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Background: We assessed the effect of a closed–loop oxygen control system

in pediatric patients receiving high–flow nasal oxygen therapy (HFNO).

Methods: A multicentre, single–blinded, randomized, and cross–over study.

Patients aged between 1 month and 18 years of age receiving HFNO for

acute hypoxemic respiratory failure (AHRF) were randomly assigned to start

with a 2–h period of closed–loop oxygen control or a 2–h period of manual

oxygen titrations, after which the patient switched to the alternative therapy.

The endpoints were the percentage of time spent in predefined SpO2 ranges

(primary), FiO2, SpO2/FiO2, and the number of manual adjustments.

Findings: We included 23 patients, aged a median of 18 (3–26) months.

Patients spent more time in a predefined optimal SpO2 range when the

closed–loop oxygen controller was activated compared to manual oxygen

titrations [91·3% (IQR 78·4–95·1%) vs. 63·0% (IQR 44·4–70·7%)], mean

difference [28·2% (95%–CI 20·6–37·8%); P < 0.001]. Median FiO2 was lower

[33·3% (IQR 26·6–44·6%) vs. 42·6% (IQR 33·6–49·9%); P = 0.07], but median

SpO2/FiO2 was higher [289 (IQR 207–348) vs. 194 (IQR 98–317); P = 0.023]

with closed–loop oxygen control. The median number of manual adjustments
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was lower with closed–loop oxygen control [0·0 (IQR 0·0–0·0) vs. 0·5 (IQR

0·0–1·0); P < 0.001].

Conclusion: Closed-loop oxygen control improves oxygenation therapy in

pediatric patients receiving HFNO for AHRF and potentially leads to more

efficient oxygen use. It reduces the number of manual adjustments, which

may translate into decreased workloads of healthcare providers.

Clinical trial registration: [www.ClinicalTrials.gov], identifier [NCT 05032365].

KEYWORDS

intensive care, pediatric [MeSH], hypoxemia, oxygen therapy, high flow (NHF),
automation, closed-loop, oxygen controller

Introduction

Application of high–flow nasal oxygen (HFNO) has become
a first–line therapy for acute hypoxemic respiratory failure
(AHRF) in intensive care units (ICUs), emergency departments,
and now also in pediatric patients (1–3). A recent worldwide
survey demonstrated a large variability in HFNO settings,
including the fraction of inspired oxygen (FiO2) (3).

Pediatric intensivists tend to avoid both hypoxemia and
hyperoxemia (4–7) as previous studies suggest a relation
between excessive or inadequate use of oxygen and mortality
in pediatric ICU patients receiving oxygen therapy (8–12).
While ideally partial pressure of arterial oxygen (PaO2)
and arterial oxygen saturation (SaO2) are used to titrate
oxygen, these values are often difficult to monitor in pediatric
patients. Pulse oximetry (SpO2) may serve as an attractive
alternative as it offers the advantage of continuous monitoring.
A search in MEDLINE, Embase, CINAHL, and Web of
Science on May 16, 2022, with the terms (“closed-loop”
OR “automatic”) AND (“oxygen” OR “oxygen therapy”)
with no date or language restrictions, identified 33 clinical
investigations of which 27 were randomized clinical studies.
All studies concluded that SpO2 can be used by closed-
loop oxygen systems to automatically adjust the FiO2. None
of these studies, however, assessed the effects of closed-
loop oxygen control during HFNO in pediatric patients
(13–44).

Studies testing the efficiency and safety of closed-loop
oxygen systems in pediatric patients receiving HFNO for AHRF
are currently lacking. Therefore, we performed a randomized
crossover study to evaluate the efficiency of a closed-loop oxygen
control system integrated into a HFNO device with respect to
the quality of oxygen therapy in pediatric patients. We also
tested its safety, determined total oxygen use, and compared
the number of manual adjustments between closed-loop oxygen
control and manual oxygen titration. We hypothesized this

closed-loop oxygen system to increase time spent within
predefined optimal SpO2 ranges.

Materials and methods

Study design

This is a multicentre, single-blinded, randomized, crossover
study of closed-loop oxygen control vs. manual oxygen titrations
in pediatric patients in three hospitals in Turkey. Patients were
screened for participation in the pediatric ICUs in the Dr.
Behcet Uz Children’s Research and Training Hospital in Izmir,
the Erzurum Territorial Training and Research Hospital in
Erzurum, and the Cam Sakura Research and Training Hospital
in Istanbul, from September 2021 to January 2022. The study
was approved by the Institutional Review Boards (604/2021/13-
01) and conducted in accordance with the Declaration of
Helsinki. The study is registered at ClinicalTrials.gov (study
identifier NCT 05032365).

