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In Sub-Saharan Africa, malaria continues to be associated with adverse

pregnancy outcomes including stillbirth, early neonatal death, preterm

delivery, and low birth weight. Current preventive measures are insufficient

and new interventions are urgently needed. However, before such

interventions can be tested in pregnant women, background information

on pregnancy outcomes in this target population must be collected. We

conducted an observational study in Ouélessébougou, Mali, a malaria-

endemic area where first antenatal visit commonly occurs during the second

trimester of pregnancy, hindering calculation of miscarriage rate in the

population. To accurately determine the rate of miscarriage, 799 non-

pregnant women of child-bearing age were enrolled and surveyed via

monthly follow up visits that included pregnancy tests. Out of 505 women

that completed the study, 364 became pregnant and 358 pregnancies were

analyzed: 43 (12%) resulted in miscarriage, 28 (65.1%) occurred during the first

trimester of pregnancy. We also determined rates of stillbirth, neonatal death,

preterm delivery, and small for gestational age. The results showed high rate

of miscarriage during the first trimester and established a basis to evaluate

new interventions to prevent pregnancy malaria. This survey design enabled

identification of first trimester miscarriages that are often missed by studies

conducted in antenatal clinics.

Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT0297

4608].

KEYWORDS

pregnancy, miscarriage, preterm delivery, malaria, women of child-bearing age

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.1061538
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.1061538&domain=pdf&date_stamp=2022-12-08
https://doi.org/10.3389/fmed.2022.1061538
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.1061538/full
https://clinicaltrials.gov/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1061538 December 3, 2022 Time: 14:55 # 2

Gaoussou et al. 10.3389/fmed.2022.1061538

Introduction

In Sub-Saharan Africa, malaria continues to be the
primary cause of morbidity and mortality in young children
and pregnant women. Adults develop immune responses
that protect them from severe disease, but women become
more susceptible to malaria during pregnancy, especially first
pregnancy, that can result in adverse outcomes to the mother,
the fetus/newborn or both (1). Adverse pregnancy outcomes
related to pregnancy malaria include severe maternal anemia,
preterm delivery (PTD), small for gestational age (SGA), low
birthweight (LBW), stillbirth, and early neonatal death (2–5).
These adverse outcomes are observed in both low and high
malaria transmission areas (2, 3, 5).

To reduce malaria infection during pregnancy, WHO
recommends that pregnant women receive preventive treatment
with anti-malarial drug sulfadoxine-pyrimethamine (SP),
termed intermittent preventive treatment during pregnancy
(IPTp) at each scheduled antenatal care visit and at least
1 month apart starting from the second trimester. Although
IPTp-SP has been recommended as part of standard care for
pregnant women since 2000, WHO reported in 2021 that only
57% of pregnant women in Sub-Saharan Africa received at
least 1 dose of IPTp-SP, and only 32% received 3 IPTp doses
(4). Owing to safety concerns, IPTp-SP is contraindicated
during the 1st trimester of pregnancy. In addition, the spread of
SP-resistant parasites has been associated with worse pregnancy
outcomes (6).

In this context, a vaccine to protect women from pregnancy
malaria (PM) is urgently needed, and two types of vaccines
are currently being investigated. The first vaccine type is based
on naturally acquired immunity to PM. PM is caused by
P. falciparum-infected erythrocytes that bind to the placental
receptor chondroitin sulfate A (CSA) (7). Women become
resistant to pregnancy malaria over successive pregnancies,
as they acquire antibodies that target surface proteins of
placental parasites and block parasite adhesion to CSA (8). This
vaccine is based on a major infected erythrocyte surface protein
(VAR2CSA) expressed by placental parasites and mediating
their adhesion to CSA (8, 9). Two VAR2CSA-based products
have been evaluated for safety in phase I clinical trials (10,
11). This vaccine can be administered to adolescent females
prior to becoming pregnant. However, at this early stage of
development, it is unknown whether a booster dose during
pregnancy will be required.

