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Introduction: [18F]fluorodeoxyglucose ([18F]FDG) brain PET is used clinically

to detect small areas of decreased uptake associated with epileptogenic

lesions, e.g., Focal Cortical Dysplasias (FCD) but its performance is limited due

to spatial resolution and low contrast. We aimed to develop a deep learning-

based PET image enhancement method using simulated PET to improve

lesion visualization.

Methods: We created 210 numerical brain phantoms (MRI segmented into

9 regions) and assigned 10 di�erent plausible activity values (e.g., GM/WM

ratios) resulting in 2100 ground truth high quality (GT-HQ) PET phantoms.

With a validated Monte-Carlo PET simulator, we then created 2100 simulated

standard quality (S-SQ) [18F]FDG scans. We trained a ResNet on 80% of this

dataset (10% used for validation) to learn the mapping between S-SQ and

GT-HQ PET, outputting a predicted HQ (P-HQ) PET. For the remaining 10%,

we assessed Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index

Measure (SSIM), and Root Mean Squared Error (RMSE) against GT-HQ PET.

For GM and WM, we computed recovery coe�cients (RC) and coe�cient of

variation (COV). We also created lesioned GT-HQ phantoms, S-SQ PET and

P-HQ PET with simulated small hypometabolic lesions characteristic of FCDs.

We evaluated lesion detectability on S-SQ and P-HQ PET both visually and

measuring the Relative Lesion Activity (RLA, measured activity in the reduced-

activity ROI over the standard-activity ROI). Lastly, we applied our previously

trained ResNet on 10 clinical epilepsy PETs to predict the corresponding

HQ-PET and assessed image quality and confidence metrics.
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Results: Compared to S-SQ PET, P-HQ PET improved PNSR, SSIM and RMSE;

significatively improved GM RCs (from 0.29 ± 0.03 to 0.79 ± 0.04) and WM

RCs (from 0.49 ± 0.03 to 1 ± 0.05); mean COVs were not statistically di�erent.

Visual lesion detection improved from 38 to 75%, with average RLA decreasing

from 0.83 ± 0.08 to 0.67 ± 0.14. Visual quality of P-HQ clinical PET improved

as well as reader confidence.

Conclusion: P-HQ PET showed improved image quality compared to S-SQ

PET across several objective quantitative metrics and increased detectability of

simulated lesions. In addition, the model generalized to clinical data. Further

evaluation is required to study generalization of our method and to assess

clinical performance in larger cohorts.

KEYWORDS

Monte-Carlo simulation, residual network, brain, focal cortical dysplasia (FCD), clinical

application, deep learning, deblurring, super resolution (SR)

Introduction

In the management of patients with epilepsy, approximately

one third do not respond to medical therapy. For those with

a focal onset, surgery could be their only potentially curative

option (1). Identification of the epileptogenic zone (EZ), the

zone where the seizure starts, is mandatory to allow planification

of brain surgery. The EZ is the minimum brain tissue that

needs to be resected to render the patient seizure-free, aiming

at minimal functional impairment.

The presurgical evaluation workup includes history,

semiology, EEG, video-EEG, and brain imaging (2). High-

resolution brain magnetic resonance imaging (MRI) is the

standard as it can identify structural lesions. However, in

35% of the cases, 3T MRI remains negative (3). In such

cases, [18F]fluorodeoxyglucose ([18F]FDG) positron emission

tomography (PET) can be used to improve EZ detection (4–6).

The EZ appears as glucose hypometabolism (decreased FDG

uptake) on interictal FDG-PET, particularly relevant in focal

cortical dysplasia type 2 (FCD2) (7–9).

However, several degrading factors, including a low signal to

noise ratio (SNR) and an intrinsically limited spatial resolution

of PET scanners compromise PET image quality. The low

resolution of PET images results in the partial volume effect (10)

which leads to the spill-over of estimated activity across different

regions (11). These alterations could falsely normalize or

attenuate the relative hypometabolism of the EZ, notably when

it is small (such as for FCDs), limiting the detection performance

of PET (12, 13). Themost commonly used approaches to address

the noise (denoising) and resolution (deblurring) challenges

are: (1) within-reconstruction methods such as early iteration

termination of the reconstruction algorithm (14) or point

spread function modeling (15, 16) and (2) post-reconstruction

methods, such as gaussian filtering, but as this decreases

the spatial resolution, many edge preserving alternatives were

proposed (17–19). The most popular resolution recovery

approaches in PET are partial volume correction (PVC)

techniques but they rely on a segmented anatomical template

based on MRI (20–23). Deconvolution methods that do not

rely on structural information have also been proposed (24, 25).

These methods partially correct the image but are still limited

by the intrinsic resolution of PET physics and the statistical

counting of the detection since they aim at converging to an

explanatory distribution of the annihilation sites but not the

emission sites of the positrons.

Artificial intelligence (AI)-based image enhancement is a

very active field, but so far most of the publications focused

on PET denoising rather than the deblurring problem (26).