Participants

Patients were eligible if: (1) aged between 1 month and
18 years of age and (2) receiving HFNO with FiO2 ≥ 25%
to maintain SpO2 within the preferred target ranges. Patients
were only included if considered to be in a clinical stable
condition, i.e., not expected to need a change in respiratory
support, like non-invasive or invasive ventilation in the
next 5 h. We excluded patients with congenital or acquired
hemoglobinopathies affecting SpO2, patients with cyanotic
heart disease, and patients who needed continuous infusion
of epinephrine or norepinephrine at rates higher than 0.2
µg/kg per minute. We also excluded patients for which no
written informed consent could be obtained, patients that were
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previously included in this study, and patients that were enrolled
in another interventional study.

Randomization and masking

Patients were randomized to start with a 2–h period of
closed-loop oxygen control or a 2–h period of manual oxygen
titration. Thereafter, patients were switched to the alternate
therapy. Randomization was 1:1, with blocks of four, using
sealed opaque envelopes. Due to the intervention, healthcare
staff could not be blinded. Patients remained blinded for the way
oxygen was titrated.

Procedures

Patients were equipped with an appropriately sized and
placed nasal cannula and kept in a semi-recumbent position
for the duration of the study. A pediatric ventilator equipped
with a humidifier device (Hamilton–C1 with H–900 humidifier,
Hamilton Medical AG, Bonaduz, Switzerland) was used for
HFNO. Patients were sedated as needed, at a sedation level
sufficient for each patient. The sedation level was not altered for
the duration of the study. Patient care and standard activities,
such as suctioning of secretions or feeding, were uninterruptedly
performed as usual and at random in either period. At the study
sites, during daytime and night-time shifts, the nurse and doctor
to patient ratios were approximately 6:1 and 12:1, and 2:1 and
3:1, respectively. This setting not changed during the conduct
of the study, i.e., these ratios were not different during the two
crossover phases. Also, there was no study personnel present
during these two phases.

After randomization, the attending physician decided on the
optimal SpO2 range, individualized for each patient according
to the current clinical situation and medical history. After the
first 2–h period, a washout period was established for 30 min,
after which the patient was switched to the second 2–h period
with the alternate oxygen titration strategy (Supplementary
Figure 1). With closed-loop oxygen control, patients’ SpO2 was
kept in a predefined target range via automatic adjustment of the
FiO2. In the manual oxygen titration phase of the study, manual
adjustments to FiO2 were performed by the bedside doctors or
nurses, using the same SpO2 target range. The flow of the HFNC
was not altered during the two crossover phases of the trial.
The SpO2 target range was defined by setting four cutoffs: an
upper and a lower “optimal” cutoff, and an upper and lower
“suboptimal” cutoff. The optimal cutoffs were from 94 to 98%
or from 92 to 96%. The corresponding suboptimal cutoffs were
from 90 to 94% and from 98 to 99%, and from 88 to 92% and 96
to 98% (Supplementary Table 1). The running principles of the
closed-loop system are detailed in Supplementary Table 2.

Data collection

Ventilation parameters were captured in a case report
form (CRF). HFNO data, including FiO2, airflows, and manual
titrations were captured every second using a Memory Box
(Hamilton Medical AG) connected to the RS–232 interface port
on the ventilator.

Definitions

Every recorded value of SpO2 was classified as either optimal
if within the individualized predefined range, suboptimal high
or low when outside the optimal SpO2 range, but inside
the suboptimal cut-offs, or unacceptable when beyond the
suboptimal cut-offs (as shown in Supplementary Table 1).

Outcomes

The primary objective of the study was to assess the
efficiency of the closed-loop oxygen control system. Therefore,
the primary endpoint was the percentage of time spent in
predefined target ranges for SpO2 in each 2–h period. Secondary
endpoints were the percentage of time spent in suboptimal
and unacceptable SpO2 ranges, the FiO2 and PaO2/FiO2

ratio, the number of manual oxygen adjustments, and the
number of alarms.

