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Interleukin-34-regulated T-cell
responses in rheumatoid
arthritis

Hye Eun Park, Hanna Oh and Jea-Hyun Baek*

School of Life Science, Handong Global University, Pohang, South Korea

Rheumatoid arthritis (RA) is a chronic autoimmune disease with a multifaceted

etiology, which primarily a�ects and results in the deterioration of the

synovium of patients. While the exact etiology of RA is still largely unknown,

there is growing interest in the cytokine interleukin-34 (IL-34) as a driver or

modulator of RA pathogenesis on the grounds that IL-34 is drastically increased

in the serum and synovium of RA patients. Several studies have so far revealed

the relationship between IL-34 levels and RA disease progression. Nevertheless,

the significance and role of IL-34 in RA have remained ambiguous, as illustrated

by two most recent studies, which reported contrasting e�ects of genetic

IL-34 deletion in RA. Of note, IL-34 is a macrophage growth factor and is

increasingly perceived as a master regulator of T-cell responses in RA via

macrophage-dependent as well as T cell-intrinsic mechanisms. In this regard,

several studies have demonstrated that IL-34 potentiates helper T-cell (Th)

responses in RA, whereas studies also suggested that IL-34 alleviates synovial

inflammation, potentially by inducing regulatory T-cells (Treg). Herein, we

provide an overview of the current understanding of IL-34 involvement in RA

and outline IL-34-mediated mechanisms in regulating T-cell responses in RA.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial

inflammation attributed to an abundance of inflammatory cytokines and leukocytes,

leading to the destruction of surrounding bone and cartilage (1–4). Symptoms of

RA include joint pain, swelling and/or stiffness, and rheumatoid nodules under the

skin (5). RA synovial inflammation involves self-reactive immune responses triggered

by both innate and adaptive immune cells (e.g., neutrophils, macrophages, and T

lymphocytes) (6–8). Notably, the inflamed synovium is continuously infiltrated by

neutrophils, which are cleared by synovial macrophages (7–9). In general, activated

macrophages may have versatile roles being ‘healers’ and ‘destroyers’ and are commonly

divided into (1) classically (M1) and (2) alternatively activated macrophages (M2) being

pro-inflammatory and anti-inflammatory cells, respectively (9). In the RA synovium,

macrophages have been demonstrated to induce the proliferation of fibroblast-like

synoviocytes (FLS), recruit monocytes, and activate T helper (Th) cells (e.g., Th17)

(10, 11), collectively perpetuating the cycle of joint destruction in RA (12, 13). In contrast,
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other studies showed that macrophages counteract

inflammation and clinical symptoms in RA (9). Overall,

the pathological roles of macrophages in RA are enigmatic and

need to be further clarified.

Interleukin-34 (IL-34) is a macrophage growth factor, which

is detected at high levels in the synovial fluid (SF), synovial

cells, and serum of RA patients (14, 15). Synovial IL-34 levels

are implicated in leukocyte accumulation (16). IL-34 is also

proposed as a biomarker of RA remission due to a strong

correlation between IL-34 and the relapse of RA after the

termination of the anti-rheumatic drug treatment (4, 17–23).

While IL-34 presence in different states of RA pathology has

been described, the immunological role of IL-34 has not been

yet clearly delineated. Although systemic IL-34 was shown to

exacerbate RA (11, 24), the deleterious role of IL-34 in RA has

remained controversial through various studies including the

latest finding suggesting that IL-34 is beneficial in the effector

phase of RA (9). Whether IL-34 takes on either a pro- or anti-

inflammatory role, is ambiguous and may depend on pathologic

conditions as studies of certain diseases (e.g., acute kidney

injury, inflammatory bowel disease, lupus nephritis, Sjögren’s

syndrome) characterized IL-34 as a pro-inflammatory factor

(25–29), while other clinical settings (e.g., atopic dermatitis,

autoimmune hepatitis, lung cancer, sepsis) identified IL-34 as

a mediator of anti-inflammatory responses (30–33). Recently,

accumulating evidence has suggested that IL-34-dependent

pathologic mechanisms in RA involve T cells, and IL-34

substantially controls the nature of T-cell responses in RA.