The second vaccine type prevents human infection and
is represented by PfSPZ Vaccine (Sanaria, Inc.), a whole
organism vaccine product comprised of radiation-attenuated
sporozoites (12). This vaccine is not specific for PM and is
intended to prevent infection. In studies conducted in malaria-
naïve individuals, this vaccine provided sterile immunity from
challenge with a homologous and a heterologous strain of
P. falciparum (12, 13). In a study conducted in Mali, 26%

of adult vaccinees were protected from natural infection
with heterologous strains during the following 6 months
(14). Safety has been demonstrated in non-pregnant women
aged 18–50 years (14) but no trials of PfSPZ Vaccine have
enrolled pregnant women.

Until the recent FDA approval of Tdap vaccine for
maternal immunization, no vaccine had ever been licensed
for use in pregnant women. Further, the safety and efficacy
of promising candidates against pregnancy malaria must be
tested in this population. Because malaria infection itself
is associated with poor pregnancy outcomes, background
information on pregnancy outcomes in the target population is
needed before initiating trials in pregnant women. Baseline rates
of poor pregnancy outcomes will inform the interpretation of
adverse outcomes during clinical trials, including their potential
relationships to the intervention versus malaria infection or
other risk factors.

To collect this background information, we established two
cohorts of women residing in Ouélessébougou, Mali. In the first
cohort that was previously reported, pregnant women enrolled
during routine antenatal clinic visits (15), with the majority of
women (70%) enrolled during their 2nd trimester of pregnancy.
The most common adverse outcomes in that cohort included
PTD and perinatal death occurring in 4.7 and 4.1% of the
pregnancies, respectively. PTD and neonatal death were more
common among primigravidae compared to multigravidae (15).

In Mali, similar to other sites in Sub-Saharan Africa (16),
a majority of pregnant women make their first antenatal clinic
visit during the second trimester (17), limiting our ability
to collect information on miscarriage rates. This complicates
the collection of accurate miscarriage rate data, because most
miscarriages occur in first trimester, often before pregnancy
is clinically recognized (18). The primary goal of the current
study is to determine the miscarriage rate in all trimesters
among women living in an area with high seasonal malaria
transmission. To achieve this goal, we enrolled women of
child-bearing age prior to becoming pregnant, then monitored
them monthly with hCG testing until pregnancy diagnosis, and
thereafter followed them to determine pregnancy outcome. This
approach enabled an accurate and complete assessment of the
miscarriage rate in the target population.

Materials and methods

Human subjects and clinical
procedures

Women from Ouélessébougou, Mali enrolled in the
study between November-December 2018 and follow-up was
completed in October 2021. Women of child-bearing age
(≥15 years) who were not using contraception nor breastfeeding
for less than 12 months were invited to enroll. Exclusion criteria
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FIGURE 1

Flow chart of study population.

included temporary residence in the study area and conditions
that could impair the ability of the woman to understand the
study. The study protocol was approved by the Institutional
Review Board of the National Institute of Allergy and Infectious
Diseases, National Institutes of Health (ClinicalTrials.gov ID
NCT02974608), and by the Ethics Committee of the Faculty
of Medicine, Pharmacy and Dentistry at the University of

TABLE 1 Study population (n = 358).

n (%)

Age

<20 70 (19.5)

20–35 242 (67.7)

>35 46 (12.8)

Gravidity

Primigravid 40 (11.1)

Secundigravid 62 (17.3)

Multigravid 187 (52.4)

Grand multigravid 69 (19.2)

Number of ANC visits: mean (SD) 2.5 (1.4)

SP-IPTp doses

0 53 (14.8)

1–2 200 (56)

≥3 105 (29.2)

Used ITN 343 (95.8)

Bamako, Mali. Written informed consent was obtained from
study participants after receiving a study explanation form
and oral explanation from the study clinicians in their native
language. All experiments were performed in accordance with
relevant guidelines and regulations.

