation algorithm.

2. Materials and methods

2.1. Collecting endoscopic images

We retrospectively collected cases of EGD performed

betweenNovember 2015 andDecember 2020 at Soonchunhyang

University Hospital, Seoul. The procedures were pictured using

three endoscopic video processors: Olympus CV-260SL, CV-

290 (Olympus, Tokyo, Japan), and PENTAX EPK-i (PENTAX

Medical, Tokyo, Japan), each equipped with an exclusive

endoscope. The other hardware and software involved in the

image capture and storage of these examinations were identical

and not involved in the image characteristics. The images were

captured using a Matrox VIO 7 IA OA/G capture card (Matrox,

Quebec, Canada) by duplication of the digital high-definition

monitor output (1,920× 1,080 pixels) from the video processors

and then stored in a digital imaging and communication in

medicine (DICOM)-compatible format in a picture archiving

and communication system (PACS).

The images stored in the PACS were extracted in Portable

Network Graphics format, which supports full-color lossless

data compression for AI training. The small border of the

endoscopic field was cropped, whereas the images’ subjects were

retained. Finally, the images were standardized as octagonal

images with a size of 512 × 512 pixels without losing their

inherent characteristics, e.g., color, sharpness, and proportion

(Figure 1). All images were anonymized, and the subsequent

analysis protocols were approved by the local ethics committee

of the Institutional Review Board (IRB, Soonchunhyang

University Hospital, Seoul; No. 2020-05-010).

2.2. Experimental setting

Three nationally certified gastrointestinal endoscopy experts

reviewed all cases and classified all images according to the

video processor of the endoscope model in which they were

captured. For accurate image classification, they referenced the

part of the image containing the endoscope model information

cropped during the standardization process. The images were

labeled as o260, o290, and pEPK for Olympus CV-260SL,

Olympus CV-290, and PENTAX EPK-i, respectively. Images
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FIGURE 1

Flowchart of the present study. The images extracted from the original were distributed to the training and validation datasets at a ratio of 8:2

after the standardization process was completed. The AIs were trained using the training dataset and verified in the validation dataset and its

transformed images using cycleGAN to obtain the characteristics of other endoscope models. o260, Olympus CV-260SL; o290, Olympus

CV-290; pEPK, PENTAX EPK-i; AI, artificial intelligence; EGJ, esophagogastric junction; GAN, generative adversarial network.

whose characteristics were artificially modified using the image

enhancement function, such as Olympus narrow band imaging

(NBI) or PENTAX i-scan, were excluded from the study. Among

the images of the lower esophagus, those expressing the Z-

line of the epithelial squamocolumnar junction were labeled as

EGJ images based on mutual agreement of the endoscopists.
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FIGURE 2

Network architectures used in the experiments. (A) Network architecture of E�cientNet (12). E�cientNet was trained to discriminate endoscope

models and classify EGJ images for each model separately. (B) Network architecture of CycleGAN (9). CycleGAN was trained to transform

images from a specific endoscope model to the others. MBConv, inverted linear BottleNeck layer with depth-wise separable convolution; BN,

batch normalization; FC, fully connected layer; Conv, convolution; GAP, global average pooling; EGJ, esophagogastric junction; GAN,

generative adversarial network.

Moreover, the findings of reflux esophagitis including the Los

Angeles classification and varices that can be visually confirmed

on EGJ images were recorded by the endoscopists.

After the standardization process, the images were randomly

extracted by case to include a similar number of EGJ images

when classified by each endoscope model. The images were

distributed in an approximately 8:2 ratio such that no cases

intersected with one another and were classified into training

and validation datasets, respectively. Two types of AI were

developed to distinguish the endoscope model used for imaging

and determine whether they were EGJ images using the training

dataset. An AI that discriminates the endoscope models was

trained using the entire training dataset; it labeled the images

into three classes according to the endoscope models. Another

AI to detect EGJ images was independently optimized for

the three different endoscope models by training a separate

dataset for each endoscope model. All AIs were based on the

EfficientNet-B0 model (Figure 2A), which has been proven to

be efficient and accurate (12). The pre-trained model using

ImageNet was incorporated as an initial parameter. The size of

an input image for EfficientNet was 224× 224 pixels. Stochastic

gradient descent was used for training with 0.05 learning rate,

0.9 of momentum, and 1e−4 of weight decay. Cross-entropy loss

was used to solve the classification problem. The best model to

show the highest accuracy for the validation dataset was selected

as the final model during 200 epochs.

