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Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent

hepatic disorders that 20-30% of the world population suffers from. The

feature of NAFLD is excess lipid accumulation in the liver, exacerbating

multiple metabolic syndromes such as hyperlipidemia, hypercholesterolemia,

hypertension, and type 2 diabetes. Approximately 20-30% of NAFLD

cases progress to more severe chronic hepatitis, known as non-alcoholic

steatohepatitis (NASH), showing deterioration of hepatic functions and

liver fibrosis followed by cirrhosis and cancer. Previous studies uncovered

that several metabolic regulators had roles in disease progression as key

factors. Peroxisome proliferator-activated receptor alpha (PPARα) has been

identified as one of the main players in hepatic lipid homeostasis. PPARα

is abundantly expressed in hepatocytes, and is a ligand-dependent nuclear

receptor belonging to the NR1C nuclear receptor subfamily, orchestrating

lipid/glucose metabolism, inflammation, cell proliferation, and carcinogenesis.

PPARα agonists are expected to be novel prescription drugs for NASH

treatment, and some of them (e.g., Lanifibranor) are currently under clinical

trials. These potential novel drugs are developed based on the knowledge

of PPARα-activating target genes related to NAFLD and NASH. Intriguingly,

PPARα is known to suppress the expression of subsets of target genes

under agonist treatment; however, the mechanisms of PPARα-mediated gene

suppression and functions of these genes are not well understood. In this

review, we summarize and discuss the mechanisms of target gene repression

by PPARα and the roles of repressed target genes on hepatic lipid metabolism,

fibrosis and carcinogenesis related to NALFD and NASH, and provide future

perspectives for PPARα pharmaceutical potentials.
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Introduction

Peroxisome proliferator-activated receptors (PPARs)
are ligand-dependent nuclear receptors belonging to
the NR1C nuclear receptor subfamily, involved in
lipid/glucose metabolism, inflammation, cell proliferation,
and carcinogenesis (1, 2). There are three PPAR isoforms,
PPARα, PPARβ/δ, and PPARγ, each with different tissue
distribution and expression patterns. PPARα is abundantly
expressed in the energy-producing tissues such as the liver,
heart, kidney, and brown adipose tissue, whereas PPARγ is
mainly expressed in the adipose tissue and macrophages, and
PPARβ/δ is more widely expressed compared with PPARα (3, 4).
The intense interest in PPARα is driven in part to its activation
by agonists that promote upregulation of target genes related
to lipid catabolism, modulating microsomal, peroxisomal, and
mitochondrial fatty acid oxidation, lipoprotein metabolism,
triglyceride synthesis, and gluconeogenesis (5). In the liver,
these target genes are significantly involved in the pathogenesis
of liver steatosis, including non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH) (6, 7).
Specifically, PPARα activation may contribute to the prevention
of NAFLD and NASH aggravation because the PPARα-activated
target genes have roles in anti-inflammation and reduction
of lipid accumulation in the liver. PPARα activation could,
therefore, be a primary pharmaceutical target (8). PPARα

agonists also repress target genes (9–11) but the contribution
of these “repressed target genes” to NAFLD and NASH and
the mechanisms involved are not well understood. In this
review, we focus on the target genes repressed by PPARα and
the repression mechanisms elucidated hitherto, and discuss the
potential significance of PPARα as a transcriptional suppressor.

Main

Physiology of peroxisome
proliferator-activated receptor α

Peroxisome proliferator-activated receptor α was discovered
in rodents in as primarily a carcinogen-responsible peroxisome
proliferator (12). Peroxisome, a membrane-bound organelle
in the cytoplasm of eukaryotic cells, performs key functions
in multiple metabolic pathways such as purine catabolism,
fatty acid β-oxidation, and phospholipid synthesis, in addition
to the conversion of reactive oxygen species (13). PPARα

is abundantly expressed in tissues metabolizing fatty acids
such as liver, skeletal muscle, heart, and brown adipose
tissue, in addition to inflammatory immune cells such
as monocytes and macrophages (14–17). In hepatocytes,
PPARα regulates peroxisomal and mitochondrial β-oxidation,
lipid biogenesis and transport, cholesterol and glucose
metabolism, and inflammation (18). Although PPARα protein