Monthly pregnancy tests were conducted at the participant’s
home. While enrolled in the study, women continued to receive
their clinical care including routine antenatal care at their
preferred public or private health center. Common preventive
treatments provided at health centers included iron and folic
acid supplementation as well as IPTp-SP. Malaria infections
diagnosed during antenatal visits were treated with antimalarial
drugs according to Mali Ministry of Health guidelines. No
clinical laboratory tests such as malaria blood smear or
hemoglobin levels were collected by the study. After a woman
tested positive for pregnancy, hCG testing was repeated monthly
through mid-2nd trimester to capture miscarriages during the
first half of gestation. Home visits continued until the end of
pregnancy to confirm women were still pregnant. Gestational
age was determined by a trained obstetrician using ultrasound
examination, which was performed in the 1st or 2nd trimester
of pregnancy in 85% of women. Pregnancy outcomes, medical
history and antenatal care information were collected 4–8 weeks
after the end of pregnancy on case report forms, including
information extracted from antenatal cards, as previously
described (15).
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TABLE 2 Antenatal clinic visits.

Gestational age at 1st ANC Antenatal clinic visits

Median (IQR) P-value for comparison to
gravid group

Mean (SD) P-value for comparison to
gravid group

Primigravid 18.1 (14.8–21.2) Secundigravid, p = 0.02 3.3 (1.3) Secundigravid, NS

Multigravid, p < 0.0001 Multigravid, p = 0.02

Grandmultigravid, p = 0.009 Grandmultigravid, p = 0.003

Secundigravid 20.7 (16.3–25.9) Multigravid, NS 3.1 (1.3) Multigravid, p = 0.048

Grandmultigravid, p = 0.009 Grandmultigravid, p = 0.007

Multigravid 21.9 (18.5–25.8) Grandmultigravid, p = 0.04 2.7 (1.1) Grandmultigravid, NS

Grand multigravid 25.0 (20.3–28.4) 2.4 (1.0)

IQR, interquartile range; NS, not significant.

Pregnancy outcomes definitions

Miscarriage was defined as pregnancy ending before
gestational week 28, stillbirth as a delivery of non-viable baby at
a gestational age of ≥28 weeks (19), and neonatal death as death
occurring in the first 4 weeks of life. Preterm delivery (PTD)
was defined as birth before gestational age of 37 weeks. Small
for gestational age (SGA) was defined as weight below the 10th
percentile for gestational age according to INTERGROWTH-21
standards (20).

Statistical analysis

Data were collected on standardized forms and scanned
into the data base using DataFax (version 5.1.0, Clinical
DataFax Systems, Inc., Hamilton, ON, Canada). Chi-squared
test and Fisher’s exact test were used to compare proportions,
and Mann–Whitney U test to compare continuous variables,
between groups. Miscarriage rate by gestational week was
calculated using previously described Life Table Analysis (18,
21). To evaluate the relation between risks factors and pregnancy
outcomes, five data sets were created; each one had viable-
term newborn as censored and one of the following as the
observed event: miscarriage, stillbirth, neonatal death, PTD, and

TABLE 3A Adverse outcomes in the study population.

n % (95% CI)1

Miscarriage 43 12.0 (8.8–15.8)

Stillbirth 9 2.5 (1.2–4.7)

Neonatal death 9 2.5 (1.2–4.7)

PTD 17 4.8 (2.8–7.5)

SGA 49 13.7 (10.3–17.7)

LBW 12 3.4 (1.7–5.8)

1Percent of all pregnancies. PTD, preterm delivery; SGA, small for gestational age; LBW,
low birth weight.

SGA. For each dataset, univariate and multivariate proportional
hazard models were fitted using the survival package in R.
Factors associated with adverse pregnancy outcomes were added
to the models, including: gravidity; age group; miscarriage in
the preceding pregnancy; malaria infection; number of IPTp
doses, number of antenatal clinic visits; gestational age at 1st
antenatal clinic visit, and a composite variable named “at least
1 known risk factor” that incorporated history of miscarriage,
stillbirth, complicated delivery, height <150 cm, weight <45
kg and preeclampsia in the current pregnancy. Categorical
covariates with fewer than 2 occurrences were excluded from
the univariate model; for example, none of the 9 women
whose pregnancy resulted in stillbirth had a reported malaria
infection, and this predictor was not included in the model.
Covariates with a p-value <0.1 in the univariate model were
included in the multivariate model. The inclusion of age as a
continuous variable was decided a priori for age-adjustment of
the multivariate model.