The deblurring problem involves the restoration of high-quality

PET images (HQ) from lower-quality images [“standard quality

(SQ)” PET images in our study] and not to restore a higher-

count image from a low-count (low dose) PET image (denoising

problem). Proof of concept of super-resolution PET has been

validated with a 2D convolution neural network (CNN) in

which the network was trained, using analytically simulated

[18F]FDG PET, to predict their corresponding ground truth

for normal brains (27) and lung tumors (28). This network is

neither a simple deconvolution algorithm nor a partial volume

correction algorithm. The aim of this project was to develop a

deep learning based deblurring method consisting in predicting

the ground truth from the PET image to improve epilepsy lesion

visualization. Originality of themethod was that the training was

performed from simulated data, for which the ground truth is

known. In order to improve clinical translation of suchmethods,

we created a new, realistic set of [18F]FDG PET brain data using

a validated Monte Carlo simulator (29–31) which were then

reconstructed using Siemens e7 reconstruction tools. The 3D

network trained to learn the mapping between the simulated
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SQ PET (S-SQ PET) and the corresponding ground-truth HQ

(GT-HQ) PET did not require anatomical input.We assessed the

quality of the network-predicted HQ (P-HQ) PET. We repeated

the process for simulated lesional brain PET data with cortical

focal hypometabolism to simulate difficult-to-detect small EZ.

Lastly, we used real PET data to illustrate the proof-of-concept

that a model trained on Monte-Carlo simulated PET data is

applicable on real data.

Materials and methods

Medical image data

We used an open, multi-vendor [General Electrics, Philips

and Siemens 3T magnetic resonance imaging (MRI) scanners]

brain MRI database, Calgary-Campinas (32), using 173 T1-

weighted (T1w) 3D volumes (1 mm3 voxels) from subjects with

an average age of 53.4 ± 7.3 years (range 29–80, 50% women).

Additionally, we used the publicly available database CERMEP-

IDB-MRXFDG (33) which includes T1w MRI (Siemens 1.5T

MRI) 3D volumes from 37 subjects (average age 38.11 ± 11.36

years; range 23–65, 54% women). It also includes 37 PET and

computed tomography (CT) images from a Siemens Biograph

mCT64, which we used to estimate a range of realistic FDG

uptake values in brain PET as explained below. FDG PET data

consisted in a static 10-min PET acquisition started 50min

after the injection of 122.3 ± 21.3 MBq of [18F]FDG. PET

sinograms were reconstructed with Siemens’ iterative ordered

subset expectation maximization (OSEM) “High Definition”

reconstruction, incorporating the spatially varying point spread

function, with CT-based attenuation correction. To illustrate

the capability of the developed AI deblurring method on

clinical PET data, we used 10 datasets from epilepsy subjects

with an average age of 23.3 ± 18.1 years (range 9–70, 50%

women) acquired on the Siemens Biograph mMR at the King’s

College London and Guy’s and St Thomas’ PET Center, St

Thomas’ Hospital, London (Ethics Approval: 15/LO/0895). They

consisted in a static 30-min PET acquisition started on average

120± 49min after the injection of an average 120.6± 43.9 MBq

of [18F]FDG.

PET simulation

Generation of numerical brain phantoms

Numerical brain phantoms are 3D labeled volume models

built from segmented T1w 3D volumes. We performed MRI

non-parametric non-uniformity intensity normalization, tissue

class segmentation, and anatomical parcellation of the T1w 3D

volumes with Freesurfer (34). To expand the segmentation to

extracerebral tissues, we also used SPM12 (35). We were then

able to create an anatomical brain model with nine labels: gray

matter (GM), white matter (WM) independently for the brain

and the cerebellum (CEREB-WM, CEREB-GM), cerebrospinal

fluid (CSF), basal ganglia (BG), bone, air, and soft tissue (SOFT).

Generation of ground truth high quality
[18F]FDG PET

We created GT-HQ [18F]FDG PET by assigning activities to

the nine labels of the numerical brain phantoms. Activities were

derived from the distribution of normal [18F]FDG PET values

from the CERMEP-iDB-MRXFDG database (33) after partial

volume correction according to the Geometric Transfer Matrix

(GTM) method (21).

We first simulated a series of normal brain SQ [18F]FDG

PET scans. A total of 10 different brain activity distribution were

generated for each anatomical brain model, resulting in 2100 (10

× 210) GT-HQ PETs. As a first step, WM activity was randomly

chosen according to the observed distribution in (33). Activity

ratios between cerebral GM and WM were then selected as 1.2,

1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0, 6.6. Activities assigned to CSF,

soft tissue and basal ganglia were randomly chosen according to

the observed distribution in Mérida et al. (33). Cerebellum GM

activity was set to 80% of the cerebrum.

Secondly, we created lesion GT-HQ PET phantoms

with ROIs in the neocortex where we parametrically

decreased assigned activity to simulate small metabolic

lesions characteristic of FCDs. In 10 anatomical brain models

with a GM/WM ratio of 3.6, we created one lesion each in the

right frontal and in the left temporal region. The ROI for each

lesion was manually defined as the largest component of the

result of the multiplication of the GM mask and a sphere with

volume of 1,008 mm3. In the same locations in the frontal and

temporal lobes, we then repeated the process with two smaller

spheres with volumes of 612 and 319 mm3. The resulting 60

lesion ROIs simulating small FCDs had volumes ranging from

17 to 570 mm3 with a mean of 184± 140 mm3: MRI volumetric

values for FCDs ranged from 128 to 3,093 mm3 with a mean of

1,282± 852 mm3 (36). Activity ratios between cerebral GM and

the lesion were assigned values of 0.6 and 0.3. This resulted in

60 (10 models × 3 sizes × 2 activity ratios) lesion GT-HQ PET

(120 lesions) with various morphologies and activities.

