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Introduction: Gastric cancer is the fifth most common cancer in the world.

At the same time, it is also the fourth most deadly cancer. Early detection

of cancer exists as a guide for the treatment of gastric cancer. Nowadays,

computer technology has advanced rapidly to assist physicians in the diagnosis

of pathological pictures of gastric cancer. Ensemble learning is a way to

improve the accuracy of algorithms, and finding multiple learning models with

complementarity types is the basis of ensemble learning. Therefore, this paper

compares the performance of multiple algorithms in anticipation of applying

ensemble learning to a practical gastric cancer classification problem.

Methods: The complementarity of sub-size pathology image classifiers when

machine performance is insu�cient is explored in this experimental platform.

We choose seven classical machine learning classifiers and four deep learning

classifiers for classification experiments on the GasHisSDB database. Among

them, classical machine learning algorithms extract five di�erent image virtual

features to match multiple classifier algorithms. For deep learning, we choose

three convolutional neural network classifiers. In addition, we also choose a

novel Transformer-based classifier.

Results: The experimental platform, in which a large number of classical

machine learning and deep learning methods are performed, demonstrates

that there are di�erences in the performance of di�erent classifiers on

GasHisSDB. Classical machine learning models exist for classifiers that classify

Abnormal categories very well, while classifiers that excel in classifying Normal

categories also exist. Deep learningmodels also exist withmultiplemodels that

can be complementarity.

Discussion: Suitable classifiers are selected for ensemble learning, when

machine performance is insu�cient. This experimental platform demonstrates

that multiple classifiers are indeed complementarity and can improve the
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e�ciency of ensemble learning. This can better assist doctors in diagnosis,

improve the detection of gastric cancer, and increase the cure rate.

KEYWORDS

gastric histopathology, sub-size image, robustness comparison, algorithmic

complementarity, image classification

1. Introduction

Gastric cancer is a serious threat to human health as a

global killer disease. According to themost recent Global Cancer

Statistics Report, gastric cancer has become the fifth most

common cancer and the fourth leading cause of death (1).

Histopathological examination of gastric cancer constitutes the

gold standard for the detection of gastric cancer and is a

prerequisite for its management (2).

Histopathological examinations begin by staining the

sections with Hematoxylin and Eosin (H&E), which are used

to visualize the nuclei and cytoplasm of tissue sections,

highlighting the fine structure of cells and tissues for physician

observation (3). The pathologist finds the diseased area by gross

observation of the pathological slides with the naked eye. The

pathologist then observes and diagnoses the diseased area of

the pathological section using the low-power microscope of

the microscope. Pathologists can use high-power microscopes

for careful observation and judgment (4). For the entire

pathological slice diagnosis process (5), the following problems

can be found: slice information is easy to ignore (6). This shows

that there is subjectivity throughout the process. The workload

of pathologists is huge and the working hours are long, which is

highly likely to lead to misdiagnosis (7). Therefore, there is an

urgent need to address the issues more intensively.

However, computer-aided diagnosis technology has

advanced rapidly in recent years, and the emergence of medical

image classification technology in computer vision technology

can achieve fast and efficient help for doctors to examine gastric

cancer tissue sections (8). Image classification techniques have

brought new breakthroughs to discriminate between benign

and malignant cancer, distinguish between stages of tumor

differentiation and differentiate tumor subtypes, as image

classification techniques can provide valid information for

pathologists to refer to during the diagnostic process (9). In

addition, the development direction of image classification

technology is mainly to enhance the accuracy of classification

algorithms and improve the anti-interference ability, ensemble

learning becomes an effective solution, and it becomes especially

important to find multiple efficient classification algorithms

with complementarity properties (10). Moreover, there is a lack

of computer performance in practical work, and computer-

aided medical image analysis often crops full-slice images

into sub-size pictures (11). Therefore, we compare the image

classification performance of a large number of algorithms

on sub-size images in order to expect to find algorithms with

complementarity properties for ensemble learning to improve

medical image classification performance.

The database used in this study is GasHisSDB (12),

containing 245,196 images, of which there are 97,076 abnormal

images and 148,120 normal images. GasHisSDB is a database

containing three sub-databases, including sub-database A (160

×160 pixels), Sub-database B (120 ×120 pixels.), Sub-database

C (80×80 pixels). GasHisSDB provides the ability to distinguish

between classical machine learning classifier performance and

deep learning classifier performance (13). Details are given in

Section 2.1.

Classical machine learning methods still have excellent

classification results in the field of image classification (14).

Existing methods can extract different features of images

and supply different performance of classifiers for image

classification (15). Exploring different features using appropriate

classifiers to obtain efficient classification results is the basis of

using ensemble learning for medical images (16). Therefore,

in this study, five different image features including two color

features and three texture features are extracted for GasHisSDB.

After extracting the features seven different classifiers are used

for classification. Details are given in Sections 2.2 and 2.3.