However, the current conceptualization of IL-34-mediated T-

cell regulation in RA is as vague as the proposed immunological

roles of IL-34 (9, 11, 34). Therefore, there is a strong need to

amalgamate information surrounding IL-34 involvement in RA

pathogenesis, especially regarding how IL-34 integrates into the

mechanisms of T-cell activation noted in RA.

IL-34 in RA

IL-34 is a cytokine, which binds to multiple receptors.

The colony-stimulating factor-1 receptor (CSF-1R) is the

first identified and best-known receptor for IL-34. CSF-1R

is expressed on the surfaces of mononuclear phagocytes

(e.g., macrophages) and is activated by two known ligands:

CSF-1 and IL-34 (Figure 1) (35). CSF-1R is crucial for the

differentiation, polarization, activation, and maintenance of

Abbreviations: APC, antigen-presenting cell; CSF-1, colony-stimulating

factor-1; FLS, fibroblast-like synoviocytes; IL-34, interleukin-34; Janus

protein tyrosine kinase; OPG, osteoprotegerin; PBMC, peripheral blood

mononuclear cells; PTPRZ1, protein tyrosine phosphatase receptor type

ζ1; RA, rheumatoid arthritis; RANK, receptor activator of nuclear factor-

κB; RANKL, RANK ligand; SF, synovial fluid; Th, T helper; Treg, regulatory

T cell; TNF, tumor necrosis factor.

FIGURE 1

IL-34 receptors (including co-receptors). IL-34 has shown the

capability of binding to CSF-1R alongside CSF-1 on

macrophages. Independent of CSF-1, IL-34 has shown binding

to syndecan-1 and PTPRZ found on the surface

of macrophages.

mononuclear phagocytes (2, 36–41). IL-34 and CSF-1 may have

non-redundant roles in RA as studies have reported unique

pathological properties of IL-34 that are independent of CSF-

1 (25, 37). Interestingly, IL-34 is more drastically upregulated

in human and murine RA as compared to CSF-1, underlining

a predominant role of IL-34 in CSF-1R signaling during the

pathogenesis of RA (9). Studies have investigated the effects

of CSF-1R inhibition in RA. A study, using both human and

murine RA models, reported suppression of RA inflammation

when CSF-1 and IL-34 were simultaneously inhibited, while

individual neutralization of either factor did not demonstrate

beneficial effects in RA models (36). Nevertheless, numerous

studies pointed to the direct association between IL-34 and RA

pathology, although the effects of IL-34 on RA were not always

consistent (2, 4, 9, 11, 19, 24, 41–44). For example, a very recent

study demonstrated that the genetic deletion of IL-34 aggravates

the effector phase of RA, implicating a protective role of IL-34 in

RA (9), while another study showed that the genetic deletion of

IL-34 mitigates RA pathology (11).

IL-34 has been recently associated with metabolism in RA-

associated macrophages. IL-34 may metabolically reprogram

macrophages toward a hyper-glycolytic M1-like phenotype

upregulating glucose transporter 1 (GLUT1), mammalian target

of rapamycin (mTOR), and hypoxia-induced factor 1α (HIF-

1α) in the RA synovium (11, 43); however, we need further

clarification on whether this is a general mechanism of IL-34,

applicable to any physiological or pathological condition.

CSF-1R is not only linked to macrophage activity in RA

but is also expressed by RA FLS (4). Increased IL-6 production

by the RA FLS was noted during stimulation with IL-34 in

a CSF-1R-dependent manner (4). Also, synovial fibroblasts
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may conceivably function in the RA synovium through IL-34-

mediated pathways as evidenced by a study showing that IL-

34 supports synovial fibroblast survival by the activation of the

STAT3-miR-21 axis (17).