Monte-Carlo simulation of standard-quality
PET

To generate realistic PET acquisitions, we used SORTEO,

a Monte Carlo PET simulator developed by Reilhac et al.

(31) and validated to provide realistic simulations for the

Siemens Biograph mMR scanner (29, 31). The simulated 3D

emission protocol consisted in the collection of data into a

single timeframe for a 30-min period, as in our institution,

starting 40min post-injection, in accordance with international

FDG PET guidelines (37). SORTEO generates the sinogram
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(raw data), by simulating each disintegration occurring in

labels where a constant activity was defined (GM, WM,

CSF, CEREB-WM, CEREB-GM, GN and SOFT) including all

physical phenomenon occurring from positron emission to

detection. As for clinical scans, sinograms were normalized

and corrected for randoms, scatter, attenuation, dead-time, and

radioelement decay.

The simulations were performed at the IN2P3 (CNRS

UAR6402) computing center. For each subject, simulation was

divided into eight sub-processes to take advantage of multi-core

processing and thus reducing the total simulation time.

Tomographic reconstruction

Corrected simulated sinograms were reconstructed with

e7 reconstruction toolTM (Siemens Healthineers) using a 3D

ordinary poisson-ordered subsets expectation maximization

algorithm, incorporating the system point spread function,

using 3 iterations and 21 subsets. Reconstructions were

performed with a matrix size of 172 × 172 × 127 and a

zoom factor of 2, yielding a voxel size of 2.04 × 2.04 × 2.03

mm3. The attenuation correction used a pseudo-CT synthetized

with MaxProb multi-atlas attenuation correction method from

the T1w MRI (38). Gaussian post-reconstruction 3D filtering

(FWHM 4mm isotropic) was applied to all PET images.

In the end, we have a database of 2100 pairs of GT-HQ

and S-SQ PET images, with various anatomies and activity

contrasts between brain structures. In addition, we simulated

120 small metabolic lesions characteristic of FCDs with various

morphologies and activities.

Deep learning

Residual network architecture

Residual CNNs are commonly used algorithms for PET

deblurring and are the main algorithms used for the generator

in generative adversarial networks (26). The proof-of-concept

of super-resolution PET was based on a very deep CNN (20

layers) (27) which was 2D because of computation limitation.

As 3D images proved more successful in denoising tasks (39),

we developed a 3D network for super resolution PET. Initially,

we used a 3D U-Net, the main 3D network implemented

for denoising PET (26). However, 3D U-Net did not achieve

satisfactory results for our task and so we used a 3D sequential

ResNet (40), similarly to recent papers by Spuhler et al. (41)

and Sanaat et al. (42) with dilated kernels (model comparison

shown in Supplementary material). They enlarge the field-of-

view to incorporate multiscale context (43–45) and avoid the

up-sampling layers of U-Net that degrade resolution, as spatial

resolution of the input is maintained throughout the network

(42). We implemented the model shown in Figure 1. Each of the

first 19 modules of the network exclusively uses convolutional

kernels of size 3 × 3 × 3, along with batch normalization and

Rectified Linear Unit (ReLU) activation function. In the first 7

modules, the network uses 16 kernels, the following 6 modules

use 32 kernels, but with a dilation parameter of 2, and the next

6 modules use 64 kernels with dilation 4. The input of the deep

learning model is the S-SQ PET.

Data preprocessing

Trilinear interpolation was used to resample all PET images

to the same voxel size of 1 × 1 × 1mm with a 192 × 256

× 256 grid size. The intensities in the input S-SQ PET images

were standardized by dividing by the average of each individual

image. Each GT-HQ PET was standardized by the average

of the corresponding S-SQ PET image. The standardization

factors were stored and subsequently applied to the network’s

predictions to rescale the resulting images, before performing

any quantitative analysis [the PET unit was Becquerel (Bq) per:

centimetres cubed (cm3)].

Network implementation and optimization

The simulated images were split into training, validation,

and testing datasets, with a ratio of 80/10/10%. Due to

limitations of GPU memory during training, the network was

trained with 32 × 32 × 32 voxel patches. Twenty patches per

volume were randomly chosen for the training and validation

set. Mean absolute error was used as the loss function during

training and the optimizer was AdamW (46). The learning

rate was set to 10−4 and reduced by a factor of 0.1 when the

validation loss stagnated for more than 10 epochs. The batch size

was set to 50 and the maximum number of epochs to 200 using

early stopping (validation loss not improving during more than

60 epochs).

We trained our model on a GPU server on 1 NVIDIA V100

GPU (32GB) running Python 3.9.10, Pytorch 1.10.0 (47), and

TorchIO 0.18.71 (48).

For inference, patch of size 32 × 32 × 32 voxels were

used with 8 × 8 × 8 overlapping tile stride. These patches

were selected in sequence from the whole 192 × 256 × 256

volume, then the P-HQ patches were put together to generate the

entire P-HQ PET. Overlapping patches were combined using a

weighted averaging strategy.