In the field of medical image classification, deep learning

algorithms are the most effective algorithms, and Convolutional

Neural Network (CNN) is a widely used model for image

classification, which can extract information from original

medical images and classify normal and abnormal case

images (17). Recently, Visual Transformer, which is originally

applied to Natural Language Processing tasks, have become

popular in computer vision, and Vision Transformer (ViT) have

effective classification results when trained on large amounts

of data and can significantly reduce the computer hardware

and software resources required for training (18). CNN-based

deep learning models, this study used VGG6, Inception-V3

and ResNet50. Visual transformer-based deep learning models

in this study used VIT. The above four deep learning models

use the same parameters with the same database: GasHisSDB.

Details are given in Section 2.4.

This study makes the following contributions to the field of

sub-size pathology image classification:
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TABLE 1 Dataset scale of GasHisSDB.

Sub-database name Cropping size Abnormal Normal

Sub-database A 160× 160 pixels 13,124 20,160

Sub-database B 120× 120 pixels 24,801 40,460

Sub-database C 80× 80 pixels 59,151 87,500

Total 97,076 148,120

• Extensive testing is done and the complementarity of

different classification methods is found.

• According to the complementarity, it can provide a basis

for future ensemble learning research.

This paper is structured as follows: In Section 2, we detail the

dataset used, classical classification methods, and deep learning

methods. In Section 3, we show the comparative experimental

setup, evaluation metrics and experimental results. In Section

4, we compare the experimental results and analyze them.

In Section 5, we summarize the research and suggest future

research directions.

2. Materials and methods

2.1. Dataset: GasHisSDB

The publicly available dataset GasHisSDB is used in this

study to compare the performance of various learning models,

expecting to discover the complementarity of various models

in ensemble learning (12). The database contains three sub-

datasets with a total of 245,196 images, and the size and number

are shown in Table 1. The database is a sub-size gastric cancer

pathology H&E staining image database, which contains two

categories of images: normal and abnormal. The abnormal

image contains more than 50% of the cancerous area, and the

normal image is the image of the normal pathological slice

tissue. Some examples of the GasHisSDB database are shown in

Figure 1.

GasHisSDB contains images in png format acquired using

electron microscopy. GasHisSDB contains two categories and

the details of the two categories are shown below:

• Normal: each normal image does not contain cancerous

regions. Each cell is almost free of anisotropy. In addition,

the nuclei of the cells in the images have almost no

mitosis and are arranged in a regular layer. Therefore, when

observed under the light microscope, if no elimination of

any cells and tissues is observed and the characteristics

of a normal image are met, it can be judged as a normal

image (19).

• Abnormal: Each abnormal image contains more than 50%

of gastric cancer images. The general morphology of gastric

cancer is mostly ulcerative. As the disease progresses,

the cancer nest infiltrates from the mucosal layer to the

muscular layer and plasma layer. The texture is hard and

the cross-section is often grayish white. Under microscopic

observation, the cancer cells can be arranged in nest-

like, glandular vesicle-like, tubular or cord-like, and the

boundary with the interstitium is usually clear. However,

when cancer cells infiltrate the stroma, the borders between

them are not clear. Based on these facts, abnormal

pathological images can be judged when cells are observed

to form unevenly sized, irregularly shaped, and irregularly

arranged glandular or adenoid structures (19).

2.2. Methods of feature extraction

To extract a variety of virtual features of GasHisSDB is a

prerequisite for classification using classical machine learning

classifiers. In the comparison experiments, five methods are

used to extract visual features from the database, including

Color histogram, Luminance histogram, Histogram of Oriented

Gradient (HOG), Local Binary Patterns (LBP), and Gray-level

Co-occurrence Matrix (GLCM).

2.2.1. Color histogram

Among the different methods of feature extraction, the most

common method to describe the color features of an image

is the color histogram. The color histogram clearly represents

the color spread in the image. The color histogram has the

characteristic of being unaffected by image rotation and shift

changes and by further normalization of image scale changes.

It is especially applicable to describe images that are resistant

to automatic segmentation and images that do not require

consideration of the spatial location of subjects. However, the

color histogram does not characterize the partial spread of

colors in an image, the spatial location of each color, and

specific objects. In this experiment, the luminance histogram

is used as the luminance feature. The luminance feature is

expressed as a histogram of the average of the three color

components.

2.2.2. Texture features

The texture is a visual feature that reflects homogeneous

phenomena in an image (20). That reflects the structure and

arrangements of the surface structures on the surface of an object

with slow or periodic changes (21). A texture feature is not a

pixel-based feature. It requires statistical computation of regions

containing multiple pixels, such as the grayscale distribution

of pixels and their surrounding spatial neighbors, and local

texture information. In addition, the global texture information

is reflected as the repetition degree of local texture information.
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FIGURE 1

Example of GasHisSDB.

In this experiment, three texture features are extracted, which

are HOG, LBP, and GLCM.

HOG is a feature descriptor commonly used in image

processing for object detection. Features are constructed by

computing a histogram of the gradient direction of local regions

of an image. HOG has the property of operating on the local

units of the image. So it has the advantage of maintaining

excellent invariance in terms of geometric and optical distortion

of the image. LBP has advantages such as gray invariance

and rotation invariance, and the features are easy to compute.