Not only do FLS or synovial fibroblasts respond to

exogenous IL-34 expressing relevant T-cell surface receptors, but

it is also likely that they are the major source of IL-34 in RA SF.

Indeed, in the presence of TNF-α, FLS upregulate the expression

of IL-34 (20). Similarly, a different study showed that synovial

fibroblasts increase the expression of IL-34 after exposure to

TNF-α and IL-1β (45). Of note, synovial macrophages likely

produce and provide TNF-α and IL-1β to synovial fibroblasts

(46, 47). Synovial fibroblasts may, in turn, express IL-34 and

ultimately stimulate Th17 cells to express IL-17 (48).

In addition to the activation of macrophages, T cells,

and FLS, IL-34 may promote synovial inflammation by the

initiation of osteoclastogenesis (43). Of note, osteoclastogenesis

and osteoporosis are prominent in synovial inflammation (49–

52). Indeed, the imbalance between M1 and M2 macrophages

in RA patients has been linked to increased occurrence of

osteoclastogenesis in RA patients (16). Importantly, IL-34 is

known to directly promote osteoclast formation like CSF-1 (53)

and may upregulate the expression of the receptor activator of

nuclear factor (NF)-κB-ligand (RANKL) for the progression of

osteoclastogenesis in RA (21, 53–55).

In addition to CSF-1R, syndecan-1 (CD138) and protein

tyrosine phosphatase receptor type ζ1 (PTPRZ1) bind IL-34

(Figure 1). Syndecan-1 is a cell surface proteoglycan functioning

as a co-receptor to various cell surface receptors (56) and,

besides, a regulatory factor involved in cell adhesion and cell

migration (49–52). Syndecan-1 is present in various human

subsets of monocytes and macrophages (57). On macrophages,

syndecan-1 enhances the activation of IL-34 receptors and

increases their motility (58). In line with this, another study

showed that the migration of syndecan-1-expressing monocytes

and macrophages is induced with IL-34 and reversely inhibited

by anti-syndecan-1 neutralizing antibodies (56). Syndecan-1

has been also associated with various diseases, such as aortic

aneurysms (52), cancer (59), dermatitis (60), and multiple

myeloma (61). Expression of both IL-34 and syndecan-1 was

reported to be elevated in RA synovium (11, 43). As such, the

syndecan-1 expression for the binding of IL-34 has recently

emerged as a molecule of interest in RA. Although the exact

mechanism of the interaction between IL-34 and syndecan-1

remains elusive, it was shown that the lack of syndecan-1 impairs

macrophage differentiation, ultimately attenuating murine IL-

34-induced arthritis (11, 43). Syndecan-1 was detected in the

mononuclear infiltrates of the sub-lining layer in the synovium

of RA patients, thus posing the possible role of syndecan-

1 in RA pathophysiology in the migration and maintenance

of mononuclear phagocytes in the synovium (62). A study

detecting syndecan-1 mRNA expression within the joints in a

murine RA model showed that syndecan-1 mRNA expression

levels are highest in aging knee joints, implying its role in age-

related RA (63). Besides impacting macrophage functions and

synovial inflammation, syndecan-1 induces osteoclastogenesis,

resulting in the degradation of joint and bone structures in RA

patients. Syndecan-1 levels are positively correlated with levels of

RANKL in murine serum while being negatively correlated with

serum osteoprotegerin (OPG) (64). The study linked increased

syndecan-1 levels with the progression of osteoclastogenesis,

suggesting syndecan-1 as a novel modulator of the RANKL and

OPG balance in RA.

