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Lung cancer (LC) is one of the most incident malignancies and a leading

cause of cancer mortality worldwide. Common tumorigenic drivers of LC

mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and

MET. Small inhibitory molecules and antibodies selectively targeting these

alterations or/and their downstream signaling pathways have been approved

for treatment of LC. Unfortunately, following initial positive responses to these

targeted therapies, a large number of patients show dismal prognosis due to

the occurrence of resistance mechanisms, such as novel mutations of these

genes and activation of alternative signaling pathways. Over the past decade, it

has become clear that there is no possible cure for LC unless potent antitumor

immune responses are induced by therapeutic intervention. Immunogenic

cell death (ICD) is a newly emerged concept, a form of regulated cell death

that is sufficient to activate adaptive immune responses against tumor cells.

It transforms dying cancer cells into a therapeutic vaccine and stimulates

long-lasting protective antitumor immunity. In this review, we discuss the key

targetable genetic aberrations and the underlying mechanism of ICD in LC.

Various agents inducing ICD are summarized and the possibility of harnessing

ICD in LC immunotherapy is further explored.

KEYWORDS

immunogenic cell death, lung cancer, immunotherapy, damage-associated
molecular patterns, genetic alteration

1 Introduction

Over decades, lung cancer (LC) has remained one of the most frequently diagnosed
cancers and ranks as the leading cause of cancer-related death in human globally (1).
The 5-year survival rate is disappointing: only 19% of patients have survived overall,
and most of them have suffered from a high risk of cancer relapse (2, 3). In the past
decade, significant progress has been made in the treatment of LC. Researchers found
several driver gene mutations of LC and deeply investigated molecular targeted therapy,
which obviously improves the landscape of non-small cell lung carcinoma (NSCLC)
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treatment (4). Genetic alterations, such as mutations of
epidermal growth factor receptor (EGFR), KRAS, MET, and
rearrangements of ALK and ROS1, are the main contributors
to LC tumorigenesis and progression (5), which dysregulate
proliferation, apoptosis, migration, and invasion of cancer cells
through various downstream signaling pathways. Targeting
these abnormal genes or/and their downstream signaling has
been used for treatment of LC. However, owing to the high
heterogeneity of LC and acquired resistance to treatment,
therapeutic efficacy of the targeted therapy is not guaranteed
(6, 7).

Immunogenic cell death (ICD) is a novel form of regulated
cell death which can evoke an adaptive immune response
against cancer cells (8). Dying cancer cells can secrete damage-
associated molecular patterns (DAMPs), mainly including
high mobility group box 1 (HMGB1), calreticulin (CRT),
adenosine triphosphate (ATP) and Type I interferon (Type I
IFN). Recognized by the pattern recognition receptors (PRRs),
the DAMPs enhance function of the antigen-presenting cells
(APCs), activate T cells, increase the immunogenicity of tumor
cells and ultimately trigger ICD (9). ICD can be triggered by
many kinds of anti-cancer therapies, including chemotherapy,