GLCM is defined by the joint probability density of pixels at

two locations and is a second-order statistical feature about

the variation of image brightness. It not only reflects the

distribution of luminance. It also reflects the distribution of

positions between pixels with the same or similar luminance.

The main statistical values are: Contrast, Correlation, Energy,

and Homogeneity.

2.3. Classical classification models

After the feature extraction step, complementarity

comparison tests for image classification are performed

using seven classical machine learning methods, including

Linear Regression, k-Nearest Neighbor (kNN), naive

Bayesian classifier, Random Forest (RF), linear Support

Vector Machine (linear SVM), non-linear Support Vector

Machine (non-linear SVM), and Artificial Neural Network

(ANN).

Classical machine learning methods perform image

classification by using virtual features. Linear Regression is a

method to get a linear model as much as possible to accurately

predict the real value output label. In Linear regression, the

least square function is used to establish the relationship

between one or more independent variables (22). An easy

and commonly used supervised learning method is kNN. The
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main idea of kNN is to first find the nearest k samples based

on the distance and then vote for the prediction result (23).

The naive Bayesian classifier based on Bayesian decision

theory in probability theory (24). RF is a parallel integrated

learning method based on a decision tree learner. RF adds

random attribute selection to the training process of decision

trees (25). SVMs are divided into linear and non-linear. The

difference between the two is mainly that the kernel functions

of both are different (26). Linear SVM maps training examples

to points in space to maximize the gap between the two

categories. Then, the new examples are mapped to the same

space and predicted to belong to a category based on which

side of the gap they fall on. In addition to performing linear

classification, SVM can also use a kernel function to perform

non-linear classification effectively, thereby implicitly mapping

its input to a high-dimensional feature space. The ANN is a

classification algorithm composed of a structure that simulates

human brain neurons and is trained through a propagation

algorithm (27).

2.4. Deep learning models

Complementarity comparison experiments use deep

learning models for the classification of gastric cancer

pathology images (28). First, the model is trained using

training and validation sets generated from three sub-datasets

of GasHisSDB. The test set is used in this experiment to

evaluate the models’ performance (29). Comparative analysis

of multiple classification results is performed using the

obtained evaluation metrics to determine if the classifiers

would be complementarity in Ensemble learning (30). This

experiment uses four deep learning models. Three of the

models are based on CNNs, including VGG16, Inception-V3,

and ResNet50. One more model corresponds to VT, which is

ViT (31).

VGG is a convolutional neural network (CNN) improved

by AlexNet, developed by Visual Geometry Group and Google

DeepMind in 2014, and the most commonly used one in image

classification is VGG16 (32). In 2014, Google’s InceptionNet

made its debut at the ILSVRC competition. Several versions of

InceptionNet have been developed, with Inception-V3 being one

of the more representative versions of this large family (33). He

et al. proposed ResNet to address the difficulty of training deep

networks due to gradient disappearance. The most commonly

used in the field of image classification is ResNet50 (34). In

recent years, Dosovitskiy et al. have proposed the ViT model

using transformer. This model is not only very effective in the

field of natural language processing, but also provides good

results in the field of image classification. Effectively reduces the

dependence of computer vision on CNN (35).

3. Experiment

3.1. Comparative experimental setup

The main process of complementarity experiments is

divided into two parallel parts: The classification results of

classical models and deep learningmodels are both analyzed and

evaluated. The experimental flow is shown in Figure 2.

The various settings of the experimental platform are as

follows:

1. Hardware configuration: The complementarity comparison

experiment is conducted on a local computer with theWin10

operating system. The computer has 32 GB of running

memory and is equipped with an 8 GBNVIDIAQuadro RTX

4000.

2. Data set partitioning: In this experiment, the training set,

validation set and test set are divided in the ratio of 4:4:2.

3. Classical machine learning software configuration: The

classical programming software use for machine learning is

Matlab R2020a (9.8.0.132 350 2).

4. Deep learning software configuration: The Pytorch version

1.7.1 framework in Deep Learning Python 3.6 is very mature,

and the code for this part of the experiment is done using

them.

5. Classical machine learning parameter settings: The same

parameters are used for all classification comparison

experiments. In kNN, k is set to 9. The number of trees in

RF is set to 10. The kernel function of the non-linear SVM is

a Gaussian kernel. The ANN uses a 2-layer network with 10

nodes in the first layer and 3 nodes in the second layer. The

number of epochs for ANN training is set to 500, the learning

rate is set to 0.01, and the expected loss is set to 0.01.

6. Deep learning parameter settings: This part of the experiment

focuses on classifying GasHisSDB using four deep learning

methods to observe model complementarity. A learning rate

of 0.00002 is used for each model, and the batch size is set

to 32. One hundred epochs of experiments are performed to

observe the classification results of this database on different

models.

3.2. Evaluation metrics

The selection of evaluation indicators is important in

complementarity comparison papers. In the experiments of this

thesis, Accuracy (Acc) is the most significant metric, but also

Precision (Pre), Recall (Rec), Specificity (Spe), and F1-score (F1)

are selected. These selected metrics are very commonly used in

comparison papers to analyze classifiers and thus better identify

their complementarities to enhance and improve ensemble

learning (36).
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FIGURE 2

Workflow of the complementarity comparison experiment.