Computational processes were implemented using a

workstation with NVIDIA RTX2080 (NVIDIA, CA, USA) cards

and 8-GB memory. The image characteristics of each endoscope

model for the cycleGAN transformation were instructed using

the same training dataset (Figure 2B), and the images of the

validation dataset were restyled to have the characteristics of the

two models that differed from those of the original (9). The size

of an input image for cycleGAN was 256 × 256 pixels. Adam

optimizer was used for training with a 0.0002 learning rate.

Given there is no ground truth for evaluating the performance
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TABLE 1 Clinical characteristics of randomly distributed case.

Case

(Image)

Endoscope
model

o260 o290 pEPK

Dataset Training Validation Training Validation Training Validation

Total
595

(15,229)

236

(3,808)

507

(15,229)

174

(3,808)

456

(15,225)

192

(3,806)

Sex

Male
333

(8,633)

132

(2,125)

275

(8,108)

131

(2,893)

215

(7,364)

104

(2,118)

Female
262

(6,596)

104

(1,683)

232

(7,121)

43

(915)

241

(7,861)

88

(1,688)

Age at endoscopy

(years, mean±SD)
49.6±12.5 49.8±12.2 58.7±14.4 56.0±13.2 57.7±12.1 57.9±12.5

Clinical feature of EGJ

Normal
491

(895)

190

(218)

392

(851)

8

(10)

335

(756)

139

(193)

Reflux esophagitis

LA-A
75

(168)

39

(57)

85

(241)

88

(143)

94

(256)

41

(63)

LA-B
24

(65)

7

(10)

27

(78)

62

(115)

21

(87)

10

(24)

LA-C
4

(8)

0

(0)

3

(21)

10

(21)

4

(14)

2

(1)

LA-D
1

(2)

0

(0)

0

(0)

6

(9)

2

(10)

0

(0)

Esophageal varix
2

(5)

0

(0)

3

(10)

3

(6)

4

(11)

2

(4)

o260, Olympus CV-260SL; o290, Olympus CV-290; pEPK, PENTAX EPK-i; EGJ, esophagogastric junction; SD, standard deviation; LA, Los Angeles classification.

of image transformation, the final model was determined after

training of 200 epochs. The endoscopists reviewed all the images

to ensure that the EGJ images were correctly identified, even in

the converted images.

The AI distinguished the endoscope model, in which a

picture was validated with the highest softmax value for top-

1 accuracy. Another AI representing the probabilities of EGJ

images was validated with a binary classification threshold of 0.5

in both the validation set and those of cycleGAN-transformed

images. To qualitatively evaluate the mechanism of action of

EGJ recognition by the AI, a class activation map was created

on the regions corresponding to the EGJ and endoscopy experts

confirmed that it was recognized as intended (13).

2.3. Statistical analysis

Artificial intelligence performances were evaluated

numerically based on accuracy and F1-scores and calculated

using SPSS (IBM SPSS Statistics for Windows, version 26.0;

IBM Corp., Armonk, NY, USA) software. They were compared

statistically through receiver operating characteristic (ROC)

curve comparisons of DeLong’s test using MedCalc software

(MedCalc, version 20.100; MedCalc Software Ltd., Ostend,

Belgium) (14). Statistical significance was set at P < 0.05.