Results

Study population

In total, 799 women of child-bearing age were enrolled
into the study. After enrollment, monthly pregnancy tests were
performed by the study team during follow-up visits at the
participant homes. Of the 505 (63.2%) women who completed
the study, 364 (72.1%) became pregnant, of which 6 were
excluded from analysis due to multiple gestation (Figure 1).
Median time from enrollment to pregnancy detection was
23.5 weeks (interquartile range 11.1–39.2 weeks), with no
differences observed based on gravidity or age. Gestational age
at the time of pregnancy detection was calculated based on
ultrasound examination performed as early in pregnancy as
possible. Pregnancy was detected at mean gestational age of 6
6/7 weeks (SD 1 week 6 days, range 3–12 weeks) and median
gestational age of 6 6/7 weeks (interquartile range 5 6/7 weeks to
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TABLE 3B Adverse outcomes in the study population stratified by gravidity.

Primigravid Secundigravid Multigravid Grand multigravid

n % (95% CI) P-value1 n % (95% CI) P-value1 n % (95% CI) n % (95% CI) P-value1

Miscarriage 4 10 (2.8–23.7) NS 4 6.5 (1.8–15.7) NS 21 11.2 (7.1–16.6) 14 20.3 (11.6–31.7) 0.07

Stillbirth 0 0 NS 2 3.2 (0.4–11.2) NS 5 2.7 (0.9–6.1) 2 2.9 (0.4–10.1) NS

Neonatal death 1 2.5 (0.06–13.2) NS 2 3.2 (0.4–11.2) NS 3 1.6 (0.3–4.6) 3 4.3 (0.9–12.2) NS

PTD 7 17.5 (7.3–32.8) 0.002 1 1.6 (0.04–8.7) NS 6 3.2 (1.2–6.8) 3 4.3 (0.9–12.2) NS

SGA 7 17.5 (7.3–32.8) NS 11 17.7 (9.2–29.5) NS 25 13.4 (8.8–19.1) 6 8.7 (3.3–18.0) NS

LBW 6 15.0 (5.7–29.8) 0.04 2 3.2 (0.4–11.2) NS 10 5.4 (2.6–9.6) 4 5.8 (1.6–14.2) NS

1Fisher’s exact test for comparison to multigravida women. NS, not significant; PTD, preterm delivery; SGA, small for gestational age; LBW, low birth weight.

TABLE 3C Adverse outcomes in the study population by age.

Age <20 Age 20–35 Age >35

n % (95% CI) P-value1 n % (95% CI) n % (95% CI) P-value1

Miscarriage 6 8.6 (3.2–17.7) NS 25 10.3 (6.8–12.8) 12 26.1 (14.3–41.1) 0.007

Stillbirth 1 1.4 (0.04–7.7) NS 6 2.5 (0.9–5.3) 2 4.3 (0.5–14.8) NS

Neonatal death 2 2.9 (0.4–9.9) NS 5 2.1 (0.7–4.7) 2 4.3 (0.5–14.8) NS

PTD 4 5.7 (1.6–14.0) NS 11 4.5 (2.3–8.0) 2 4.3 (0.5–14.8) NS

SGA 13 18.6 (10.3–29.7) NS 33 13.6 (9.6–18.6) 3 6.5 (1.4–17.9) NS

LBW 3 4.3 (0.9–12.0) NS 17 7.0 (4.1–11.0) 2 4.4 (0.5–14.8) NS

1Fisher’s exact test for comparison to women aged 20–35 years. NS, not significant; PTD, preterm delivery; SGA, small for gestational age; LBW, low birth weight.

8 weeks). Although pregnancy tests were performed monthly,
one missed visit was allowed resulting in 18 pregnancies that
were detected between gestational week 10–12. The median time
interval between births was 37.6 months.