is known to localize in the nucleus regardless of the activation
state (19), in some cell types such as chondrocytes (20)
and differentiated human macrophages (21), PPARα can
also be found in the cytoplasm. The PPARα expression
is regulated in transcriptional and post-transcriptional
manners. HNF4α activates PPARα transcription by binding
to the response element DR-1 in the promoter region (22),
whereas COUP-TFII antagonizes the HNF4α transcriptional
activity by competing with the binding to DR-1 in the
promoter (23). A transcription factor KLF6 induces miR-
10b that inhibits PPARα protein translation (24). A recent
study showed that hepatic Argonaute 2 (Ago2) inhibits
PPARα expression, suggesting that Ago2-mediated microRNA
processing and RNA silencing have significant roles in PPARα

repression (25).

Structure

PPARα has four structural domains, designed A/B, C, D,
and E/F domains. The N-terminal A/B domain harbors a
ligand-independent transcriptional activating function (AF-1).
The C domain includes DNA binding domain (DBD) essential
for binding to the PPAR response element (PPRE) in the
target gene promoter/enhancer sites (26). The D domain is
a hinge region that includes binding sites for co-repressors
such as NCoR and SMRT. The E/F domains carry ligand
binding domains (LBD) that harbor a relatively larger cavity
of ligands compared with other nuclear receptors (17). The
binding of agonists to LBD induces the conformation change,
which results in the recruitment of transcriptional complexes
with co-activators and subsequent transcriptional activation
(27–29).

Selective agonists

Free fatty acids (FFAs) have been identified as endogenous
agonists for PPARα. The n-3 polyunsaturated fatty acids
(PUFAs), such as Eicosapentaenoic acid (EPA) and
Docosahexaenoic acid (DHA), in particular, have been
shown to be potent agonism compared with other FFAs (30).
Such endogenous agonists come from dietary nutrients when
feeding or from adipose tissues during fasting. In addition to
endogenous agonists, synthetic amphipathic carboxylic acids
such as fibrates that are frequently used for the treatment of
hyperlipidemia and hypercholesterolemia, are demonstrable
PPARα selective agonists (5). The first fibrate drugs were
developed during the 1960s-1980s, although PPARα was not
identified as the direct molecular target at that time. Currently,
several synthetic PPARα agonists developed have been used
clinically and experimentally (e.g., Fenofibrate, Clofibrate,
Bezafibrate, Gemfibrozil, Pemafibrate, Wy-14,643, GW9578,
GW7647) (5).
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Transcriptional gene activation by
peroxisome proliferator-activated
receptor α

Studies over the past decades elucidated gene transcription
mechanisms of PPARα (2, 5, 31–33). Retinoid X receptor alpha
(RXRα), a nuclear receptor belonging to the NR2B subfamily, is
an obligate heterodimer partner for PPARα. RXR family consists
of three distinct members, known as RXRα, RXRβ, and RXRγ

(34, 35). RXRα (NR2B1) was the first identified RXR that is
abundantly expressed in the liver. While RXRα is activated by
the endogenous agonist 9-cis retinoid acid, ligand-independent
RXRα forms a transcription complex with PPARα for the
transcriptional activation. One of the significant physiological
roles of PPARα is as a transcription factor activating target
gene expressions (36–39). When a selective agonist binds
to the LBD of PPARα, PPARα can bind to PPRE sites via
heterodimerization with RXRα. PPRE sites consist of direct
repeat type 1 (DR-1), which is a tandem repeat of recognition
motif 5′-AGGTCA-3′ separated by a single nucleotide (40).
PPARα binds to the 5′ extended half-site of the response
element, whereas RXRα binds to the 3′ half-site (41, 42).
Although PPARα can bind to PPRE without agonists, the
interaction is not stable because of the chromatin condensed
state (27–29). Furthermore, the lack of an agonist inhibits
transcriptional activity of PPARα as co-repressors, such as
NCOR1 and SMRT, are bound (43). Binding of the agonists
PPARα releases bound co-repressors as PPARα conformation
changes, and with co-activator recruitment of components, such
as CBP1/P300, SRC-1, and PGC1, target gene transcription is
activated (44). The binding of co-activator CBP1 is known to
induce HAT activity, resulting in chromatin remodeling, which
opens condensed genomic DNA to exposed PPRE sites and
allows access of PPARα/RXRα heterodimer to the PPRE tightly
(45). Taken together, a canonical function of PPARα is to induce
target gene transcription by forming the transcription complex
with RXRα and other transcriptional co-activators when the
agonist binds and modifies the conformation of PPARα .