Power calculation

The sample size was calculated by means of a pilot study of
seven patients (7 × 240 = 1,680 min) in which we determined
the difference in the percentage of time spent in optimal
target ranges for SpO2 between closed-loop and manual oxygen
titrations. Based on the pilot data, G∗Power computed that the
study should have an additional 21 patients to detect an effect
size of Cohen’s d = 0.86 with 95% power (two-tailed α of 0.05)
in a Wilcoxon signed-rank test (45). To account for potential
dropouts, defined as a patient who required either non-invasive
ventilation or intubation for invasive ventilation during the two
phases of the study, consent withdrawal by patient or family,
poor quality of SpO2 readings for > 1 h during one of the study
phases, or technical problem in recording, we decided to have a
sample size of 23 patients.

Statistical analysis

Shapiro–Wilk, skewness, and kurtosis normality tests were
used to check the distribution of data. Continuous data were
expressed in terms of either mean and standard deviation
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FIGURE 1

Trial profile.

(SD) or median and interquartile range [IQR], according to
the distribution.

Data were analyzed using either a paired samples t-test or
Wilcoxon test, depending on which was most appropriate. The
Wilcoxon signed-rank test was used for the comparison between
the percentage of time spent in the target range of SpO2 with
manual FiO2 adjustments and the percentage with closed-loop
FiO2 control.

A P-value of less than 0·05 was considered statistically
significant for all comparisons. Data were calculated with
MATLAB (version 2021b) (The MathWorks, Inc., Natick,
MA, United States) and statistical testing was carried out

with the XLSTAT (version 2016) (Addinsoft, Paris, France).
Figures were constructed using JASP (version 2022) (JASP
Team, Amsterdam, The Netherlands) and GraphPad PRISM
(version 9) (San Diego, CA, USA).

Results

From August 2021 to November 2021, 131 patients were
screened; of 80 eligible patients, 57 met one or more exclusion
criteria, and 23 patients were included (Figure 1). Baseline
characteristics are presented in Table 1. The majority of patients

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.1046902
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1046902 November 10, 2022 Time: 17:20 # 5

Sandal et al. 10.3389/fmed.2022.1046902

was aged 2 years of age or younger, and in approximately half
of the patients, AHRF was due to a respiratory infection. Two-
third of patients received HFNO after having received invasive
ventilation.

TABLE 1 Baseline characteristics of the study cohort.

Variables Median (IQR) or mean (SD) or n (%)

Gender ratio (%f/%m) 43/57

Age (months) 18 (3–26)

Height (cm) 75 (55–87)

IBW (kg) 9.3 (4.5–12.2)

PIM3 10 (6.3–18.2)

PELOD 5.5 (3.5–19.2)

PICU duration (days) 4 (3–18)

S/F ratio 242.6 (207.6–312)

HFNO settings

Flow (l/m) 2 (1.6–2.4)

Temperature (◦C) 37 (37–38)

Reason for HFNO

After extubation 15 (65)

De novo ventilation support 8 (35)

Admission diagnosis

Respiratory

A. pneumonia 11 (48)

A. bronchiolitis

Cystic fibrosis

LRTI

Laryngotracheomalacia

Neurologic 4 (17)

SE

Meningoencephalitis

Hyrdrocephalus

Cardiovascular

PDA 3 (13)

AVSD

VSD

Sepsis 3 (13)

Renal/metabolic

RTA 2 (9)

DKA

Lung physiology

Obstructive 13 (57)

Restrictive 4 (17)

Mixed 6 (26)

Data are expressed as median (interquartile range, IQR) or as mean (standard deviation,
SD) or number and percentage. IBW, Ideal body weight; PIM3, Pediatric index
of mortality 3, probability of death; PELOD, Pediatric logistic organ dysfunction,
probability of death; PICU duration, duration of PICU stay until study day; S/F
ratio, Peripheral oxygen saturation/fraction of inspired oxygen; A. pneumonia, Acute
pneumonia; A. bronchiolitis, Acute bronchiolitis; LRTI, Lower respiratory tract infection;
SE, Status epilepticus; VP Shunt, Ventriculoperitoneal shunt; VSD, Ventricular septal
defect; PDA, Patent ductus arteriosus; AVSD, Atrioventricular septal defect; RTA, Renal
tubular acidosis; DKA, Diabetic Keto Acidosis.

Patients spent more time in optimal SpO2 ranges when the
oxygen controller was activated compared to manual oxygen
titrations [91·3% (IQR 78·4–95·1%) vs. 63·0% (IQR 44.4–
70.7%), mean difference 28·2% (95%–CI 20·6–37·8)]; P < 0.001]
(Table 2 and Figure 2).