Evaluation

Evaluation of AI-enabled super-resolution PET was carried

out on the P-HQ PET by comparing it to the S-SQ PET and the

GT-HQ PET in brain masked images. We used the following

quantitative evaluation metrics: (1) the Peak Signal-to-Noise

Ratio (PSNR) (49), (2) the structural similarity index measure

(SSIM) (50) which is a well-accepted measure of perceived
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FIGURE 1

Architecture of the ResNet network used in this study. Conv, convolution; ReLU, Rectified Linear Unit; PET, Positron Emission Tomography; SQ,

standard-quality; Norm, normalization; HQ, High-quality.

FIGURE 2

Results from one subject belonging to the test dataset. The first

column depicts the Ground Truth High Quality (HQ) PET, the

second column the corresponding simulated Standard Quality

(SQ) PET and the third column the Predicted HQ PET, i.e., the

output from the proposed network. For each set, from top to

bottom, transverse, coronal, and sagittal slices are shown.

Images are displayed using radiological conventions (subject’s

left on the right). Bq, Becquerel.

image quality s, and (3) the root mean squared error (RMSE)

(Equations 1–3, respectively). An objective improvement in

image quality is reflected by larger values in peak signal to noise

ratio (PSNR) and structural similarity index metrics (SSIM) and

smaller values for the root mean square error (RMSE).

PSNR (X,Y) = 20 × log
( Max(X)√

MSE(X,Y)
)

10 (1)

SSIM (X,Y) =
(

2µxµy + c1
)

(2σxy + c2)

(µ2
x + µ2

y + c1)(σ
2
x + σ 2

y + c2)
(2)

RMSE (X,Y) =

√

∑L
j=1 (X − Y)2

L
(3)

In Equation (1), given two images X and Y,Max(X) indicates

the maximum intensity value of X, whereas MSE is the mean

squared error. In Equation (2), µx and µy denote the mean

value of X and Y , respectively. σxy indicates the covariance of

σx and σy, which in turn represent the variances of X and Y ,

respectively. The constant parameters c1 and c2 (c1 = 0.01 and

c2 = 0.03) were used to avoid a division by very small numbers.

In Equation (3), L is the total number of voxels in the head

region, X and Y are the two compared images.

For the next evaluations, we used GM andWMROIs, issued

form the GM and WM probability maps resulting from T1w

MRI segmentation using Freesurfer as described in 2.2.1. The

WM ROI was obtained from the WM mask eroded by a radius

of 6 voxels using ITK (51) to give a conservative WM ROI. The

mean GM ROI volumes were 948,106 ± 102,640 mm3 and the

mean eroded WM ROI volumes were 486,509± 63,909 mm3.

Recovery coefficients (RCs) defined as the ratio between the

observed activity and the ground truth activity as shown in

Equation (4), were calculated using µ the mean value in the GM

ROI and the WM ROI for S-SQ PET and P-HQ PET compared

to the GT-HQ PET.

RCmean =
µ measured

µ ground truth
(4)
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We also computed the coefficient of variation

(CoV) defined as the ratio between σ , the standard

deviation, and µ, the mean value in the ROI, as

shown in Equation (5). It is a metric for describing

ensemble noise or statistical noise and it was computed

in the GM ROI and the WM ROI for S-SQ PET and

TABLE 1 Mean and standard deviation of the root mean squared error

(RMSE), peak signal to noise ratio (PSNR), and structural similarity

index measure (SSIM) for simulated standard quality and predicted

high quality (HQ) PET images in the test set.

Root mean

squared

error

Peak

signal-to-

noise ratio

(dB)

Structural

similarity

index

measure

Simulated

Standard-quality PET

2,393± 1,496 16.6± 1.1 0.876± 0.013

Predicted

High-quality PET

1,359± 888 21.8± 1.8 0.929± 0.011

The comparator is the ground-truth HQ PET.

P-HQ PET.

COV =
σmeasured

µmeasured
× 100 (5)

For lesion assessment, we performed first a visual

assessment. The reader evaluated two sets of PET images:

P-HQ PET images and S-SQ images in a random order. The

reader determined whether a hypometabolic lesion was present

(0 = none, 1 = visible lesion), and scored overall diagnostic

confidence (ODC) in interpreting the images on a Likert scale

of 1–5 (1 = none, 2 = poor, 3 = acceptable, 4 = good, 5 =
excellent diagnostic confidence) (52) for each lesion. A second

reader performed a visual assessment of a subset of lesioned

S-SQ PET and G-HQ PET (n= 84 images) to assess inter-reader

concordance. Secondly, to quantify lesion detectability, we

computed a ratio between the measured activity in the ROI

of the lesion over the same ROI in the P-HQ PET image

without the lesion, termed relative lesion activity (RLA). We

also computed the recovery coefficient in the lesion as in

Equation (4).

For clinical data, we performed a visual assessment of the

clinical PET and the P-HQ clinical PET computed with the

trained network (n = 20 images) by two readers. The reader

FIGURE 3

Image quality metrics from the simulated standard-quality (SQ) PET and the predicted high-quality (HQ) PET for the test set. An objective

improvement in image quality is reflected by larger values in peak signal to noise ratio (PSNR) and structural similarity index metrics (SSIM) and

smaller values for the root mean square error (RMSE).
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TABLE 2 Mean, standard deviation (SD) and range of the recovery coe�cient (RC) for the gray matter (GM) and the white matter (WM) for predicted

high-quality (HQ) PET and simulated standard-quality (SQ) PET in the test set.

