AUTHOR=Hassan Doaa , Gill Hunter Mathias , Happe Michael , Bhatwadekar Ashay D. , Hajrasouliha Amir R. , Janga Sarath Chandra TITLE=Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy JOURNAL=Frontiers in Medicine VOLUME=Volume 9 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.1050436 DOI=10.3389/fmed.2022.1050436 ISSN=2296-858X ABSTRACT=Diabetic retinopathy (DR) is a late microvascular complication of Diabetes Mellitus (DM) that could lead to permanent blindness in patients, without early detection. Although adequate management of DM via regular eye examination can preserve vision in in 98% of the DR cases, DR screening and diagnoses based on clinical lesion features devised by expert clinicians; are costly, time-consuming and not sufficiently accurate. This raises the requirements for Artificial Intelligent (AI) systems which can accurately detect DR automatically and thus preventing DR before affecting vision. Hence, such systems can help clinician experts in certain cases and aid ophthalmologists in rapid diagnoses. To address such requirements, several approaches have been proposed in the literature that use Machine Learning (ML) and Deep Learning (DL) techniques to develop such systems. However, these approaches ignore the highly valuable clinical lesion features that could contribute significantly to the accurate detection of DR. Therefore, in this study we introduce a framework called DR-detector that employs the Extreme Gradient Boosting (XGBoost) ML model trained via the combination of the features extracted by the pretrained convolutional neural networks commonly known as transfer learning (TL) models and the clinical retinal lesion features for accurate detection of DR. The retinal lesion features are extracted via image segmentation technique using the UNET DL model and captures exudates (EXs), microaneurysms (MAs), and hemorrhages (HEMs) that are relevant lesions for DR detection. The feature combination approach implemented in DR-detector has been applied to two common TL models in the literature namely VGG-16 and ResNet-50. We trained the DR-detector model using a training dataset comprising of 1840 color fundus images of which 920 images are healthy. To validate the DR-detector model, we test the model on external dataset that consists of 81 healthy images and 81 images with DR signs. The experimental results show that the DR-detector model achieves a testing accuracy of 100% in detecting DR after training it with the combination of ResNet-50 and lesion features and 99.38% accuracy after training it with the combination of VGG-16 and lesion features.