Patients spent significantly less time in the unacceptably
high and unacceptably low SpO2 ranges, and significantly less
time in suboptimal low and suboptimal high SpO2 ranges when
the oxygen controller was activated (Table 2 and Figure 2).

The median FiO2 was lower with closed-loop oxygen
control, although this difference did not reach statistical
significance (Table 2). The median SpO2/FiO2 ratio was
significantly higher with closed-loop oxygen control (Table 2
and Supplementary Figure 2). There were significantly fewer
manual adjustments needed, and the number of alarms
was lower with closed-loop oxygen control (Table 2 and
Supplementary Figure 2).

Discussion

The findings of this multicentre randomized crossover study
in pediatric patients under HFNO for AHRF can be summarized
as follows: (1) Compared to manual oxygen titrations, the
use of a closed-loop oxygen controller built into an HFNO
device increased time spent in optimal SpO2 ranges; (2)
decreased time spent in suboptimal and unacceptably high and
unacceptably low ranges; (3) decreased time spent in suboptimal
and unacceptable SpO2 ranges; (4) reduced oxygen use; and (5)
lead to fewer manual adjustments and less alarms.

Our study has several strengths. We used a crossover
design, making it possible to compare oxygen therapy under
closed-loop oxygen control vs. manual oxygen titrations within
each individual patient, increasing the statistical power of our
investigation. We performed the study in multiple centers,
including university hospitals and teaching hospitals, whereby
we increased the external validity of the findings. We followed
a strict study protocol and used randomization to prevent
potential bias. We had an analysis plan in place before cleaning
and closing the database; specifically, we predefined the optimal,
suboptimal, and unacceptable SpO2 ranges that were based
on consensus before the study. To our best knowledge this is
the first study that tested the efficiency of closed-loop oxygen
control in pediatric patients receiving HFNO.

The findings of our study are in line with previous studies
testing the efficacy of closed-loop oxygen control in preterm
infants (13–34) and adults (16, 35–44) receiving HFNO for
hypoxemia of various causes. In all those studies, closed-loop
oxygen control outperformed healthcare workers performing
manual oxygen titrations with respect to the percentage of time
spent in target SpO2 ranges and to the time spent in potentially
dangerous SpO2 zones (13–44). Our study increases the
understanding of the efficacy of closed-loop oxygen control in
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FIGURE 2

Time spent in optimal, suboptimal, and unacceptable SpO2 ranges.

TABLE 2 Primary and secondary outcomes.

Variable Closed loop Manual Median difference (95% CI) P-value

Primary outcome

Time spent in optimal SpO2 range (%) 91.3 (78.4–95.1) 63 (44.4–70.7) 28.2 (20.6–37.8) <0.001

Secondary outcomes

Time spent in suboptimal SpO2 range (%)

Low 1.5 (0.6–2.8) 2.6 (0.2–8.8) –2.9 (–6 to 0.2) 0.086

High 5.9 (3.4–15.1) 19.9 (7.7–37.5) –9.7 (–16.8 to –4.1) 0·003

Mean FiO2 (%) 33.3 (26.6–44.6) 42.6 (33.6–49.9) –4.3 (–8·7 to 0.5) 0.07

Mean SpO2/FiO2 289.4 (206.7–348.3) 229.3 (195.9–295.3) 37.5 (6.5–70.5) 0.023

Manual adjustments (n/h) 0 (0–0) 0.5 (0–1) –1.3 (–2.6 to –0.5) <0.001

Alarms (n/h) 0 (0–0.3) 0.5 (0–2) –1.2 (–2.3 to –0.4) 0.002

Percentage of time SpO2 available 98.5 (95.8–100) 97.2 (85.1–99.6) 2.6 (–0.2 to 7.7) 0.065

Percentage of time SpO2 < 88% 0 (0–0) 0 (0–0) 0 (0–0) 0.286

Percentage of time SpO2 < 85% 0 (0–0) 0 (0–0) 0 (0–0) 0.218

Number of events SpO2 < 88% 0 (0–0.5) 0.4 (0–1) –0.4 (–0.9 to 0.1) 0.065

Percentage of time FiO2 < 40% 81.1 (42.6–1) 34.4 (0–1) 32.4 (–5·2 to 62) 0.103

Percentage of time 40% ≤ FiO2 ≤ 60% 10.3 (0–3.7) 29.6 (0–1) –36 (–68·1 to –8.3) 0.015