Peroxisome proliferator-activated
receptor α-mediated transcriptional
gene repression

In addition to transcriptional activation, transcriptomic
studies in the PPARα-activated cells and tissues indicate
that there are numerous target genes whose expression is
repressed by PPARα, and these repressed genes have significant
roles in various homeostasis (10), although the molecular
mechanisms of how PPARα suppresses target genes remain
poorly studied. Gene repression mechanisms have been reported
for other nuclear receptors, such as the Thyroid receptor and
Glucocorticoid receptor (46), from which it is deduced that

the repression mechanisms can be classified as Trans-acting,
Cis-acting, or indirect manner.

Trans-acting repression

Several studies reported that the activated PPARα directly
binds to transcription factors and interferes the transcriptional
activity. The protein-protein interaction-mediated transcription
repression is known as trans-acting repression (Figure 1A). It
has been elucidated that PPARα has roles in the repression of
hepatic inflammation by inhibiting Activator protein 1 (AP-
1) and Nuclear factor-κB (NF-κB) pathways through trans-
repression. Ligand-activated PPARα directly binds to a NF-
κB component p65 and the N-terminus JNK-responsive part
of c-Jun, resulting in the prevention of the unique response
element binding of NF-κB and AP-1 (47). Bougarne et al.
uncovered that the PPARα interference of p65 is synergistically
induced with trans-repression by GR binding to p50 (48).
Another study involving mice carrying mutant PPARα lacking
the DBD region showed significant suppression of chronic liver
inflammation by NF-κB and AP-1 pathway, suggesting that NF-
κB and AP-1 suppression by PPARα is independent of the DNA
binding, and that PPARα directly interacts with NF-κB and AP-1
(49). Since NF-κB and AP-1 pathways regulate the expression of
pro-inflammatory cytokines, these findings suggest that PPARα

may exert its anti-inflammatory effects by suppressing these
pathways in the liver. Previous studies reported that saturated
fatty acids activate JNK in hepatocytes (50, 51), whereas the
hepatic JNK is required for AP-1 activation and NCOR1
expression (52). As NCOR1 is a potent co-repressor for PPARα,
these findings suggest that the JNK-NCOR1 axis reciprocally
affects the PPARα anti-inflammatory effect. In addition to NF-
κB and AP-1, it was revealed that activated PPARα also binds
to GRIP1/TIF2, which is a co-activator of C/EBPβ. The PPARα’s
interaction with GRIP1/TIF2 results in interference of C/EBPβ

binding to the response element (53). Blanquart et al. reported
that the protein kinase C pathway-mediated phosphorylation
of C/EBPβ at Ser179 and Ser230 residues suppresses C/EBPβ

activity in the fibrinogen-β promoter (54). Oka et al. reported
that PPARα and SIRT1 form a heterodimer and bind to ERR-
responsive elements, leading to competitive inhibition of ERR
pathway related to mitochondria respiration (55, 56). Several
studies reported HNF4α inhibition by PPARα. Shin et al showed
that PPARα activation decreases HNF4α protein but not mRNA,
resulting in transcriptional inhibition of the HNF4α target
gene ACMSD (57). Another study showed that an HNF4α

target gene, Gls2, is significantly repressed by PPARα with
HNF4α protein degradation (58). Recently, it was reported
that PPARα/RXRα heterodimer binds to HNF4α and promotes
ubiquitination, resulting in the HNF4α protein degradation and
repression of the HNF4α target gene Sds promoter activity
(59). Of note, Leuenberger et al reported that SUMOylated but
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FIGURE 1