Independently of CSF-1R, IL-34 signals via PTPRZ1 (65)

(Figure 1). Human monocytes have been demonstrated to

express PTPRZ1 (57). PTPRZ1 involvement has been linked

to various inflammatory diseases such as inflammatory bowel

disease (IBD) and lupus nephritis, where PTPRZ1 expression

was found to correlate with IL-34, CSF1, and CSF-1R expression

(9, 29, 66). Themost recent study reported that IL-34-dependent

PTPRZ1 activation ameliorates the effector phase of RA (9). In

this study, PTPRZ signaling was shown to facilitate the removal

of apoptotic neutrophils by macrophages preventing further

escalation of synovial inflammation in RA conditions (9).

However, the above-mentioned study (using the K/BxN-induced

model) also reported a protective role of IL-34 in RA, contrasting

with other studies (11, 43). The discrepancy may be due to the

difference in how RAwas induced (K/BxN-induced vs. collagen-

induced murine RA model). Thus, further investigation on

whether PTPRZ1 activation is protective throughout different

models of RA is needed.

IL-34 and Th17 cells

The positive correlation between the severity of RA and

the number of synovial macrophages has been well-documented

(67, 68) (Table 1). Certain alleles of class II human leukocyte

antigen (HLA) antigen (e.g., DRB1-β chain) are associated with

RA via increased disease occurrence and inflammatory activity

(72, 73). This is strong evidence for the involvement of T helper

(Th) cells in the pathogenesis of RA. Although the mechanisms

by which Th cell activation occurs in the RA microenvironment

are yet to be fully understood, a positive correlation between Th

population levels and RA disease severity has been noted (74).

Of the Th subsets, a subset that is predominantly associated with

RA pathogenesis is the T helper 17 (Th17) cell.

Previously, researchers have pinpointed Th17 cell

differentiation, recruitment, and activation as a driver of

the inflammatory response in RA pathogenesis (75). The

impact of Th17 cells in RA pathogenesis is supported

by the increased numbers of Th17 cells in RA patients

as compared to healthy people (76). Earlier studies have

shown a bias for Th17 cell polarization of naïve CD4+

T cells, which impose an inflammatory response in

the surrounding environment (77). In addition, Th17
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TABLE 1 E�ects of IL-34 on T lymphocyte activation.

Affected Th

response

Target cell Effects of IL-34 References

Th17 Human

PBMC Increasing Th17 cell proliferation and IL-17 expression (2)

PBMC Increasing IL-17 production (19)

Monocytes Increasing Th17 cell proliferation through upregulating IL-6 expression by THP-1 (42)

Macrophages Expanding of F4/80+iNOS+ macrophage population; polarizing Th1 and Th17 cells (43)

FLS Increasing Th17 cell proliferation through upregulating IL-6 expression by FLS (4)

FLS Increasing IL-17 production (44)

Mouse

Macrophages Increased numbers of Th1 and Th17 cells in in-vitro coculture of BM-derived macrophages

with splenocytes

(11)

N/A Increased IL-17 production (24)

Treg Human

PBMC No effects on Treg transcription factors or cytokine secretion (2)

PBMC Suppression of effector T-cell proliferation; Expansion and potentiation of both CD4+ and

CD8+ Tregs

(69)

Humanized mouse

N/A Mediating suppressive activity of Tregs in mixed lymphocyte reaction (70)

Rat

CSF1R+ cells (Macrophages?) Mediating inhibition of alloreactive immune responses (69)

N/A Mediating suppressive activity of Tregs in vivo (71)

cells are being identified as osteoclastogenic subsets in

autoimmune arthritis through cytokine secretion and RANKL

expression (77).

Exploring the therapeutic potential of Th17 cell inhibition

in RA has been studied previously, where IL-25 was found to

suppress Th17 immune responses for attenuation of RA in a

collagen-induced model (78). An in vitro study found that IL-

34-induced macrophages possessed the capacity of converting

certain memory CD4+ T cells into CCR4+CCR6+CD161+

Th17 cells, supporting the possibility that Th17 cells observed

in RA disease conditions are activated through IL-34-induced

macrophages (41). Congruently, a different study demonstrated

that IL-34 participates in the differentiation of peripheral blood

mononuclear cells (PBMC) to Th17 cells in RA patients (2).