Among women who became pregnant, 11.1% were
primigravidae, and 19.5% were less than 20 years old
(Table 1). Women who did not become pregnant during
the study included 11.3% nulligravidae, 9.2% primigravidae,
9.9% secundigravidae, 29.1% multigravidae (2–5 previous
pregnancies) and 40.4% grand multigravidae (≥6 previous
pregnancies). Primigravidae attended their first antenatal
clinical visit at a significantly earlier gestational age than other
women, and grand multigravidae attended their first antenatal
clinic visit at a later stage than primigravid, secundigravid
and multigravid women (Table 2). Mean number of antenatal
clinic visits was similar between primigravid and secundigravid
women, and more frequent in both compared to multigravidae
and grand multigravidae (Table 2).

The majority of pregnant women [n = 305 (85.2%)] received
at least one dose of IPTp-SP, and 29.2% of pregnant women
received 3 or more IPTp-SP doses, similar to reports from other
countries published by the World Health Organization (4).
The median time interval between IPTp-SP doses was 6 weeks
(interquartile range 4.9 to 8.9 weeks). Nearly all women reported
using insecticide-treated bed net (ITN) and received tetanus
toxoid vaccine (97.2%).

Clinical laboratory studies such as complete blood count or
malaria test were performed on pregnant women at antenatal
clinics when clinically indicated. 34 (9.5%) women had a
documented malaria infection diagnosed by rapid diagnostic
test or blood smear microscopy. Hemoglobin levels of <11 gr/dl
were reported in 13 (3.6%) women with one case of severe
anemia. Two women (0.6%) presented with pre-eclampsia.
Other risk factors for adverse pregnancy outcomes included
history of complicated delivery [n = 12 (3.5%)], previous
miscarriage or stillbirth [n = 76 (21.2%)], height < 150 cm [n = 4
(1.1%)], and weight < 45 kg [n = 5 (1.4%)].

Pregnancy outcomes

The most common adverse pregnancy outcomes were small
for gestational age (SGA), miscarriage and PTD (Table 3A).
The majority of miscarriages (65.1%) occurred during the first
trimester with highest weekly miscarriage rates of 32 and 27
miscarriages per 1,000 women-weeks observed at gestational
weeks 8 and 10. From week 16, rates were below 10 miscarriages
per 1,000 women-weeks (Figure 2 and Supplementary Table 1).
The miscarriage rate was higher in women aged >35 years
compared to women aged 20–35 years (Table 3C). PTD
was more common among primigravidae versus multigravidae
(Table 3B). SGA was more common among women aged
<20 years (Table 3B). Percentages of stillbirth and neonatal
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FIGURE 2

Miscarriage rate by gestational week.

death were similar between women of different gravidity or age
groups (Table 3).

Except for miscarriages, 94.3% deliveries occurred at a
health facility setting (hospital or private clinic). Of the
43 miscarriages, 20 (46.5%) were admitted to the hospital.
Miscarriages occurring at home were at earlier gestational age
than those admitted to the hospital (median gestational age 10
3/7 weeks and 12 4/7 weeks, respectively) but the difference did
not achieve statistical significance.

Factors associated with adverse
pregnancy outcomes

To identify factors associated with adverse outcomes, each
of the following outcomes was evaluated in comparison to term
live birth: miscarriage, stillbirth, neonatal death, PTD and SGA.
For each outcome, univariate and multivariate proportional
hazards models were fitted (Tables 4, 5). In addition to
evaluating individual factors, a composite of multiple factors
defined as risk factors by the antenatal clinic was evaluated.
The composite named “at least 1 known risk factor” includes
history of miscarriage, stillbirth and complicated delivery,

height < 150 cm, weight < 45 kg and preeclampsia in the
current pregnancy.

Compared to women aged 20–35 years old, the risk of
miscarriage was 2.7 times higher in women aged >35 years.
History of miscarriage in the preceding pregnancy also
increased the risk of miscarriage [Hazard Ratio (HR) 2.713
(95% CI: 1.091–6.745)]. In multivariate analysis, both age
>35 years and miscarriage in the preceding pregnancy remained
significant (Table 4).

Gravidity or age were not associated with increased risk of
stillbirth. In univariate and multivariate analyses, the composite
named “at least 1 known risk factor” was associated with
increased HR of 3.5 and 4.1, respectively, while the number of
IPTp-SP doses significantly reduced the risk for stillbirth (HR
0.3 and 0.2, respectively) (Table 4).