Simulated SQ PET Predicted HQ PET

GM RC WMRC GMRC WMRC

Mean± SD 0.29± 0.03 0.49± 0.03 0.79± 0.04 1± 0.05

Range 0.22–0.38 0.35–0.56 0.65–0.94 0.8–1.14

FIGURE 4

Results from one subject belonging to the test dataset with a simulated right frontal hypometabolic lesion with a volume of 0.327 cm3. First

column, enlarged view of the lesion in transverse view; second column, transverse view, third column, coronal view, fourth column, sagittal

view. The relative lesion activity was 0.3 in the ground-truth high-quality-PET, 0.75 in the simulated standard-quality PET, and decreased to 0.44

in the predicted HQ-PET. Arrowheads indicate the location of the simulated lesion. Images are displayed using radiological conventions

(subject’s left on the right). Bq, Becquerel cm3
: centimetres cubed.

scored the diagnostic image quality on a 5-point Likert scale

(1 = non-diagnostic, 2 = poor, 3 = standard, 4 = good, 5 =
excellent image quality) (52) and as previously, indicated if a

hypometabolic lesion was present and scored ODC.

We compared the quantitative results through the different

metrics with pairwise t-tests or Wilcoxon rank sum test. Kappa

coefficients were computed to assess inter-reader agreement. For

all comparisons, the threshold of statistical significance was set

at 5%.

Results

Non-lesioned simulated brains

The model was successfully trained to learn the mapping

from the S-SQ PET to the GT-HQPET after 105 epochs. Figure 2

showcases the result for one subject from the test dataset in

transverse, coronal, and sagittal slices for the GT-HQ PET, its

corresponding S-SQ PET, and the P-HQ PET.

The performance metrics computed on the test set for the P-

HQ PET are shown in Table 1 and are plotted in Figure 3. The

values of those metrics on the S-SQ PET were also included

for comparison. P-HQ PET showed improved image quality

compared to the S-SQ PET (p < 0.0001 for all comparisons).

We computed the recovery coefficient of the GM and the

WM in the test set for the S-SQ PET and the P-HQ PET.

Recovery coefficients were significantly improved in the P-HQ

PET for the WM and the GM compared to the S-SQ PET (p

≤ 0.0001). Mean, standard deviation (SD) and range of the

recovery coefficient (RC) for the gray matter and the white

matter for P-HQ-PET and S-SQ PET in the test set are shown

in Table 2.

We further analyzed by GM/WM ratios (Boxplots shown

in Supplementary Figures 2, 3). For all GM/WM ratios, GM

recovery as well as WM recovery were significantly improved

for the P-HQ compared to the S-SQ PET (p < 0.0001). In

the S-SQ PET, across all GM/WM ratio, the mean GM RC

ranged from 0.26 to 0.36 and standard deviation ranged from

0.008 to 0.220; the WM RC ranged from 0.45 to 0.52 and

standard deviation range from 0.008 to 0.044. For the P HQ-

PET, the mean GM RC ranged from 0.77 to 0.86 and standard

deviation range from 0.016 to 0.042 and for the WM RC, it
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FIGURE 5

Scatter plots of the relative lesion activity in the ground truth high-quality (HQ) PET (blue dot), the simulated standard-quality (SQ) PET (green

dot) and the predicted HQ PET (orange dot) according to the volume of the lesions (mm3). The lesion ground truth activity in (A) was 60% of the

gray matter normal activity and in (B) was 30% of the gray matter normal activity.

TABLE 3 Mean and standard deviation of the lesion relative lesion activity (RLA), the relative RLA error, and the lesion recovery coe�cient (RC) for

simulated standard quality, and predicted high quality (HQ) PET images in the test set.

GT-HQ PET RLA lesion = 0.3 GT-HQ PET RLA lesion = 0.6

Lesion RLA

(Target: 0.3)

Relative

RLA error

(Target: low)

Lesion RC

(Target: 1)

Lesion RLA

(Target: 0.6)

Relative

RLA error

(Target: low)

Lesion RC

(Target: 1)

Simulated standard-quality PET 0.80± 0.08 1.68± 0.26 0.71± 0.10 0.86± 0.08 0.44± 0.17 0.39± 0.05

Predicted high-quality PET 0.57± 0.11 0.89± 0.35 1.44± 0.33 0.77± 0.11 0.28± 0.18 0.98± 0.17

The comparator is the ground-truth (GT) HQ PET. Left panel, lesion RLA was 0.3; right panel, lesion RLA was 0.6.

ranged from 0.99 to 1.04 and standard deviation ranged from

0.024 to 0.047. Post-hoc Anova analysis showed a significative

difference for GM and WM RC, with a better RC for the lowest

ratio (1.2).

The mean COV across all test datasets in the GM ROI was

38.9± 2.0 in the S-SQ PET andminimally higher at 39.3± 2.0 in

the P-HQ PET (difference not significant, p= 0.051). The mean

COV in the WM ROI was very similar at 4.90 ± 0.89 for S-SQ

PET and 4.91± 0.89 for P-HQ PET (p= 0.97).