In the case of positive-negative binary classification,

true positives (TP) correspond to the number of positive

samples that are accurately predicted. The number of

negative samples predicted to be positive is called false

positive (FP). The number of positive samples predicted

to be negative samples is called false negative (FN). True

Negative (TN) is the number of negative samples predicted

accurately (37).

The five evaluation indicators are described below and the

formulas are shown in Table 2.

1. Acc: Accuracy is the ratio of the number of correct

predictions to the total number of samples.

2. Pre: Precision is a measure of accuracy, indicating the

proportion of examples classified as positive that are actually

positive.

3. Recl: Recall is a measure of coverage, a measure of the

number of positive examples classified as positive examples,

indicating the proportion of all positive examples classified as

pairs, which measures the ability of the classifier to identify

positive examples.

4. Spe: Specificity indicates the proportion of all negative cases

that were scored correctly, andmeasures the classifier’s ability

to identify negative cases.

TABLE 2 Evaluation metrics.

Assessment Formula

Accuracy (Acc) (TP + TN)/(TP + TN + FP + FN)

Precision (Pre) TP/TP + FP

Recall (Rec) TP/TP + FN

Specificity (Spe) TN/TN + FP

F1-score (F1) 2× (Pre×Rec)/(Pre + Rec)

5. F1: F1-Score combines Precision and Recall. Accuracy is the

ratio of the number of correct predictions to the total number

of samples.

3.3. Experimental results

We set up an experimental platform to conduct various

classification experiments on three sub-databases of the

GasHisSDB. A large amount of experimental data is obtained for

our experiments in order to investigate the complementarity of

different methods (38).
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The comparative results of classical machine learning

methods are shown in Tables 3–5.

Table 6 show the comparison results of the deep learning

methods.

4. Evaluation of results

4.1. Evaluation of classical machine
learning methods

4.1.1. On 160 × 160 pixels sub-database

This section focuses on the classification results of

classical machine learning methods for the 160 ×160 sub-

database.

The color histogram has the highest number of items among

all features. According to Table 3, the classical machine learning

classifier on the color histogram, the best performer is RF with

an accuracy of 85.99%. In addition, in color histogram, the

classification accuracy of the three classifiers reached around

80%, which are LR, kNN, and ANN. All SVM classifiers perform

poorly on color histogram features. However, color histogram

on GasHisSDB, the naive Bayesian classifier, cannot get the

classification effect because of the existence of a large number

of low luminance statistics with zero values in the three color

channels.

The luminance is the average of the colors. Its histogram

does not yield better classification accuracy as a feature.

Because of this, luminance histogram also has the above

problem on the naive Bayesian classifier. The classification

results of the naive Bayesian classifier for these two color

features are therefore not presented in the Table 3. RF shows

robustness in two features and obtains the highest accuracy

rate of 79.13% using luminance histogram for classification.

However, the LR, kNN, and ANN classifiers that perform

better on color histogram significantly drop on luminance

histogram.

The classification effect of HOG on all classifiers is not very

effective and the accuracy is very close. The difference is not

much distributed between 53 and 62%.

On the contrary, the distribution of LBP image classification

accuracy is particularly scattered, with the highest Linear

Regression classifier reaching 74.29%, followed by ANN

reaching 71.84%. The lowest linear SVM classification effect is

<50%.

The classification effect of the four statistic values of GLCM

is 71.39% only for RF, and other classifiers are also above 60%. It

is worth noting that the accuracy of non-linear SVM with other

features except color histogram and GLCM has not changed at

all, which is 60.58%. The accuracy of non-linear SVM classifier

with color histogram is 56.09% and the accuracy of GLCM’s

non-linear SVM classifier is 67.76%.

4.1.2. On 120 × 120 pixels sub-database

Here, we focus on the comparison of the experimental

results of the 120 × 120 pixels sub-database. The experimental

results are shown in Table 3. In general, compared with 160×160

pixels sub-database classification results, 120 × 120 pixels sub-

database classification results except for color histogram, the rest

of the best classifiers remain unchanged.

The four better-performing classifiers on color histogram

feature still perform better, and the accuracy rate fluctuates

slightly, resulting in the kNN classifier reaching the best accuracy

rate of 86.32%. The classification performance of the two SVM

classifiers on the features of color histogram is still not ideal.

Naive Bayesian classifier is still not suitable for color histogram

and luminance histogram features. The linear SVM effect of

luminance histogram classifier has been greatly improved in the

classification of the 120× 120 pixels sub-database. The accuracy

of other classifiers on the features of luminance histogram has

little change. The HOG feature still does not perform well in

every classifier. The highest accuracy rate is only 62.35% of ANN.

The classification results of LBP and GLCM features are similar

to the classification effect on the 160 × 160 pixels sub-database.

The best accuracy rate on LBP is a linear regression with a

precision rate of 73.34%. The best accuracy rate on GLCM is

that the RF reaches 71.15%. Similarly, the non-linear SVM of

120 × 120 pixels sub-database also has the problem of constant

accuracy of multiple features.