Transcriptional repression manners by PPARα. (A) Trans-acting repression manner by direct interaction between PPARα and the target
transcription factors (TF). (B) Cis-acting repression manner depending on PPARα binding to the PPAR responsive element (PPRE). (C) Indirect
repression manner, upregulating transcriptional suppressors, long non-coding RNAs, microRNAs and epigenetic modulators.

not naïve PPARα interacts with a transcription factor GABPα

and represses the transcriptional activity in Cyp7b1 promoter,
indicating that PPARα is subject to protein modifications for
transcriptional activity (60). Altogether, these studies suggest
that direct interactions between PPARα and transcription
factors may affect numerous metabolic and inflammatory
pathways through gene repression.

Cis-acting repression

Previous studies revealed that DNA-bound PPARα could
prevent the transcription of target genes in a number of
different systems. The repression manner based on protein-
DNA interaction is known as cis-acting repression (Figure 1B).
Mogilenko et al. uncovered that transcriptional activity in
complement C3 promoter is inhibited by physical interactions
between PPRE-bound PPARα and p65. They showed that
PPARα binding to PPRE is not limited only to transcriptional
activation but repression (61). ChIP-chip analysis by van der
Meer et al. proposed that PPARα binding to PPRE near
STAT response elements interferes with the STAT1 and STAT3
transcriptional activation in the target gene promoters such as
STARD13 and TOX3 in HepG2 cells (62). You et al reported
that activated PPARα binds to a PPRE located on the Glut-1
promoter, resulting in the inhibition of transcriptional activity
and cancer cell proliferation (63). A recent study supported

that the Glut-1 inhibition by PPARα contributes to tumor
growth and chemo-resistance (64). Zhang et al showed that
PPARα activation by fenofibrate recruits NCOR and associated
HDAC to the INFγ gene locus, resulting in the repression of
IFNγ expression in mouse T cells (65). Although the functional
detail of “repressive PPRE” as a transcriptional silencer is still
controversial, these studies clearly suggest that PPARα has cis-
element-dependent gene repression mechanisms.

Indirect repression

Several studies have reported that PPARα had mechanisms
of transcriptional inhibition not only by direct interaction
but also indirectly through involvement/regulation of other
transcriptional regulators, long non-coding RNA (lncRNA),
microRNA and epigenetic modulators (Figure 1C). Previous
studies uncovered that Cyp7a1 and Cyp27a1 expression are
repressed by PPARα agonism in human and rodent cells
(66–68). These cytochrome P450 proteins have significant roles
in bile acid synthesis, resulting in a decline in the output of bile
acids and an increase in cholesterol secretion. It was reported
that PPARα agonism increases a nuclear receptor Rev-erbα

expression, and Rev-erbα inhibits Apoa1 gene transcription in
rodents (69–71). The PPARα-activated Rev-erbα also represses
Apoc3 gene expression by binding to the enhancer/promoter
region (72–74). As genetic deletion of Rev-erbα leads to hepatic
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TABLE 1 Summary of repressed target genes of PPARα .

Trans-acting repression Target TFs Function References

p65 (NF-KB) Transcription of
pro-inflammatory genes

(47–49)

c-Jun (AP-1) Transcription of cell
proliferation and apoptosis
related genes

(47, 49)

GRIP1/TIF2 Co-activator for nuclear
receptors

(53)

SIRT1 Deacetylation of
transcription factors

(55, 56)

HNF4α Transcription of metabolism
related genes

(57–59)

GABPα Transcription of metabolism
related genes

(60)

Cis-acting repression Target cis-element Repressed gene
expression

References

Complement C3 promoter Complement C3 (61)

STAT response element STAT target genes (62)

Glut-1 promoter Glut-1 (63, 64)

IFNy gene locus IFNy (65)