3. Results

The results of 6,358 examinations in total were collected, and

2,160 cases were randomized for AI development and validation

(Table 1). The mean age of patients at the time of endoscopy was

54.7 years; 970 patients were women. Furthermore, 831 cases

were examined using Olympus CV-260SL and comprised 19,037

images, of which 1,423 were EGJ images. Additionally, 681

cases from Olympus CV-290 yielded 19,037 images, including

1,489 EGJ images. In 648 PENTAX EPK-i cases, 1,404 of

the 19,031 images were labeled as EGJ images. Among the

selected cases, 605 patients had reflux esophagitis and 14 had

esophageal varices.

Artificial intelligence for endoscope model discrimination

distinguished the PENTAX EPK-i model images from those of

the Olympusmodel images without faults. The AI showed errors
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in predicting 93 images of the o290 dataset as those of the o260

dataset and 14 of the o260 as o290. The top-1 accuracy of the

AI was 0.991, and the F1-scores for the o260, o290, and pEPK

values were 0.986, 0.986, and 1.000, respectively. The areas under

receiver operating characteristic curves (AUROCs) for model

prediction were 0.998, 0.999, and 1.000 for the o260, o290, and

pEPK models, respectively (Figure 3).

Three AIs that recognized the EGJ were created and named

AI-o260, AI-o290, and AI-pEPK after the optimized endoscope

models. All AIs exhibited the highest accuracy and F1-score

for the images of the validation set pictured with the same

endoscope model as that used to obtain the trained images. The

AI-o260 recognized 285 EGJ images of the o260 validation set

with an accuracy of 0.988, and the F1-score was 0.917 (Table 2).

The AI-o290 exhibited an accuracy of 0.979 in identifying

the images of the o290 set, and the F1-score was 0.877. The

accuracy of AI-pEPK for the validation set of pEPK and F1-

score were 0.986 and 0.906, respectively. The AIs exhibited worse

performance on other validation datasets that were pictured

with an endoscope model different from that of the training set

(Figure 4). Comparing the AUROC of each AI, all differences

were statistically significant, except for the results of AI-o260 and

AI-o290 on the o260 dataset.

There was no change in the labeling of the EGJ images

after transforming the original three datasets to have

the characteristics of the other two endoscope models.

Esophagogastric junction-recognition AIs were presumed to

recognize EGJ by identifying the epithelial squamocolumnar

junction’s boundary line (Figure 5). Esophagogastric junction

recognition AIs exhibited higher AUROC values in the

transformed images, similar to the characteristics of their trained

images (Table 2). All improvements were statistically significant

(Figure 6). AI-o290 showed an AUROC improvement of

0.0056 (P = 0.0106) in the converted o260 dataset with o290

characteristics, and AI-pEPK exhibited an improvement of

0.0182 (P = 0.0158) in the converted o260 dataset, such as

pEPK images. Compared with the values in the original images

of the o290 dataset, the AUROC values of AI-o260 and AI-pEPK

were 0.0134 (P < 0.0001) and 0.0299 (P = 0.0001) in the

transformed images with the characteristics of o260 or pEPK,

respectively. When the pEPK dataset was changed to fit the

o260 and o290 characteristics, the improved AUROC values

for AI-o260 and AI-o290 were 0.0215 (P = 0.0024) and 0.0616

(P < 0.0001), respectively.

4. Discussion

Endoscopic examinations are recorded using photographs

of specific compartments in accordance with the recommended

guidelines and additional detailed observations of the detected

lesions. Images are captured using several established devices.

Everything regarding the hardware, including light sources,

FIGURE 3

Performance of endoscope model discrimination AI. ROC curve

of (A) o260, (B) o290, and (C) pEPK model discrimination. The AI

predicting the endoscope model that captured the images, had

errors in determining (A) 93 images in the o260 dataset set were

pictured with an Olympus CV-290 and (B) 14 images in the o290

dataset were taken with an Olympus CV-260SL. (C) It

successfully determined all the pEPK dataset images captured

with PENTAX EPK-i. o260, Olympus CV-260SL; o290, Olympus

CV-290; pEPK, PENTAX EPK-i; AUROC, area under the receiver

operating characteristic curve.

lenses, and sensors, to the software that processes and stores

signals, relates to the style of the endoscopic images, which

is also the basis of the manufacturers’ unique technology.