Lesioned simulated brain

At the group level, the visual detection rate was 38% in the

S-SQ PET increasing to 75% in the P-HQ PET (p < 0.05) with a

similar overall diagnostic confidence score of 3.3± 1.6 vs. 3.5±
1.5 (p > 0.05). Kappa coefficients for inter-reader concordance

were 0.77 for all images, 0.88 for P-HQ PET and 0.72 for S-SQ

PET. Overall mean visual detection rates (44 vs. 42% in the S-SQ

PET and 75 vs. 72% in the P-HQ PET) and diagnostic confidence

scores (3.2 ± 1.7 vs. 3.1 ± 1.5 in the S-SQ PET and 3.4 ± 1.5

vs. 3.5 ± 1.3 in the P-HQ PET) were not statistically different

between readers.

Figure 4 shows an example of one subject with a right frontal

hypometabolic lesion of 327 mm3 from the test dataset for the

GT-HQ PET, the S-SQ PET and the P-HQ PET. Through visual

inspection, the hypometabolic lesion was easier to detect and

with more confidence on the P-HQ PET. The RLA was 0.75 in

the S-SQ PET, decreasing to 0.44 in the P-HQ PET, closer to the

ground truth of 0.3.
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FIGURE 6

Results from one subject belonging to the test dataset with a

simulated right frontal hypometabolic lesion with a volume of

22 mm3. First column, transverse view, second column, coronal

view, third column, sagittal view centered on the lesion. The

relative lesion activity was 0.6 in the ground-truth high-quality

(HQ) PET, 0.95 in the simulated standard-quality (SQ) PET, and

decreased to 0.75 in the predicted HQ PET. Arrowheads indicate

the location of the simulated lesion. Images are displayed using

radiological conventions (subject’s left on the right). Bq,

Becquerel cm3
: centimetres cubed.

FIGURE 7

Brain T1w MRI and clinical [18F]FDG PET as well as predicted

high-quality (HQ) PET (predicted by the network developed in

this work) from one patient with drug-resistant epilepsy. Images

are displayed using radiological conventions (subject’s left on

the right) and white arrows are used to highlight areas of

hypometabolism. The first two rows show images from the

scanner and the third row shows the AI-enhanced high-quality

PET. There was no clear anomaly on the MR but a

hypometabolism in the left temporal lobe as well as in the left

thalamus on both PET images. Bq, Becquerel cm3
: centimetres

cubed.

Among all the lesions (GT-HQ PET RLA 0.3 or 0.6), RLA

was substantially higher at 0.83± 0.08 (0.65–1) in the S-SQ PET

but decreased toward the GT-HQ PET with 0.67 ± 0.14 (0.44–

1.12) (p < 0.0001) in the P-HQ PET. RLA according to lesion

volumes (mm3) are plotted in Figure 5 for both the ground

truths set at 0.3 or 0.6. There is a negative relation between the

size of the lesion and the RLA value. For each subgroup whose

FIGURE 8

Brain T1w MRI and clinical [18F]FDG PET as well as predicted

high-quality (HQ) PET (predicted by the network developed in

this work) from one patient with drug-resistant epilepsy. Images

are displayed using radiological conventions (subject’s left on

the right) and white arrows are used to highlight areas of

hypometabolism. The first two rows show images from the

scanner and the third row shows the AI-enhanced high-quality

PET. MRI depicted a blurred white matter gray matter border in

the right postcentral gyrus. The PET showed a correlated blurred

and mild hypometabolism extending toward the precuneus. The

predicted HQ PET showed a clearer hypometabolism very well

correlated with the lesion that also extended to the precuneus.

Bq, Becquerel cm3
: centimetres cubed.

GT-HQ PET RLA was 0.3 or 0.6, mean RLA, relative RLA error

and RC and their standard deviations are presented in Table 3.

For the subgroupwhose GT-HQPETRLAwas 0.3 (high contrast

between lesion and surrounding GM), the mean RLA value for

S-SQ PET was 0.80 ± 0.08 (0.65–0.97) and decreased to 0.57 ±
0.11 (0.44–0.87) in P-HQ PET. Values were significantly lower in

the P-HQ PET (p < 0.0001) but remained significantly superior

to the GT-HQ PET RLA of 0.3 (p < 0.0001). The mean relative

RLA error in the S-SQ PET was 1.68 ± 0.26 (1.18–2.23) vs. 0.89

± 0.35 (0.47–1.90) in P-HQ PET (0 < 0.0001). The mean RC

in the lesion ROI was 0.71 ± 0.10 (0.55–0.97) for the S-SQ PET

vs. 1.44 ± 0.33 (1.05–2.5) for the P-HQ PET (p < 0.0001). For

the subgroup whose GT-HQ PET RLA was 0.6 (low contrast

between lesion and surrounding GM), the mean RLA value for

the S-SQ PET was 0.86 ± 0.08 (0.65–1) and decreased to 0.77 ±
0.11 (0.60–1.12) in P-HQ-PET. Values were significantly lower in

the P-HQ PET (p < 0.0001) but remained significantly superior

to the GT-HQ PET RLA of 0.6 (p < 0.0001). The mean relative

RLA error for the S-SQ PET was 0.44 ± 0.17 (0.09–0.66) vs.