Indirect
repression

Direct targets Repression
mechanism

Repressed
indirect target

Function References

Unknown Unknown Cyp7a1, Cyp27a1 Decrease of bile acid synthesis
and increase of cholesterol
secretion

(66–68)

Rev-erbα Suppression of the
target transcription

Apoal, Apoc3 Modification of lipid metabolism (69–74)

Unknown Unknown TGF-β1, PDGF-BB Repression of PAI-1, Smad-3
expressions

(76, 77)

TAK-1 Prevention of TAK-1
phosphorylation

TGF-β target genes Repression of TGF-β pathway (78)

Gm15441 IncRNA Inhibition of
antisense transcript
in the locus

TXNIP Inflammasome activation, CASP1
cleavage, IL-1 β maturation

(9)

Attenuation of fatty acid and

Unknown Unknown Fatpl Triglyceride accumulation in
macrophage

(79)

Unknown Unknown let-7 microRNA
family

Promotion of RXRa
ubiquitination through RNF8

(81)

RB1 DNA methylation
and histon H3R2
modification
through DNMT1
and PRMT6

Cdknla, Cdknlb Inhibition of tumor suppression (82)

E2F8 DNA methylation
through Uhrf 1

Cdh1 Enhancement of tumor growth
through myc activation

(83)

unknown unknown let-7C microRNA Enhancement of tumor growth
through myc activation

(84)

Unknown Unknown E2F1 Inhibition of cancer cell
proliferation

(85)

miR-214 mRNA decay and
translational
inhibition

E2F2 Inhibition of cancer cell
proliferation

(86)
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steatosis in mice, PPARα-mediated Rev-erbα induction appears
to exert a protective role in the development of NAFLD, at least
in part, by suppressing the expression of Apoa1 and Apoc3
that control lipid transport in hepatocytes (75). Makled et al.
reported that a pan-agonist for PPARα/γ (a.k.a. Saroglitazar)
downregulates pro-fibrotic gene expressions such as TGF-
β1 and PDGF-BB, followed by the downstream target gene
repressions such as PAI-1 and Smad-3 in rat liver fibrosis model
(76, 77). The results suggest that PPARα (and also PPARγ)
can transcriptionally repress the TGF-β signaling pathway.
Bansal et al identified that the AF-1 domain of activated
PPARα directly binds to the kinase domain of TAK-1 protein
and prevents phosphorylation. Phosphorylation of TAK-1 is a
molecule switch of the TGF-β signal cascade, indicating that
the inhibition of phosphorylation results in the prevention of
the TGF-β pathway (78). Brocker et al unveiled that hepatic
PPARα directly upregulates a lncRNA Gm15441. Gm15441
expression suppresses its antisense transcript encoding TXNIP,
resulting in inflammasome activation, CASP1 cleavage and
proinflammatory IL-1β maturation (9). These findings suggest
that PPARα regulates the expression of lincRNAs relevant to the
development of steatohepatitis. Although precise mechanisms
are still unclear, it was reported that PPARα activation represses
Oleate-inducible Fatp1 expression, attenuating total free fatty
acid and triglyceride accumulation in macrophages (79).
Triglyceride accumulation is related to macrophage activation
(80), suggesting that the Fatp1 repression by PPARα is related to
inflammation. Furthermore, a recent study unveiled that the let-
7 microRNA family is significantly repressed by PPARα agonism
and the let-7 microRNA prevented RXRα ubiquitination
through RNF8 mRNA decay. RXRα degradation results in the
inhibition of the transcriptional activity of the PPARα/RXRα

complex, indicating that PPARα - let-7 microRNA - RNF8 -
RXRα axis is a negative feedback loop in the hepatic lipid
metabolism (81).