These differences create exclusive image characteristics for each

endoscope model. All endoscope models used in this study have
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TABLE 2 Comparison of EGJ-recognition performance by AIs in classified validation datasets.

o260 Dataset o290 Dataset pEPK Dataset

Total
image
count

EGJ
image count

Total
image
count

EGJ
image count

Total
image
count

EGJ
image count

3,523 285 3,510 298 3,525 281

Original
images

Original
images

Original
images

AI Accuracy F1-score Accuracy F1-score Accuracy F1-score

AI-o260 0.988 0.917 0.950 0.697 0.961 0.757

AI-o290 0.981 0.877 0.979 0.867 0.936 0.596

AI-pEPK 0.963 0.703 0.945 0.527 0.986 0.906

N/A

Transformed images
like o260

Transformed images
like o260

Accuracy F1-score Accuracy F1-score

AI-o260 – 0.975 0.839 0.986 0.902

Transformed images
like o290 N/A

Transformed images
like o290

Accuracy F1-score Accuracy F1-score

AI-o290 0.988 0.914 – 0.986 0.902

Transformed images
like pEPK

Transformed images
like pEPK N/A

Accuracy F1-score Accuracy F1-score

AI-pEPK 0.987 0.906 0.973 0.805 –

o260, Olympus CV-260SL; o290, Olympus CV-290; pEPK, PENTAX EPK-i; AI, artificial intelligence; EGJ, esophagogastric junction.

The AIs (AI-o260, AI-o290, and AI-pEPK) were named after the endoscope model that captured the training dataset.

an observation field of view of 140◦, use a white Xenon lamp as

a light source, and have a maximum field depth of 100 mm, so

the optical characteristics are similar (15, 16). Compared to the

PENTAX EPK-i, which directly senses a white light, Olympus

models express white by recombination of three color lights

collected through physical filters, resulting in a distinctive color

difference (17). In addition, the image sensors of the endoscope

models, which are divided into complementary metal-oxide

semiconductor or charge-coupled device, result in differences in

image resolution and noise aspects (18). Moreover, the exclusive

software functions that process the signals also contribute to

differences in the images. These can be easily distinguished by

experienced endoscopists.

The endoscopic images in the current study were all

preprocessed into images of the same size, leaving only the

inspection area. Even in the standardized images, the differences

can be distinguished by experienced endoscopists and AI.

Artificial intelligence only made 107 errors among the 7,616

images obtained using the Olympus models. In cases where

more distinct differences in image characteristics were present

due to different endoscope manufacturers, AI distinguished

these differences without error. The calculated performances

were sufficiently high with F1 scores of 0.98 or higher and

AUROCs of 0.99 or higher for all datasets of the three

endoscope models. These results can be interpreted as the

existence of distinctive image characteristics, and the difference

is particularly evident when the manufacturers differ.

Deep learning-based AI makes inductive decisions based

on a large amount of data. Developers can customize the

functions of AI in the way they expect by labeling the training

materials. However, if the data contain classifiable characteristics

independent of labels, unintended consequences can occur.

The image characteristics of the endoscope models that AI

inadvertently learns may influence performance. Zippelius et al.

have investigated the GI Genius (Medtronic, Minneapolis, MN,

USA) system in a comparative study of colonoscopy using the

Olympus 190 model and acquired a result not inferior to an

adenoma detection rate (ADR) of 50.7% (7). In contrast, Repici

et al. used images that were captured with two models, Olympus

190 and Fujifilm ELUXEO 700 (FUJIFILM, Tokyo, Japan), to

report the effectiveness of the same GI Genius in a similar

randomized trial (19); a higher ADR (54.8%) was obtained with

AI assistance than that in the study’s control group. We do not

know what dataset the GI Genius is based on or how the ratio
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FIGURE 4