4.1.3. On 80 × 80 pixels sub-database

The classification results of the 80 × 80 pixels sub-database

are shown in Table 4. The overall best classifier on each feature

remains the same as that of the best classifier for each feature

corresponding to the 120 × 120 pixels sub-database except for

HOG features that have a small gap between each classifier.

Compared with the classification results of the other two

sub-databases, the classification effect of each classifier on color

histogram and luminance histogram has no particularly large

fluctuations. It confirms the consistency of the three databases

of GasHisSDB.

The classification accuracy of color histogram is still

polarized. The four excellent classifiers reach about 80%, and

the other two are about 60%. The RF still showed robustness

in the luminance histogram classification task. RF was the best

classifier with an accuracy of 75.10%. The classification accuracy

distribution of HOG features is denser than that of the other two

sub-databases. The highest is only 59.87%. Due to the reduced

sample size, each classifier has different degrees of accuracy

reduction in addition to the naive Bayesian classifier for LBP

features and GLCM features. The best classifier for LBP feature

is still linear regression which reaches 70.92%. The highest

accuracy rate of LBP feature has become 68.84% of kNN. In

the classification results of the 80 × 80 pixels sub-database,

the naive Bayesian classifier of color histogram and luminance
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TABLE 3 Classification results of five image features using di�erent classifiers in the 160 × 160 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 83.29 81.32 80.42 85.54 80.87 84.80 85.54 80.42 85.17

kNN 85.52 82.95 84.35 86.43 83.64 87.58 86.43 84.35 87.01

RF 85.99 81.65 87.83 84.55 84.63 89.88 84.55 87.83 87.13

Color histogram Linear SVM 41.12 33.92 35.96 45.16 34.91 47.40 45.16 35.96 46.25

Non-linear SVM 56.09 Null 0.00 100.00 0.00 56.09 100.00 0.00 71.87

ANN 78.89 77.78 72.68 83.75 75.14 79.67 83.75 72.68 81.66

LR 70.97 67.95 49.92 84.67 57.56 72.21 84.67 49.92 77.95

kNN 77.10 70.30 72.60 80.03 71.43 81.78 80.03 72.60 80.90

RF 79.13 72.17 76.60 80.78 74.32 84.14 80.78 76.60 82.42

Linear SVM 42.34 40.50 98.67 5.68 57.43 86.74 5.68 98.67 10.66

Luminance histogram Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 71.23 64.74 59.34 78.97 61.92 74.90 78.97 59.34 76.88

HOG

LR 60.46 48.96 7.20 95.11 12.56 61.16 95.11 7.20 74.45

kNN 61.42 51.31 41.65 74.28 45.98 66.17 74.28 41.65 69.99

Naive Bayesian 54.43 45.11 71.84 43.11 55.42 70.17 43.11 71.84 53.40

RF 60.85 50.33 53.01 65.95 51.63 68.32 65.95 53.01 67.11

Linear SVM 53.28 44.82 80.14 35.79 57.49 73.47 35.79 80.14 48.13

Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 61.54 54.30 15.40 91.57 23.99 62.45 91.57 15.40 74.26

LBP

LR 74.29 69.32 62.42 82.02 65.69 77.03 82.02 62.42 79.45

kNN 70.21 66.11 50.11 83.28 57.01 71.95 83.28 50.11 77.20

Naive Bayesian 57.71 47.78 78.28 44.32 59.34 75.82 44.32 78.28 55.94

RF 70.27 62.16 62.84 75.10 62.50 75.64 75.10 62.84 75.37

Linear SVM 48.17 36.83 44.02 50.87 40.10 58.27 50.87 44.02 54.32

Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 71.84 67.38 55.41 82.54 60.81 73.99 82.54 55.41 78.03

GLCM

LR 67.73 59.71 55.75 75.52 57.67 72.40 75.52 55.75 73.93

kNN 69.26 62.30 55.79 78.03 58.87 73.06 78.03 55.79 75.46

Naive Bayesian 61.99 51.12 82.01 48.96 62.98 80.70 48.96 82.01 60.94

RF 71.39 63.16 65.85 75.00 64.48 77.14 75.00 65.85 76.06

Linear SVM 66.50 55.89 71.27 63.39 62.65 77.22 63.39 71.27 69.63

Non-linear SVM 67.76 58.77 61.05 72.12 59.89 73.99 72.12 61.05 73.05

ANN 68.69 60.64 58.65 75.22 59.63 73.65 75.22 58.65 74.43

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

histogram is not applicable, and, except for the GLCM feature,

the problem that the accuracy of the non-linear SVM classifier

does not change still exists.

4.2. Evaluation of deep learning methods

4.2.1. On 160 × 160 pixels sub-database

According to Table 5, on 160 × 160 pixels sub-database,

all deep learning models have better classification results than

classical machine learning methods. The VGG model with the

longest training time and the largest model size has an accuracy

above 95%. Inception-V3 and ResNet50 have better model size

and training time than VGG16. However, Inception-V3 has

lower accuracy than VGG16, and ResNet50 has the highest

accuracy of 96.09%, which is the highest among all models. ViT

is a Transformer-based classifier with an accuracy of 86.21%.