In univariate analysis, both the number of antenatal clinic
visits and doses of IPTp-SP significantly reduced the risk
of neonatal death. In multivariate analysis, the number of
antenatal clinic visits and IPTp-SP doses were no longer
significant, possibly due to high correlation between these
covariates (r = 0.86, p = 0.02). Therefore, each of these
factors was analyzed in separate multivariate models (models
I and II). In multivariate models adjust for maternal age,
number of antenatal clinic visits remained significant. Similarly,
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TABLE 4 Risks associated with fetal and neonatal death.

Univariate Multivariate

Outcome HR (95% CI) P-value HR (95% CI) P-value

Miscarriage

Age (continuous) 1.053 (1.007–1.101) 0.02

Age (group, years)

<20 0.862 (0.359–2.069) 0.7 0.755 (0.289–1.972) 0.6

20–35 Reference Reference

>35 2.659 (1.343–5.266) 0.005 2.932 (1.477–5.819) 0.002

Gravidity

Primigravid 1.070 (0.384–2.986) 0.9

Secundigravid 0.603 (0.206–1.766) 0.4

Multigravid Reference

Grand multigravid 1.843 (0.943–3.604) 0.07

At least 1 known risk factor 1.699 (0.905–3.190) 0.1

Miscarriage last pregnancy 2.713 (1.091–6.745) 0.03 3.674 (1.378–9.797) 0.009

Stillbirth

Age (continuous) 1.040 (0.953–1.136) 0.4 0.999 (0.897–1.113) 0.9

Age (group)

<20 0.762 (0.093–6.280) 0.8

20–35 Reference

>35 1.891 (0.379–9.429) 0.4

Gravidity

Secundigravid 1.211 (0.268–5.482) 0.8

Multigravid Reference

Grand multigravid 1.057 (0.200–5.583) 0.9

IPTp-SP doses 0.271 (0.126–0.585) 0.0009 0.245 (0.110–0.546) 0.0006

Home delivery 3.732 (0.780–17.860) 0.1

At least 1 known risk factor 3.502 (0.965–12.700) 0.06 4.088 (0.994–16.811) 0.05

ANC visits 0.770 (0.526–1.125) 0.2

Gestational age at 1st ANC 0.937 (0.847–1.037) 0.2

Neonatal death

Age (continuous) 1.040 (0.946–1.144) 0.4 Model I: age and number of ANC visits
1.011 (0.909–1.23)

Model II: age and number of IPTp doses
1.022 (0.926–1.129)

0.8

0.7

Age (group)

<20 2.128 (0.421–10.750) 0.4

20–35 Reference

>35 2.156 (0.423–11.000) 0.4

Gravidity

Secundigravid 2.173 (0.366–12.910) 0.4

Multigravid Reference

Grand multigravid 2.415 (0.517–11.290) 0.3

IPTp-SP doses 0.467 (0.235–0.929) 0.03 Model II: age and number of IPTp doses
0.475 (0.226–0.999)

0.049

At least 1 known risk factor 0.805 (0.188–3.446) 0.8

ANC visits 0.490 (0.276–0.868) 0.01 Model I: age and number of ANC visits
0.496 (0.265–0.928)

0.03

Gestational age at 1st ANC 1.027 (0.975–1.082) 0.3

number of IPTp-SP doses remained significant after adjusting
for maternal age (Table 4). The risk of PTD was 6.2-
fold higher in primigravidae and 3.3-fold higher in women

with reported malaria infection. In the multivariate model,
both primigravidity and malaria infection during pregnancy
increased the risk of PTD, but only gravidity achieved

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.1061538
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1061538 December 3, 2022 Time: 14:55 # 8

Gaoussou et al. 10.3389/fmed.2022.1061538

TABLE 5 Risks associated with preterm delivery and small for gestational age.