Statistical comparison of the ROC curves of EGJ-recognition AIs

on validation datasets. ROC curves of AIs on (A) o260, (B) o290,

and (C) pEPK dataset. EGJ-recognition AIs (AI-o260, AI-o290,

and AI-pEPK) trained on a dataset classified by the endoscope

model had degraded performance on the validation dataset of

other endoscope models. (A) The performance di�erence

between AI-o260 and AI-o290 in this dataset was the only

nonsignificant result. (B,C) In the o290 and pEPK dataset, the

performance of AIs trained with images of di�erent endoscope

models were significantly inferior. o260, Olympus CV-260SL;

o290, Olympus CV-290; pEPK, PENTAX EPK-i; AI, artificial

intelligence; EGJ, esophagogastric junction; AUROC, area under

the receiver operating characteristic curve.

of the two types of endoscopic images was used in Repici et al.’s

study; however, we know that different conclusions can be drawn

from the different nature of the data.

Although most clinical studies on lesion detection in

endoscopic images have been conducted using the open-

source AI algorithm, the excellent results are highly likely

to be obtained only by a few Japanese companies that

oliogopolize the gastrointestinal endoscopy market. Ruan

et al. have reported a high identification accuracy of a

deep learning diagnostic system for inflammatory bowel

disease (20). All endoscopic examinations were performed

using an Olympus CV-290SL model. Ebigbo et al. have

predicted the submucosal invasion of Barrett’s cancer using

AI, based on endoscopic images obtained using the Olympus

190 model (21). Considering the results of our research,

AIs may show poorer performance on images of other

endoscope models.

In the field of image recognition research using DL,

performance improvement through algorithm remodeling has

reached a plateau, and the significance of organizing the data

used in the training and validating process of DL has emerged.

Ng et al. introduced a data-centric AI campaign to overcome

the robustness of deep neural networks (22). The task force of

the American Society of Gastrointestinal Endoscopy has raised

the need for a standardized database named Endonet, which is

managed by experts (23).

In the present study, we not only identified the performance

problem of AI that learned biased data but also presented

a solution using a different AI. If endoscopic imaging is

compared to a work of art, the endoscope model is a

painter, and the imaging characteristic is the style of painting.

Developing a conversion algorithm of painting style through

quantitative analysis is difficult. However, AI can inductively

find a method of transformation. Zhu et al. have successfully

converted photographs to appear like paintings by Monet or

Van Gogh using a DL-based domain adaptation technology

called cycleGAN (9). We used the algorithm to convert

datasets to obtain the image characteristics of endoscope

models that were familiar to EGJ-recognition AI, resulting in

improved performance.

The current study retrospectively analyzed data from a

single institution. It can be pointed out that these aspects

undermine the research’s objectivity. However, these inevitable

deficiencies made strict data management possible. This study

was conducted in a rare endoscopy center that utilizes

various endoscopes from various manufacturers. The process

of capturing endoscopic signals to store them in the standard

DICOM format was consistently managed using the same

instruments. Moreover, the datasets for training and validation

were completely separated such that there was no correlation

at a level comparable to that of external datasets. Extracted

endoscopic images were cropped to the same size and shape so

that only the intrinsic image characteristics of the endoscope

models could affect AI performance. Errors could be reduced

by the selection of an object that was distinguishable because

of its histological characteristics as a feature to be detected and
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FIGURE 5

Examples of CycleGAN transformation and class activation map of EGJ-recognition AI. The AI indicated on the far-left side of the figure

generates the CAM based on the endoscopic image placed on the left. As shown in the color scale bar on the right, a light blue color on the

CAM denotes a higher significance level. The overlaying result is arranged on the right side of the figure. The figures in the top row are the

results of the original endoscope model images. The cycleGAN transformation results are listed in the following three rows. The transformation

was performed on the top original images to obtain the image characteristics of the AI indicated on the far-left side of the figure. o260, Olympus

CV-260SL; o290, Olympus CV-290; pEPK, PENTAX EPK-i; AI, artificial intelligence; EGJ, esophagogastric junction; CAM, class activation map;

GAN, generative adversarial network.

determining them with the consensus of multiple observers. It

has successfully achieved a high detection rate based on strictly

managed data, although the AI used in the current study is a

lightweight model that uses relatively few parameters. In order

to empower the hypothesis of this study, we presented similar

results from experiments using separately randomized datasets

as Supplementary Materials. There were also differences in the

images that AI could distinguish depending on the endoscope

models in other datasets. It was confirmed that the recognition

performance of AI could be affected by the different image

characteristics of different endoscope models.