Several target genes repressed by PPARα are related to
cancer progression and tumor growth. A study unveiled
that intestinal PPARα upregulated RB1 expression in mouse
colon, resulting in the repression of DNMT1 and PRMT6.
DNMT1 and PRMT6 contribute to the inhibition of tumor
suppressor genes such as Cdkn1a and Cdkn1b via DNA
methylation and histone H3R2 dimethylation (82). Another
study reported that hepatic PPARα upregulates a transcription
factor E2F8 in mice. The E2F8 increases Uhrf1 expression,
contributing to DNA methylation in the Cdh1 promoter and the
inhibition of expression (83). CDH1 represses proto-oncogene
Myc expression through the Wnt pathway, suggesting that
the PPARα-CDH1 pathway may enhance tumor growth. Shah
et al. uncovered that PPARα agonism repressed at least twelve
microRNA expressions in mouse liver. Especially the repressed
target gene let-7C microRNA targets Myc mRNA and decays
the stability (84). These studies indicate that rodent PPARα

has multiple roles in the promotion of carcinogenesis. It is
consistent with previous publications showing that long-term

activation of rodent PPARα induces carcinogenesis (5). In
contrast, Shi et al suggested that PPARα activation represses
E2F1 transcriptional activity and the target gene expressions
via the p21 pathway, modulating transcriptional complexes of
E2F1 and pRB in human glioma cells (85). In human glioma
cells, another study showed that PPARα upregulated miR-214
expression, resulting in E2F2 mRNA decay and inhibition of cell
proliferation (86). These studies suggest that PPARα-repressed
target genes contribute to the inhibition of cancer progression
and tumor growth in humans.

Discussion

Studies about repressed target genes of PPARα are not
sufficiently understood compared with those of the activated
target genes. However, it has become obvious that one of
the critical functions of PPARα is to exert transcriptional
suppression of its target genes through multiple mechanisms
(Table 1). The repressed target genes include various master
regulators related to inflammation, fibrosis, and carcinogenesis,
which contribute to, at least in part, the physiological roles of
PPARα and the beneficial effects of PPARα agonist treatment.
Given that PPARα represses the major pro-inflammatory
transcriptional regulators, NF-κB and AP-1 pathways, the
mechanisms of PPARα-mediated gene suppression may
play a significant role in exacerbating hepatic inflammation
(87). In addition, PPARα represses other transcriptional
regulators/pathways, such as GRIP1/TIF2, HNF4α, IFNγ and
TGF-β, that are related to lipid metabolism and inflammation,
which appear to contribute to the beneficial effects of
PPARα activation in hepatocytes. When PPARα is active as a
transcription activator, the activated PPARα generally forms
a transcriptional activation complex with co-activators, and
the physical contact with the transcription factors accelerates
their transcriptional activities. Conversely, the molecular
mechanisms of how PPARα suppresses the target gene
transcription and whether PPARα requires to form a specific
transcriptional suppression complex to be a transcriptional
suppressor remain to be elucidated. Although several previous
studies identified PPREs located near repressed target gene
promoter/enhancer, the sequential and positional differences
between activating and repressing PPREs are still unclear. In
addition, PPARα-mediated gene repression and activation
occur at approximately the same time upon agonist treatment.
As several epigenetic repression mechanisms have been shown
in rodent cancer models and inflammation, the differences
in epigenetic modifications in PPREs may be involved in
the regulation of gene repression or activation of PPARα’s
target genes. Identifications of the elements that distinguish
PPRE enhancers from silencers would drastically advance our
knowledge of PPARα biology. In addition, PPARα protein
modifications, including SUMOylation and phosphorylation,
may also impact PPARα-mediated gene repression and
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activation. One study demonstrated that SUMOylation of
PPARα accelerates trans-acting repression (60), whereas another
showed that post-translational phosphorylation of PPARα has
a significant role in the trans-repression (54). Although the
detail of mechanisms needs further analyses, such protein
modifications could be related to the binding affinity of
PPARα to the PPRE enhancer or silencer, or the other
repressed target genes. At present, one PPARα agonist (a.k.a.
Pemafibrate) and three pan-PPAR agonists (a.k.a. Lanifibranor,
Pioglitazone, and Saroglitazar) are under clinical trials as drugs
for NASH treatment respectively (88–91). Novel insights into
the mechanisms will help the process of current clinical trials.
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