0.28 ± 0.18 (0.00–0.87) in the P-HQ PET (p < 0.0001). Finally,

the mean RC in the lesion ROI was 0.39 ± 0.05 (0.32–0.51) for

the S-SQ PET vs. 0.98 ± 0.17 (0.69–1.45) for the P-HQ PET (p

< 0.0001). Mean RC in P-HQ PET and GT-HQ PET were not

different (p = 0.32). In Figure 6, we show a small lesion in the

frontal lobe. The RLA was 0.6 in the GT-HQ PET, 0.95 in the

S-SQ PET, and decreased to 0.75 in the P-HQ PET.
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Epilepsy patients

The result of the trained model for clinical data is illustrated

in Figures 7, 8 showing brain T1w MRI, [18F]FDG PET and

the P-HQ PET from two different patients with drug-resistant

epilepsy. Across the cohort of epilepsy patients, the mean

diagnostic image quality ratings for the clinical PETs were 2.9

± 0.3 vs. 3.9 ± 0.5 for the predicted HQ PET (p < 0.01). Inter-

reader mean quality scores were not significantly different. The

mean diagnostic confidence ratings were 3.4± 1.1 for the clinical

PET vs. 4.2 ± 0.8 for the predicted HQ (p = 0.02). Inter-reader

mean confidence rating scores were not significantly different.

Lesion detection rates were identical for both readers (7/10) for

both the clinical PET and the predicted HQ PET.

Discussion

In this work, we trained a network to map Monte-Carlo

S-SQ PET to their GT-HQ PET. In an independent test set,

the P-HQ PET showed improved image quality compared to

S-SQ PET across several objective quantitative metrics. In an

independent dataset with small, simulated epilepsy lesions, the

P-HQ PET significantly improved the relative lesion activity

and visual detectability. Lastly, we have shown that the model

was able to generalize to clinical data, illustrating the proof-of-

concept that a model trained on Monte-Carlo simulated PET

data is applicable on real data.

To train our model we had to overcome the limited

availability of high quality training data, a common challenge for

the deblurring problem (53) and so we chose to use simulation.

We developed a pipeline based on a Monte-Carlo based PET

simulator as it can accurately model the PET acquisition process

including physical effects resulting in realistic sinograms (29)

that have the same data distribution as the real PET. Compared

to the few papers about PET deblurring with AI in image

space, our simulated PET were more realistic: two studies

used physically unrealistic degradation methods for their S-

SQ PET adding Gaussian noise to an inverted T1w MR or

down-sampling the standard PET image (54, 55). The latter

approach also does not allow improvement beyond S-SQ PET.

Two other studies used PET simulated analytically rather than

with a Monte Carlo method (27, 28). While the main drawback

of Monte-Carlo simulation is the computational burden, we

were able to simulate PET acquisitions in a reasonable amount

of time (about 3 h per scan) using PET SORTEO (29) which

has been validated to provide realistic simulation of the Siemens

Biograph mMR PET-MR (31), a system available across both

our institutions. To be as close as possible to the clinical

PET images, we reconstructed the generated sinogram using

e7toolsTM (Siemens Healthineers), which is also used for clinical

data. Next, we used the same pipeline to generate data with

a simulated epileptogenic lesion. This pipeline now enables

creation of a whole range of realistic datasets for training

if needed.

Our model has several particularities. We went beyond

previous published PET deblurring methods with AI which

used 2D models (27, 28, 54–56). We developed a 3D model,

following results in the PET denoising field where 3D models

tend to outperform 2D or 2.5D models (39, 57) because

of additional features in 3D space. To prevent the impact

of regional homogeneity on GT-HQ PET on the model

parameters, we trained using small brain patches (32 × 32

× 32 mm3) from PET data simulated with of large number

of GM/WM ratios. Thus, at the end of the training, the

network weights were defined to respond to a wide range of

voxel values (including hypometabolism) and patterns. The

inference was also computed using the same size of patches

which were then put together to obtain the predicted P-

HQ PET. Compared to many deblurring methods (including

some PVC methods and AI-based approaches) which rely on

anatomical information (26), we provide a model that only

relies on PET data which offers multiples advantages. Firstly,

as the method works in the image space it can be applied

on previously acquired PET even if raw data (sinograms)

are not or no longer available, as will be the case in most

clinical centers. Secondly, with the current development of

dedicated standalone brain PET scanners (58), a PET-only

method offers a unique opportunity to be combined with

novel high-performance, high-resolution hardware to detect

very small lesions. Thirdly, using a PET-only method prevents

potential performance degradation that could stem from inter-

modality alignment errors (59) which can occur even with

simultaneous PET-MR if the MR sequence used for deblurring

has been acquired at a different time to the emission data

under study.

Our model achieved very good performance for relative

lesion activity, which depicts lesion contrast, among all the

lesions, despite different localization or shape. In the S-SQ PET,

RLA was substantially higher at 0.83 ± 0.08 but decreased

toward the GT-HQ PET ground truth (0.45) with 0.67 ± 0.14

in P-HQ PET. There was one outlier in the 0.6 RLA group

with a P-HQ PET RLA value above one for a 37 mm3 lesion

in the lateral temporal lobe. This occurred because in the S-

SQ PET, the lesion had a RLA value (0.997) so close to 1 that

the information about presence of a lesion was lost during the

simulation process. This is a principal limitation of our model

which will only be overcome with higher resolution hardware.