It can be claimed that limiting only the EGJ image as a

recognition target in this study reduces the clinical significance

of our results. However, it is an excellent feature to validate

the detection performance of AI. The EGJ contains relevant

clinical information and can be easily identified by the clear

boundary. Recognizing the EGJ itself is just as significant as

directly identifying the various diseases that exist in the region.

Although it is not a subject of analysis in this study, it can

be seen that our dataset consists of a realistic composition

through the disease incidences that can be visually confirmed

at the site. Artificial intelligence that finds lesions in endoscopic

images must be accustomed to filtering out images unrelated

to the recognition target that occupy larger numbers. The

EGJ image, which the clinical guidelines recommend to be

pictured, occupies a relatively small part of the total endoscopic

images. We attempted to construct the dataset considering the

quantitative imbalance of the detection target and correctly

demonstrate the performance of AI using accuracy and F1-score.

These attempts enable more realistic AI performance evaluation.

Once DL-based AI is fully developed, it is difficult to

change the training dataset. Optimization of AI using image

transformation should be applied to the dataset to be analyzed

by AI. All AIs in this study were developed and validated on an

identical dataset to ensure consistency with one another. The

cycleGAN-based transformation was applied to the validation

dataset, which was the target of AI analysis, and AUROC

was used to facilitate accurate statistical comparisons of
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FIGURE 6

Statistical comparison of the ROC curves of EGJ-recognition AIs

on transformed validation datasets. ROC curves of AIs on (A)

o260, (B) o290, and (C) pEPK dataset. Compared with the results

on the original dataset (indicated by dotted lines), the

EGJ-recognition AIs performed better in the transformed

dataset (indicated by solid lines) to represent the image

characteristics used in the training process. (A,B) The

recognition rate of AIs improved on the transformed Olympus

endoscope images to optimize for the model the AI trained on.

The AI trained with PENTAX endoscope images showed greater

improvement. (C) The performance of AIs trained with Olympus

endoscope images also improved on the transformed PENTAX

endoscope images. o260, Olympus CV-260SL; o290, Olympus

CV-290; pEPK, PENTAX EPK-i; AI, artificial intelligence; EGJ,

esophagogastric junction; AUROC, area under the receiver

operating characteristic curve.

its performance. In particular, the performance of AI was

prominently improved by transforming the image of other

endoscope manufacturers from what the AI trained. The result

that the performance improvement of binary classification AI

can reach up to 6% with the cycleGAN transformation is also

of practical value.

We used endoscope models to demonstrate that

distinguishable image properties existed. Although these details

may seem insignificant, the classifiable image characteristics

of the dataset that are not addressed in the training stage may

affect AI performance. In the present study, the AI was trained

to be biased toward images of a specific endoscope model and

showed a decreased detection rate in images of other endoscope

models. Further studies to find these obscure details should

be supported to develop more practical AI. Furthermore, we

significantly improved AI performance by converting images

into a style familiar to the AI using a domain adaptation

technology called cycleGAN. A domain is all the values that can

go into a function with its given contexts; in the field of image

recognition using DL, it refers to classifiable features concealed

in images. Cycle-consistent adversarial network discriminates

domains without detailed instructions from researchers based

on large amounts of data (24). Moreover, cycleGAN can

convert the trained domains to have the characteristics of

other domains. Even though the accuracy of DL-based image

recognition has gradually increased, the handling of different

domain data remains a challenging task. In this study, we

showed that a domain adaptation method like cycleGAN can

reduce the performance gap when the DL model is applied to

other domains. To develop a universal DL method that can be

applicable for most of endoscope models, image recognition

and domain adaptation should be dealt with simultaneously.
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