Univariate Multivariate

Outcome HR (95% CI) P-value HR (95% CI) P-value

PTD

Age
(continuous)

0.948 (0.859–1.046) 0.3 0.972 (0.844–1.120) 0.7

Age (group)

<20 1.314 (0.422–4.098) 0.6

20–35 Reference

>35 1.183 (0.259–5.404) 0.8

Gravidity

Primigravid 6.190 (2.111–18.148) 0.0009 4.197 (1.028–17.133) 0.04

Multigravid Reference

Grand
multigravid

1.556 (0.387–6.254) 0.5 1.950 (0.251–15.147) 0.5

Malaria
infection

3.312 (1.201–9.133) 0.02 2.710 (0.954–7.700) 0.06

IPTp-SP doses 0.912 (0.522–1.594) 0.7

Home delivery 2.149 (0.493–9.371) 0.3

At least 1 known
risk factor

0.720 (0.205–2.531) 0.6

ANC visits 0.793 (0.525–1.199) 0.3

Gestational age
at 1st ANC

0.941 (0.868–1.019) 0.1

SGA

Age
(continuous)

0.951 (0.898–1.006) 0.08

Age (group)

<20 2.090 (1.114–3.922) 0.02

20–35 Reference

>35 0.721 (0.246–2.109) 0.6

Gravidity

Primigravid 1.834 (0.832–4.043) 0.1

Secundigravid 1.450 (0.716–2.938) 0.3

Multigravid Reference

Grand
multigravid

0.707 (0.278–1.799) 0.5

Malaria
infection

0.707 (0.219–2.277) 0.6

IPTp doses 0.870 (0.659–1.149) 0.3

At least 1 known
risk factor

0.731 (0.350–1.528) 0.4

ANC visits 0.898 (0.737–1.094) 0.3

Gestational age
at 1st ANC

0.980 (0.943–1.018) 0.3

significance (Table 5). The risk of SGA was significantly higher
in young women aged < 20 years (Table 5).

Discussion

Malaria infection during pregnancy is associated with
adverse outcomes. For example, we recently reported that

malaria infection at our study site in Mali increased the risk of
stillbirth and PTD in primigravidae, and early neonatal death
in secundigravid and multigravid women (5). While pregnant
women have historically been excluded from interventional
clinical trials due to safety concerns, the need to test promising
interventions in pregnant women has been increasingly
recognized in recent years (22, 23). The primary objective of
this surveillance study in an area with high seasonal malaria
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transmission was to determine the miscarriage rate as a baseline
for future interventional trials.

A few studies have measured miscarriage rates during early
pregnancies identified via daily measurement of urine HCG
levels before clinical pregnancy [defined as pregnancy detected
with conventional pregnancy testing or clinical examination
(24)]. Based on two studies, early pregnancy loss accounted
for 22% and 24.6% of pregnancies, whereas 11.6% and 7.9% of
clinical pregnancies resulted in miscarriage (24, 25). Here, we
report the rate of miscarriage in clinical pregnancies, which is
relevant as a baseline miscarriage rate in interventional trials
that use standard tools like pregnancy tests and LMP, where
very early pregnancy losses may be missed. Of 358 pregnancies
identified in this study, 43 (12%) resulted in miscarriage, which
is within the range previously reported in other regions such as
the United States and Europe (26, 27).

Consistent with previous studies (18, 28–30), the risk of
miscarriage increased with age. In women aged >35 years, the
instantaneous risk of miscarriage was 2.7 times higher compared
to women aged 20–35 years. Risk of miscarriage has been
reported to increase for women who miscarried in their previous
pregnancy (29–31). This study supports those findings, as risk of
miscarriage increased 3.7-fold in women that miscarried in their
most recent pregnancy.

Although the primary goal of the study was to describe
miscarriage rate, we are reporting other adverse outcomes that
we documented in this cohort as well. In this survey, 4.8% of
pregnancies resulted in PTD, similar to the rate we observed
in the first cohort of pregnant women who we enrolled during
antenatal clinic visits (15). Both gravidity and malaria infection
increased the risk of PTD. The risk of PTD was 4.2-fold higher
among primigravidae compared to multigravidae, and 2.7-fold
higher in women with a history of malaria infection during
pregnancy. This is consistent with our previous report of a
longitudinal cohort study of pregnant women conducted in the
same area, in which malaria infection in primigravidae was
associated with increased risk of PTD (5).