However, it is still higher than the classification accuracy of

all traditional machine learning methods on this sub-database.

Significantly, ViT achieves such accuracy with only 1/4 of the
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TABLE 4 Classification results of five image features using di�erent classifiers in the 120 × 120 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc
Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 83.46 80.01 75.28 88.47 77.57 85.38 88.47 75.28 86.90

kNN 86.32 82.28 81.55 89.24 81.92 88.75 89.24 81.55 88.99

RF 86.08 80.36 83.87 87.43 82.08 89.84 87.43 83.87 88.62

Color histogram Linear SVM 46.28 39.48 77.62 27.06 52.34 66.36 27.06 77.62 38.45

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 81.20 78.14 70.14 87.98 73.93 82.78 87.98 70.14 85.30

LR 71.28 66.89 48.39 85.32 56.15 72.95 85.32 48.39 78.65

kNN 76.43 68.19 71.17 79.65 69.65 81.84 79.65 71.17 80.73

RF 77.60 69.36 73.57 80.08 71.40 83.17 80.08 73.57 81.60

Linear SVM 58.54 47.45 84.62 42.55 60.80 81.86 42.55 84.62 55.99

Luminance histogram Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 71.18 62.97 58.65 78.86 60.73 75.68 78.86 58.65 77.23

HOG

LR 61.78 33.72 0.58 99.30 1.15 61.97 99.30 0.58 76.31

kNN 62.02 50.04 39.56 75.79 44.18 67.17 75.79 39.56 71.22

Naive Bayesian 54.83 44.29 73.06 43.66 55.15 72.56 43.66 73.06 54.52

RF 60.55 48.15 49.62 67.25 48.87 68.53 67.25 49.62 67.88

Linear SVM 50.91 39.90 57.60 46.81 47.14 64.30 46.81 57.60 54.18

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 62.35 54.37 5.77 97.03 10.43 62.69 97.03 5.77 76.17

LBP

LR 73.34 67.20 58.29 82.56 62.43 76.35 82.56 58.29 79.34

kNN 70.27 64.05 49.64 82.92 55.93 72.87 82.92 49.64 77.57

Naive Bayesian 57.39 46.41 78.43 44.49 58.31 77.09 44.49 78.43 56.42

RF 70.13 60.88 59.90 76.41 60.39 75.66 76.41 59.90 76.03

Linear SVM 46.21 29.70 30.40 55.89 30.05 56.71 55.89 30.40 56.30

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 71.19 64.72 53.19 82.23 58.39 74.13 82.23 53.19 77.97

GLCM

LR 67.54 58.21 51.65 77.27 54.74 72.28 77.27 51.65 74.69

kNN 69.79 61.98 53.04 80.05 57.16 73.56 80.05 53.04 76.67

Naive Bayesian 61.40 49.52 80.77 49.53 61.39 80.77 49.53 80.77 61.41

RF 71.15 61.42 64.72 75.09 63.03 77.64 75.09 64.72 76.34

Linear SVM 66.66 55.02 67.30 66.28 60.54 76.78 66.28 67.30 71.14

Non-linear SVM 69.43 60.08 58.27 76.27 59.16 74.88 76.27 58.27 75.57

ANN 68.10 58.45 55.56 75.79 56.97 73.56 75.79 55.56 74.66

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

training time and 1/3 of the model size compared to ResNet.

Also, the accuracy curve is still trending upward and the loss

function is still not fully converged.

4.2.2. On 120 × 120 pixels sub-database

According to the Table 5, the classification results are

excellent on the sub-database of 120× 120 pixels. Due to a large

number of training samples, VGG16 is the classifier with the

highest accuracy of 96.47% on this sub-database. However, the

training time is doubled compared to that on the 160× 160 sub-

database. The accuracies of 95.83 and 95.94% are obtained for

Inception-V3 and ResNet50, respectively. Due to the increase

in the amount of training data, ViT also gained an accuracy

improvement, rising to 89.44%.

4.2.3. On 80 × 80 pixels sub-database

According to Table 5, the classification results of the 80× 80

subdatabase can be seen. It is the sub-database with the largest

number of samples, and the accuracy of the four classifiers
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TABLE 5 Classification results of five image features using di�erent classifiers in the 80 × 80 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc
Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 82.22 78.17 77.59 85.35 77.88 84.93 85.35 77.59 85.14

kNN 85.24 80.60 83.52 86.41 82.03 88.58 86.41 83.52 87.48

RF 83.27 77.14 83.15 83.34 80.03 87.98 83.34 83.15 85.60

Color histogram Linear SVM 60.81 50.86 83.58 45.41 63.24 80.36 45.41 83.58 58.03

Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 79.28 76.60 70.03 85.54 73.17 80.85 85.54 70.03 83.13

LR 70.16 66.79 51.77 82.60 58.33 71.70 82.60 51.77 76.76

kNN 74.65 67.67 71.11 77.04 69.35 79.78 77.04 71.11 78.38

RF 75.10 67.77 72.94 76.55 70.26 80.71 76.55 72.94 78.58

Linear SVM 54.58 46.58 85.81 33.47 60.38 77.72 33.47 85.81 46.79

Luminance histogram Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 70.17 63.19 62.38 75.43 62.78 74.79 75.43 62.38 75.11