Percentage of time FiO2 > 60% 0 (0–15.1) 0 (0–3.3) 13 (–8.7–53.1) 0.262

Data are expressed as median (interquartile range, IQR) or as mean (standard deviation, SD). Wilcoxon or student’s t-test was performed depending on each variable distribution according
to the Shapiro–Wilk test. 95% CI, 95% confidence interval; SpO2 , peripheral oxygen saturation; FiO2 , Fraction of inspired oxygen.

children with AHRF by providing proof that it also outperforms
manual FiO2 titration in patients that are difficult to stabilize.
In this respect, the performance is particularly advantageous
since it has a strong potential to reduce workloads by the often
overtasked ICU healthcare professionals (46, 47).

The findings of our investigation are also in line with
studies of closed-loop oxygen controllers in invasively ventilated
neonates (17, 48–50) and adult patients (51–56). In those
studies, closed-loop oxygen control outperformed manual
oxygen titrations with respiratory support in which oxygenation
is not only driven by FiO2, but also by the provided tidal

volumes and airway pressures. Taken together, closed-loop
oxygen control has a wide range of applications in critically
ill hypoxemic patients, under various forms of support, from
non-intubated patients to intubated patients, from passive
to active patients, and in patients that develop hypoxemia
after extubation.

It is well known that intensive care doctors and nurses avoid
both hypoxemia and hyperoxemia for various valid reasons.
This is particularly true for healthcare workers treating critically
ill neonates and children (4–7). This approach requires not only
well-trained nurses but also large numbers of ICU nurses at the
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bedside. Indeed, hypoxemia can only be minimized if a nurse
is near constantly present to perform manual oxygen titrations
(48, 49). This can be very impractical and costly, and can actually
not be delivered on a regular basis.

One previous study found that doctors’ responses to oxygen
levels beyond the optimal SpO2 zones are “asymmetrical”; they
try to prevent both hypoxemia and hyperoxemia, but they
seem to put more emphasis on preventing the first than the
second (57). Not surprisingly, this results in more time spent in
suboptimal or unacceptable higher SpO2 ranges. The advantage
of a closed-loop oxygen control system is that deteriorations to
both lower and higher SpO2 ranges are prevented equally.

We found that SpO2/FiO2 ratios were higher under closed-
loop oxygen control, suggesting that closed-loop oxygen control
not only prevents hypoxemic and hyperoxemic deteriorations,
but improves oxygenation overall. At the same time, it consumes
less oxygen to achieve the same oxygenation levels, which may
be critical in low-resource environments or at times of increased
demand, such as a rise in oxygen use during a pandemic. This
is consistent with several other research demonstrating that
patients received less FiO2 under closed-loop control of FiO2

than during manual titration of FiO2 (49, 51, 52, 58).
Interestingly, we noticed much fewer manual adjustments

and also much less alarms per hour with closed-loop oxygen
control. This may also translate into a reduction in workloads
as our data show that manual adjustments are hardly needed
with the use of an oxygen controller. Higher workloads for ICU
staff are associated with higher mortality rates (59). On top of
that, our data also show a strong reduction in the number of
alarms, which may increase patient comfort and sleep hygiene,
and thereby reduce the risk of delirium (60, 61).

Our study has limitations. Due to the nature of the
intervention, we were not able to blind the healthcare workers.
However, we used predefined SpO2 zones that reflected the
zones to which ICU nurses titrate FiO2 in daily practice. The
periods of manual oxygen titrations and automated oxygen
control were lasting only 2 h, and thus did not cover all daily
activities. However, we wanted to have comparable patient
conditions in the two crossover phases for as much as possible,
and these conditions could change rapidly in pediatric patients.
Additionally, we intended the two study phases to take place
in a single shift, which limited the amount of time we had for
the full investigation in each individual patient. The crossover
design prohibits us from examining the effects of closed-loop
oxygen control on clinical endpoints like duration of HFNO or
escalation of ventilatory support to invasive ventilation. Future
studies should focus on these endpoints.

Conclusion

In conclusion, compared to manual oxygen titrations,
closed-loop oxygen control improves time spent in favorable

SpO2 zones and reduces time spent in potentially dangerous
SpO2 zones in pediatric patients under HFNO for AHRF.
In addition, closed-loop oxygen control improves overall
oxygenation, uses less oxygen, and is associated with fewer
manual adjustments and less alarms.
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