Abbreviations: TME, the tumor microenvironment; ICD, immunogenic
cell death; NSCLC, non-small cell lung carcinoma; LUAD, lung
adenocarcinoma; SqCC, lung squamous cell carcinoma; EGFR,
epidermal growth factor receptor; TKI, tyrosine kinase inhibitors; IL-6,
interleukin-6; DAMPs, damage-associated molecular patterns; HGMB1,
high mobility group protein B1; CRT, calreticulin; ATP, adenosine
triphosphate; Type I IFN, Type I interferon; PRRs, pattern recognition
receptors; APCs, antigen-presenting cells; ER, endoplasmic reticulum;
ROS, reactive oxygen species; PDT, photodynamic therapy; ICIs,
immune checkpoints inhibitors; PI3K, phosphatidylinositol 3-kinase;
BAD, Bcl-xL/Bcl-2 associated death promoter; RTK, receptor tyrosine
kinases; ROR1, orphan receptor 1; SEMA7A, semaphorin 7A; PHPT1,
phosphohistidine phosphatase 1; FBXO32, F-box protein 32; BTC,
betacellulin; STAT3, signal transducer and activator of transcription
3; Grp94, glucose-regulated protein 94; YB-1, Y-box Binding protein;
HGF, hepatic growth factor; TNF-α, tumor necrosis factor alpha;
EMT, epithelial-to-mesenchymal transition; MVP, major vault protein;
STAT3, signal transducer and activator of transcription; HGF, hepatocyte
growth factor; Hh, hedgehog; Ral, Ras-like; RalGEF, Ras-like 2 guanine
nucleotide exchange factor; PRC1, protein required for cytokinesis
1; BRAF, V-raf murine sarcoma viral oncogene homolog B; V600E,
valine to glutamate substitution at codon 600; RhoGEFs, Rho guanine
nucleotide exchange factors; TNFR, tumor necrosis factor receptor;
TRAF, tumor necrosis factor receptor–associated factors; TINCR,
terminal differentiation-induced non-coding RNA; RTKs, receptor
tyrosine kinases; NPM, nucleophosmin; EML4, echinoderm microtubule
associated protein like 4; PD-L1, programmed cell death-ligand 1;
PD-1, programmed cell death-1; SLC34A2, solute carrier family 34
Member 2; NF-κB, nuclear factor-kappa B; GSDMD, gasdermin D; DCs,
dendritic cells; TLR4, toll-like receptor 4; RAGE, receptor for advanced
glycation end products; RAC1, Rac family small GTPase 1; CGAS,
cyclic GMP-AMP synthase; STING1, signal transducer stimulator of IFN
response cGAMP interactor 1; CXCL10, CX-C motif chemokine ligand
10; IL-1β, interleukin-1 beta; UPR, unfolded protein response; eIF2α,
eukaryotic translation initiation factor 2α; PKR, protein kinase RNA; PERK,
Protein Kinase RNA-activated-like ER Kinase; IRE1, inositol-requiring
transmembrane kinase/endonuclease; ATE6, activating transcription
factor 6; IL-12, interleukin-12; EnaV, enapotamab vedotin; AF, auranofin;
TrxR, thioredoxin reductase 1; KRASmut, KRAS-mutant; NSq-NSCLC,
non-squamous NSCLC; RT, radiation therapy; CTLA-4, cytotoxic T
lymphocyte-associated antigen-4; IDO, indoleamine 2.3-dioxygenase.

radiation, targeted drugs, photodynamic therapy (PDT) and
immune checkpoints inhibitors (ICIs) (10–12). A shared
characteristic of these various ICD is their ability to provoke
endoplasmic reticulum (ER) stress and reactive oxygen species
(ROS) generation. By restoring the immunogenicity of poor ICD
triggers and stimulating DAMPs secretion, (ER) stress and ROS
are believed to be indispensable for ICD (13, 14). Therefore,
harnessing ICD to maintain the efficacy of anti-tumor therapies
is crucial and challenging for LC treatment (15).

2 Genetic alterations affecting
signaling pathways in lung cancer

Mutations of EGFR, KRAS, BRAF, and MET, and
rearrangements of ALK and ROS1 have aroused great interest in
recent years. Plenty of studies have pointed out the significance
of targeting tumor driver genes in cancer therapies nowadays
due to their key roles in promoting cancer survival, proliferation
and cell-cycle progression through modulating downstream
signaling pathways in lung cancer (Figure 1).

2.1 EGFR mutations

For Asian patients with lung cancer, EGFR mutant NSCLC
is the most prevalent subtype (16). Over the past decades, more
and more studies have showed that EGFR mutation is a common
driver of tumorigenesis, and lung cancer is no exception (17, 18).
EGFR mutations include in-frame mutations or point mutations
and insertions, which typically occurs in exon18-21, encoding
a portion of the EGFR kinase domain. In-frame deletions in
exon 19 and the L858R point mutation in exon 21 account
for nearly 90% of EGFR mutations and confer high sensitivity
to clinical target therapies (19). These mutations confer higher
sensitivity to clinical target therapies due to increased affinity
of TKIs to the ATP-binding pocket of mutant EGFR compared
to its wild-type. However, insertion mutation and T790M
point mutation in exon 20 are often resistant to TKI (20).
EGFR mutations are responsible for activation of constitutive
ligand-independent receptor and regulation of downstream
signaling pathways, promoting cancer proliferation and cell
survival (21). Regulated downstream signaling pathways include
activation of RAS/RAF/MEK/ERK, phospholipase C (PLCγ)
and phosphoinositide 3-kinase (PI3K)-AKT, but inhibition the
p38/MAPK and JNK/STAT pathway (22) (Figure 2). Oncogenic
alterations may result in EGFR overexpression as well, which
eventually increases the cancer incidence risk via regulating
related signaling pathway (23).