HOG

LR 59.87 53.42 3.96 97.67 7.37 60.07 97.67 3.96 74.39

kNN 59.63 49.95 42.22 71.40 45.76 64.64 71.40 42.22 67.85

Naive Bayesian 55.91 46.97 72.35 44.79 56.96 70.56 44.79 72.35 54.79

RF 59.08 49.31 51.88 63.95 50.56 66.28 63.95 51.88 65.10

Linear SVM 53.47 44.46 61.60 47.98 51.64 64.89 47.98 61.60 55.17

Non-linear SVM 59.70 90.91 0.08 99.99 0.17 59.68 99.99 0.08 74.75

ANN 59.67 50.08 2.49 98.32 4.75 59.87 98.32 2.49 74.42

LBP

LR 70.92 65.32 59.49 78.65 62.27 74.17 78.65 59.49 76.34

kNN 68.48 63.20 52.32 79.41 57.24 71.13 79.41 52.32 75.04

Naive Bayesian 59.09 49.55 77.69 46.52 60.51 75.52 46.52 77.69 57.57

RF 68.16 60.13 62.49 71.98 61.29 73.95 71.98 62.49 72.95

Linear SVM 43.10 27.68 25.48 55.01 26.53 52.20 55.01 25.48 53.56

Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 68.57 62.75 54.32 78.21 58.23 71.69 78.21 54.32 74.81

GLCM

LR 65.56 57.32 57.24 71.19 57.28 74.65 71.21 64.23 72.89

kNN 68.84 62.32 57.53 76.49 59.83 72.71 76.49 57.53 74.55

naive Bayesian 62.12 51.96 80.87 49.45 63.27 79.27 49.45 80.87 60.91

RF 68.39 60.13 64.23 71.21 62.11 74.65 71.21 64.23 72.89

Linear SVM 66.82 57.14 71.04 63.97 63.33 76.57 63.97 71.04 69.71

Non-linear SVM 68.31 61.03 59.26 74.42 60.13 72.99 74.42 59.26 73.70

ANN 65.52 56.70 61.40 68.30 58.96 72.36 68.30 61.40 70.27

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

only changes slightly. VGG16 performs stably with an accuracy

of 96.12%, which is the classification model with the highest

accuracy. The lowest accuracy is still the ViTmodel with the least

training time, at 90.23. It is worth noting that the training time

of ViT is 13.26% of that of the highest accurate VGG16 on this

sub-database.

4.3. Additional experiment

As stated in Section 4.2.1, ViT did not converge completely

within 100 epochs. Experiments are added in this section to

explore the performance of ViT, and the results are reflected in

the last row of each sub-database in Table 5. The same parameter

conditions were maintained for all additional experiments. In

the additional experiments for the 160 × 160 sub-database,

the control training time was similar to that of Inception-V3

and ResNet running 100 epochs. ViT runs 400 epochs and the

accuracy reaches 92.23%. In the other two sub-databases with

larger amount of data, again when controlling for the same

training time as Inception-V3 and RseNet50. At this time, the

accuracy of ViT models for the 120×120 pixel sub-database and

the 80 × 80 pixel sub-database improves to 94.59 and 94.57%,

respectively. The model size of ViT has a great advantage.

Moreover, these image classification results reach the general

level of medical image classification.
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TABLE 6 Classification results of four deep learning classifiers on GasHisSDB [In (%)].

Sub-database size Model Quantity of epoch Model size (MB) Best eopch Training time(s) Acc Category Pre Rec Spe F1