We also observed that 9 (2.5%) pregnancies resulted in
stillbirth and 9 (2.5%) in neonatal death. The rate of stillbirth
is similar to earlier studies, that reported a stillbirth rate of
22.8 (19.9–24.8) per 1,000 births in Sub-Saharan Africa (32).
A meta-analysis to evaluate risk factors associated with stillbirth
found that malaria infection during pregnancy and at delivery
increased the odds of stillbirth (3). In our previous longitudinal
cohort study, we reported that malaria infection increased
the risk of stillbirth for primigravidae and of early neonatal
death for secundigravidae and multigravidae, while IPTp-SP
significantly reduced these risks during the 3 weeks following
drug administration (5).

This study was designed to collect information on baseline
miscarriage rate and was not designed to evaluate the impact
of malaria infection on risk of miscarriage or other adverse
outcomes. Because malaria infection is often asymptomatic

among adults in areas of stable transmission, frequent active
testing for malaria infection and a large sample size would
be required to confirm such associations. To date, one large
population study of 17,613 women conducted in an area of low
malaria transmission at the border of Thailand and Myanmar
reported that both asymptomatic and symptomatic infection
in the first trimester increased the odds of miscarriage (33).
Relating malaria infection to miscarriage was possible because
the women in that study attended weekly antenatal clinic for
routine malaria tests starting in the first trimester (33, 34). At
the site of the current study, women commonly attend their first
antenatal clinic visit during the 2nd trimester (17), and 42 of the
43 miscarriages reported here occurred prior to the subjects’ 1st
antenatal visit.

We speculate that small sample size limited our power to
statistically confirm the association of malaria infection and
PTD (p = 0.06) in the multivariate analysis, in addition to our
study design that did not incorporate active testing for malaria
infection. However, the increased rate of PTD in women with
malaria infection is consistent with our previous report of a
longitudinal cohort study of pregnant women conducted in
the same area (5), and studies conducted in other areas. In
a large study conducted in a low malaria transmission zone
at the border between Thailand and Mynamar, infection with
P. falciparum at gestational weeks 28–32 increased the odds of
very early PTD, and infections after week 32 increased the odds
of late PTD (2). In a cross-sectional study conducted in the
Gambia, an area with seasonal malaria transmission, placental
malaria significantly increased the odds of PTD (35). PTD is
one of the major risk factors for neonatal death (36), thus,
malaria control is one of the tools needed to reduce PTD and
associated mortality.

As we previously observed, IPTp-SP significantly reduced
risks of all adverse outcomes during the 3 weeks after
drug administration. In this study, pregnant women received
antenatal care at public or private health care facilities that
generally limited malaria testing to occasions when clinically
indicated. However, a large proportion of infections are
asymptomatic (5) resulting in a limited number of women
with a reported malaria infection episode. IPTp-SP can clear
undiagnosed asymptomatic infections and suppress parasitemia
while drug levels persist, thus reducing adverse outcomes
associated with malaria infection (37). These benefits of IPTp,
however, have limitations: SP is contraindicated in the first
trimester; compliance with IPTp is generally low and a majority
of women receive only 1–2 doses during pregnancy; SP has lost
efficacy in East and Southern Africa due to the spread of drug-
resistant parasites, and in these areas IPTp has been related to
poorer pregnancy outcomes (6). Therefore, new tools are needed
to control pregnancy malaria, and an effective and safe vaccine
would be a valuable addition to our armamentarium.

In summary, preconception enrollment of women
of child-bearing age enabled the identification of 1st trimester
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miscarriages. Overall, 43 (12%) pregnancies resulted in
miscarriage, and 78 (21.8%) resulted in either miscarriage,
stillbirth, neonatal death or preterm delivery. The main risks
factors for miscarriage were age >35 years and a history
of miscarriage in the preceding pregnancy, consistent with
published data from other regions. Similar to our previous
report from a longitudinal cohort study of pregnant women,
primigravidity and malaria infection increased the risk of PTD.
This background information will be useful in future vaccine
trials as a baseline rate of poor pregnancy outcomes including
miscarriage in the target population.
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