However, these results suggested that the model improved the

RLA formost lesions even largely inferior to the nominal average

1D spatial resolution of 4.3mm in full width at half maximum of

the Siemens Biograph mMR (60), which defined a volumetric

resolution near 80 mm3. The quantitative results correlated well

to the visual analysis of the P-HQ PET images showing increased

visibility of the simulated lesions as well as slight improvement

in the confidence of the reader, suggesting the improvements
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from P-HQ PET are relevant for future clinical application for

epilepsy presurgical PET assessment.

Even if the SORTEO simulator is validated for the PET-MR,

clinical PET images from the PET-MR will be slightly different

requiring normalization, so the clinical P-HQ PET was expected

to be different. Nevertheless, distributions of the simulated data

and real data were close enough to enable use of both data

types with the same network. We therefore consider that the

clinical data application was successful in illustrating proof-of-

concept that a model trained on Monte-Carlo simulated PET

data is applicable on real data. Whereas, generalizability to out-

of-distribution data is a common critical limiting factor for deep

learning-based image processing (53), in our case this limitation

could in principle be overcome by creating more simulations

using the Monte-Carlo pipeline with settings tuned (29, 31) to

simulate different scanners and reconstructions. Nevertheless,

a study of generalization exceeds the scope of this manuscript.

Such a study would need to be carefully planned to include

reconstruction methods, scanner manufacturer, injection dose,

uptake time and acquisition time to quantify the potential of

such methods and their limits.

The realistic Monte-Carlo PET simulations and our training

method allowed us to directly apply the trained network on

clinical data. The P-HQ PET of the patients again showed

an improved visual quality as well as an improved reader

confidence. When we visually compared the GT-HQ PET and

the P-HQ PET, it was apparent that the cortical structures were

similar indicating that P-HQ PET from clinical data should

not mislead physicians. Also, the clinical reading of epilepsy

imaging does not rely on PET only. Indeed, physicians are

trained to read both PET and MRI independently first, and

jointly later, using the additional information to interpret the

metabolism. In addition, and as in clinical practice (for example

with non-attenuation corrected images), the non-enhanced

standard quality image would always be made available to the

reading physician to consult. One limitation of the clinical

application was the small retrospective cohort of unselected

epilepsy patients, but clinical evaluation of our model was not

the main objective of this work. In addition, our ground truth

was the visual assessment from the nuclear medicine physician

using the standard PET which is an inherent limit to show the

potential of the P-HQ PET. It would be interesting to evaluate

our method in patients for which the standard quality PET

was negative, but this is a very restrictive subpopulation where

“ground truth” is often impossible to obtain as patients then

neither undergo depth-electrode investigations nor surgery.

Nevertheless, the patient with a small right post-central

hypometabolism (Figure 8) underlines P-HQ PET’s potential

for clinical application. This work can be put into perspective

with the work of Baete and Goffin (12, 61) that used the

anatomy-based maximum a-posteriori (A-MAP) reconstruction

algorithm to improve detection of small areas of cortical

hypometabolism. Their method showed promise to increase

detectability of hypometabolic areas on interictal [18F]FDG

PET in a cohort of 14 patients with FCD. FCDs are the

most commonly resected epileptogenic lesions in children

and the third most common lesions in adults (8). FCD type

II is a malformation with disrupted cortical lamination and

specific cytological abnormalities (62). Surgery remains the

treatment of choice in drug resistant patients and relies on

lesion localization (63). In Goffin et al. (12) improvement

failed to reach significance due to the small sample size, but

underlined the clinical potential of such methods. For epilepsy

surgery, the outcome of seizures and long-term results, including

discontinuation of antiepileptic drugs, is highly dependent on

the discovery of an epileptogenic lesion in the surgical specimen;

for example, for FCD the chance of being seizure-free increases

to 67% for positive sample (64). Imaging has an important

role to localize FCD (9) in particular [18F]FDG PET (4, 65).

In a study assessing the impact of imaging on FCD surgery

outcome, there was no significant difference between FCDs

detected on [18F]FDG PET, whether MRI had been positive or

negative (66).

We quantitatively and qualitatively validated our model on

simulated data with and without epilepsy-typical lesions. We

also illustrated its potential applicability to clinical data. The

next step is to assess the performance of the P-HQ PET in a

clinical study, ideally in a large cohort of patients with well-

localized lesions (FCDs), such as seizure-free subjects after brain

surgery It will be also important to evaluate performance of

nuclear medicine physicians with different levels of experience:

P-HQ PET should be seen as a diagnostic support to improve

reader detection and confidence, allowing non-expert readers

to perform closer to expert reader performance. Another

interesting perspective would be to assess the improvement of

an AI based anomaly detection model (67) with the P-HQ PET

compared to the standard PET.

Conclusion

In this work, we trained a deep learning model to

map S-SQ PET to their GT-HQ PET using a new large

realistic Monte-Carlo simulated database. In an independent

test set, the P-HQ PET showed improved image quality

compared to S-SQ PET across several quantitative objective

metrics. Moreover, in the context of epilepsy simulated

lesions, the P-HQ PET improved the relative lesion activity

and their visual detection. Following this validation on

simulated lesion data and the successful clinical application

to illustrate the proof-of-concept that a model trained on

Monte-Carlo simulated PET data is applicable on real data,

next steps are to perform a generalization study and to

assess the performance of the P-HQ PET in a cohort of

epilepsy patients with well-characterized lesions and/or normal

standard-quality PET.
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