160× 160 pixels

VGG16 100 268.16 100 13,873 95.90
Abnormal 93.8 96.0 95.9 94.9

Normal 97.3 95.9 96.0 96.6

Inception-V3 100 89.69 92 10,296 94.57
Abnormal 94.1 92.0 96.2 93.0

Normal 94.9 96.2 92.0 95.5

ResNet50 100 83.12 84 10,023 96.09
Abnormal 94.6 95.6 96.4 95.1

Normal 97.1 96.4 95.6 96.7

ViT

100 31.17 97 2,587 86.21
Abnormal 83.8 80.6 89.9 82.2

Normal 87.7 89.9 80.6 88.8

400 31.17 399 10,014 92.23
Abnormal 92.1 87.8 95.1 89.9

Normal 92.3 95.1 87.8 93.7

120× 120 pixels

VGG16 100 268.16 100 26,105 96.47
Abnormal 96.7 94.0 98.0 95.3

Normal 96.4 98.0 94.0 97.2

Inception-V3 100 89.69 98 19,719 95.83
Abnormal 94.6 94.4 96.7 94.5

Normal 96.6 96.7 94.4 96.6

ResNet50 100 83.12 94 19,087 95.94
Abnormal 96.2 93.0 97.8 94.6

Normal 95.8 97.8 93.0 96.8

ViT

100 31.17 100 4,077 89.44
Abnormal 87.0 84.9 92.2 85.9

Normal 90.9 92.2 84.9 91.5

500 31.17 496 20,410 94.59
Abnormal 93.5 93.4 95.3 93.2

Normal 95.4 95.9 92.5 95.6

80× 80 pixels

VGG16 100 268.16 90 62,152 96.12
Abnormal 94.2 96.3 96.0 95.2

Normal 97.4 96.0 96.3 96.7

Inception-V3 100 89.69 99 43,926 95.41
Abnormal 95.5 93.0 97.0 94.2

Normal 95.3 97.0 93.0 96.1

ResNet50 100 83.12 97 41,992 96.09
Abnormal 96.2 94.0 97.5 95.1

Normal 96.0 97.5 94.0 96.7

ViT

100 31.17 89 8,247 90.23
Abnormal 86.3 90.1 90.3 88.2

Normal 93.1 90.3 90.1 91.7

500 31.17 496 41,135 94.57
Abnormal 93.1 93.4 95.3 93.2

Normal 95.6 95.3 93.4 95.4

The bold text in the table indicates the maximum value or the best index of the classification results of different categories.

4.4. t-SNE method analysis

To explore the possibility of ensemble learning between deep

learning classifiers, we conducted a TSNE analysis of the top

performing deep learning classifiers. the t-SNE method analysis

was performed using the 160 × 160 pixels sub-database as an

example and the results are shown in Figure 3.

This experimental platform use the t-SNE method to

downscale the features extracted by the four deep learning

methods into two-dimensional scatters displayed in the image.

Representative images from the test set are selected in the

figure, where the abnormal image suffers from misclassification

in ViT, and its points after feature downscaling fall in the

image normal population. This image performs well in the other

three classifiers, and its feature-descended points fall in the

image abnormal population. However, it can be observed that

the selected normal image it performs well in Inception-V3,

ResNet50, ViT, with the reduced points falling in the normal

population, but performs poorly in VGG16.

5. Discussion

This chapter compares the classification results of different

classifiers from the Linear Regression to Visual Transformer on

the 160 × 160, 120 × 120, and 80 × 80 pixels sub-databases of

the GasHisSDB. The classification performance of each method

on GasHisSDB reflects complementarity.

Classical machine learning methods have a rigorous

theoretical foundation. Their simplified ideas can show

good classification results on some specific features and

algorithms (39).
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FIGURE 3

Plot of results from t-SNE analysis of four deep learning classification models.

This experimental platform shows that seven classifiers for

GLCM classification on three sub-databases with little difference

in accuracy, where the naive Bayesian classifier has significantly

higher Rec than Spe for the abnormal category, and the linear

SVM has slightly higher Rec than Spe. It shows that these

two classifiers are better in classifying the abnormal category.

However, the Spe of the other classification models are higher

than the Rec, indicating that they aremore effective in classifying

the normal category. The same phenomenon occurs for every

feature of every sub-database. There exist classifiers with high

Rec values or high Spe values in the same condition. Such

a result can be a powerful indication of the existence of this

complementarity of these classifiers.

However, deep learning methods are still far ahead

of classical machine learning methods in terms of image

classification accuracy and experiment workload (40).

By analyzing the deep learning methods using the t-

SNE method, there is a clear classification performance for

their feature extraction. In Figure 3 it can also be seen that

there is an aggregation of normal and abnormal images

in the four classifiers. However, there is still inconsistency

in the classification results and it can be understood that

these methods can exist to some extent in a complementary

manner (41).

The evaluation metrics for deep learning models are

generally high, but complementarity in the field of machine

learning also occurs in the field of deep learning (42). For

example, the Spe of Inception-V3 and ResNet50 on sub-database

C for abnormal category classification is high, but the high Rec

of VGG16 can be well performed to the complementarity of the

above two models.

The selection of suitable classifiers is the primary problem

of ensemble learning, and after relevant experiments in

the complementarity comparison experimental platform,

it can be observed that these classifiers exhibit different

performances (43). The complementarity possessed by

these classifiers can adequately meet the needs of ensemble

learning (44).

6. Conclusion and future work

In practice, machine performance often limits model

training for large-size images, and finding multiple classification

models with complementarity types is the basis for ensemble

learning. For sub-sized images, this experiment tries a large

number of classification models to find their complementarity

and thus improve the efficiency of ensemble learning.
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The experimental results show that complementarity in

machine learning does exist for different classifiers of the

same feature. Different classifiers for the same feature include

classifiers that classify the abnormal category well and classifiers

that classify the normal category well. This is a powerful

indication of the complementarity among classifiers.

The evaluation metrics of the deep learning models are

both very excellent. There are models that are less effective in

classifying the abnormal category than the normal category. In

this case, selecting the appropriate model that performs well

for the abnormal category can contribute to ensemble learning.

Complementarity can also be demonstrated in this situation.

There are still many excellent methods that have not

been added to the experimental platform. Moreover, the

recently popular ViT excels in the field of image processing,

but ViT does not show significant experimental results

on sub-size images. In the future, we will add more

models to explore the complementarity nature of ensemble

learning on sub-size images to improve the efficiency of

ensemble learning.
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