Stimulation of PBMC from RA patients with IL-34 showed an

increased frequency of Th17 cells with upregulated expression of

IL-17 (19). Moreover, such effects of IL-34 found in RA patients

went unnoted from samples of healthy controls, supporting

the notion that IL-34 effects on Th17 cell differentiation

could be RA-specific (2). Human monocytes (THP-1) activated

by IL-34 led to the secretion of IL-6 increasing Th17 cell

numbers in RA (42). In line with this, IL-34 expression

has shown involvement in Th1 and Th17 cell polarization

through the expansion of certain macrophage populations in

murine models (43). The increase of Th17 cell numbers has

also been possible through IL-34-stimulated IL-6 secretion by

RA FLS, such results are supported by the attenuation of

Th17 cell production by IL-34-dependent RA FLS through the

administration of IL-6 antagonists (4, 44). Similarly, myeloid-

related protein, also highly abundant in RA SF, has been

found to upregulate IL-6 production by FLS promoting Th17

differentiation (79). There is also evidence that IL-17 directly

acts on FLS. Increased proliferation of RA FLS and inhibition of

RA FLS apoptosis by IL-34 was neutralized when IL-17 inhibitor

plumbagin was introduced (44). Th17 cells and IL-17 may

participate in RA FLS survival by inhibiting the mitochondrial

pathway of apoptosis (80). These collective results suggest a

positive correlation between IL-34 and Th17 cell inflammatory

response in RA.

A collagen-induced murine arthritis model study with

additional IL-34 injection led to increased TNF-α and IL-

17 mRNA expression in the synovial tissues, indicating a

proinflammatory role for IL-34 via IL-17 production entailing

aggravation of arthritis (24). This regulation of IL-17 production

by IL-34 could also play a role in osteoclastogenesis (55). The

same study reported that the enhanced expression of RANKL

and OPG by FLS and PBMCs of RA patients by IL-34 was

secondhandedly mediated by IL-17. This is in line with the

known function of IL-17 as an osteoclastogenic factor for

subsequent osteoporosis (81).
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IL-34 and Tregs

Currently, researchers have also been investigating the

potential of IL-34 in the regulation of balancing different T-

cell populations, with Tregs being proposed as another T-

cell subset mediated by IL-34 stimulation (Table 1). Tregs are

a subpopulation of T cells that maintain homeostasis and

self-tolerance through the suppression of different immune

responses, such as those induced by Th17 cells (82). Tregs

are known to be critical for the prevention of autoimmunity,

as observed in RA, possibly by inhibiting the cytokine

production by other pro-inflammatory T-cell subsets, as such the

immunomodulatory role of Tregs has been studied in different

clinical conditions (70, 82, 83). Concerning the activity of RA

Th17 cells, Treg-mediated suppression of Th17 activity was

studied in an in vitro would healing model and a murine

autoimmune neuroinflammation model (84, 85). Naïve and

memory Tregs were able to suppress Th17 cells ex vivo,

and also in the wound-healing model, Tregs suppressed the

Th17 cell antifibrotic effects (84). In an experimental multiple

sclerosis model, Tregs limited the access of Th17 cells to APCs

and suppressed Th17 cell calcium signaling (85). While Treg

involvement in the anti-inflammatory activity and resolution

of RA can be inferred as higher numbers of Tregs and their

inhibitory activity have been detected in clinical remission states

of RA (86), reports have observed the immunoregulatory role of

Tregs to be compromised in RA patients (86).

Recently, the imbalance between Th17 and Treg

populations, which would potentiate an inflammatory response

in the surrounding microenvironment, is being studied as

one determinant of disease progression. A study reported an

increased frequency of peripheral Th17 cells and elevated Th17

cytokines, such as IL-17, IL-23, IL-6, and TNF-α in RA patients

compared to healthy individuals (87). This contrasted with

the significant decrease in both the frequency of Tregs and

respective Treg-related cytokine [e.g., transforming growth

factor-beta (TGF-β)] levels (11, 87). Meyer et al. (11) found

that the TGF-β expression in the synovium is reduced in IL-34

and syndecan-1 KO mice, indicating that the synovial TGF-β

expression is IL-34-dependent (11). Likewise, an investigation

of Th1, Th17, and Treg populations in the bone marrow of

RA patients reported a significant increase in Th1 and Th17

cell frequencies, and, in parallel, a significant decrease in

Tregs (88). Reestablishing the balance between Treg and Th17

cell populations in RA by inhibiting NLRP3 inflammasome

has exhibited promising results, which alludes to a potential

therapeutic role of IL-34 for rebalancing Treg and Th17 cell

populations (89). The amelioration of the proinflammatory

response in a murine collagen-induced arthritis model was

conducted through IL-12 suppression for suppression of Th17

cells and increase of the Treg population, which provides

support for Treg population expansion in the treatment of

RA (90).

IL-34 has been proposed as a Treg-targeting cytokine in

a study revolving around the transplant tolerance activity

of IL-34-expanded Tregs (69). In line with this, a most

recently published study reported that IL-34 deficiency impairs

the suppressive function of CD4+ Tregs in rats and makes

mice more prone to autoimmunity (71). Human macrophage

exposure to IL-34 was verified to increase the numbers

of CD8+ and CD4+ FOXP3+ Tregs. These specific Treg

populations, as compared to Tregs not expanded via IL-34

addition, demonstrated improved suppressive action against

anti-graft immune responses (69). Additionally, a study of

graft-versus-host disease identified highly suppressive human

Tregs producing IL-34 for their immunosuppressive activity

(70). Notwithstanding, a study noted that IL-34 stimulation of

PBMC isolated from RA patients did not affect differentiation

or cytokine secretion of Tregs, despite IL-34 exposure

of RA PBMCs increasing Th17 populations and IL-17

expression levels (2). Such results demonstrate the need for

further investigation into the mechanisms by which IL-34

engages in the differentiation, proliferation, and activation of

Tregs in RA.

Discussion

RA is an inflammatory autoimmune disease with a

multifaceted etiology. While certain aspects of RA etiology

and pathogenesis are becoming better understood, there

is still much to learn for the development of improved

therapeutic approaches. When observing the inflammatory

response of the RA synovium, a positive correlation between

macrophages and RA disease severity is well-observed (7,

8). Additionally, different subsets of T cells are being

attributed as RA biomarkers, whether due to their up-

or down-regulation (87). Furthermore, these immune cells

are shown to participate in RA-associated osteoclastogenesis

(16, 91).

Increased levels of IL-34 are being detected in the serum and

SF of RA patients (4, 17–23). As reports of IL-34 involvement

in macrophage and T-cell polarization are being released,

IL-34 presents itself as a promising therapeutic target for

immune response and osteoclastogenesis regulation in RA.

However, the mechanisms, by which IL-34 either aggravates

or mitigates RA, are not clearly understood. Notably, two

recent independent studies using IL-34 knockout mice showed

contrasting effects of IL-34 on RA (9, 11). Such conflicting

observations may have resulted from different pathological

mechanisms given that one study used K/BxN serum injection

(autoantibody transfer) (9) and the other collagen immunization

(11) to induce RA in mice, recapitulating hypersensitivity

reactions type II/III (antibody-mediated) and type IV (cell-

mediated), respectively. As IL-34 is highly prominent in RA

patients, there are growing expectations for its potential as
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biomarker and therapeutic target in RA. IL-34 is a promising

biomarker (92). However, as RA etiology and pathogenesis

are not uniform in humans, continuous investigations into

the precise roles of IL-34-induced synovial macrophages in

T-cell responses and careful and thorough assessment of

IL-34 as a target in RA subsets are needed for future

therapeutic strategies.
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