Mutant EGFR could inhibit apoptosis via inhibiting
BH3 -domain proteins, such as pro-apoptotic BIM and BMF
(24). Trever et al. proposed that the FAS/NF-κB pathway, which
promotes tumor growth, could rescue EGFR mutant lung cancer
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FIGURE 1

Genetic alterations of EGFR, ALK, and HER2 affecting signaling pathways in lung cancer. Tyrosine kinase inhibitors (TKIs) target receptor tyrosine
kinases and prevent phosphorylation of the TK domain receptor of EGFR, thus inhibiting the activation of downstream signaling pathways such
as the RAS/RAF/MEK/ERK pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, thereby interfering with cell proliferation,
differentiation, migration and survival. Activated KRAS proteins principally activate the downstream PI3K-AKT-mTOR signaling pathway that
regulates cell proliferation and the RAS-RAF-MEK-ERK signaling pathway that regulates cell growth. Tumorigenic alterations contribute to EGFR
overexpression, which ultimately increases the risk of cancer development by regulating related signaling pathways. EGFR, epidermal growth
factor receptor; TKI, tyrosine kinase inhibitors; EML4-ALK, echinoderm microtubule associated protein like 4-activin-like kinase; HER2, human
epidermal growth factor receptor 2; ATP, adenosine triphosphate; MEK, MAP kinase-ERK kinase; ERK, extracellular regulated protein kinases;
PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; GAP, growth-associated protein; GDP, guanosine diphosphate; GTP,
guanosine triphosphate; GEF, Granule, Effervescent; RAL, Ras-like; NF-κB, nuclear factor-kappa B; RAF, rheumatoid arthritis factor; ERK,
extracellular regulated protein kinases.

cells from EGFR inhibition (25). Karachaliou et al. found that
knockdown of Orphan receptor 1 (ROR1) could inhibit the
growth of NCI-H1975 cells [harboring EGFR L858R and T790M
mutations (24)] via the ROR1/MEK/ERK signaling pathway,
indicating the potential of ROR1 as therapeutic target for
EGFR positive lung adenocarcinoma (LUAD) (26). The study
of Kinehara et al. proposed that the GPI-anchored protein
semaphorin 7A (SEMA7A) is overexpressed via induction of
mTOR signaling in LUAD. Mutant EGFR lung cancer could
upregulate SEMA7A/ITBG1 axis, which normally activates ERK
signaling and leads to apoptosis resistance (27). Zhang et al.
reported that phosphohistidine phosphatase 1 (PHPT1), often
overexpressed and caused poor survival in lung cancer patients,
could activate ERK/MAPK pathway targeting F-box protein 32
(FBXO32) as E3 ubiquitin ligase in EGFR mutant lung cancer
(28). Previous studies have revealed that betacellulin (BTC)
could binds to members of the ErbB family and mediating

cancer development. Chava et al. firstly proposed that BTC
could suppress apoptosis and promote cancer growth in EGFR-
mutant LUAD in a MAP kinase-dependent way (29). The F-box
protein FBXL2, a potential therapeutic target for EGFR mutant
LC, could suppress EGFR-driven NSCLC cell growth. Niu et al.
showed that glucose-regulated protein 94 (Grp94) protects the
stability of EGFR via blockage of FBXL2, thereby promoting
EGFR mutant cell proliferation and anti-apoptosis (30).

Epidermal growth factor receptor-positive lung cancer could
confer potent invasive ability. Tsai et al.’s study showed that
EGFR-L858R mutant LUAD could activate CXCL12-CXCR4
axis to enhance metastasis (31). Feng et al. reached a similar
conclusion in their study that EGFR 19 exon deletion can
promote the expression of MMP-2 and MMP-9 by enhancing
the CXCR4/CXCL12 signaling pathway, leading to higher
proliferation, migration, and invasion abilities (32). Li et al.’s
study found that the EGFR-mutant NSCLC related brain
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FIGURE 2

ROS1 rearrangements and MET mutations in the occurrence and development of lung cancer. When lung cancer is developed, the tyrosine
kinase receptor (RTK) encoded by the ROS1 gene synergizes with oncogenic drivers such as KRAS to enhance MAPK-ERK signaling. Upon MET
activation, PI3K associates with GAB1 and activates AKT/protein kinase. AKT inactivates the pro-apoptotic protein BCL-2 cell death antagonist
(BAD) and triggers the E3 ubiquitin-protein ligase MDM2, thereby inhibiting apoptosis and promoting cell survival. In addition, AKT activates the
mammalian target of rapamycin (mTOR) protein, promoting protein synthesis and cell growth, MET activation signals through the RAS-MAPK
pathway as well. The nucleotide exchange protein Son of Sevenless (SOS) activates RAS upon binding to GRB2, which leads to activation of the
v-Raf murine sarcoma viral oncogene homolog B1 (RAF) kinase, followed by stimulation of MAPK effector kinase (MEK) and resulting in MAPK
activation. MAPK phosphorylates ERK, the ultimate effector of the cascade. The RAS-MAPK pathway is responsible for cell proliferation, cell
motility, and cell cycle progression. Moreover, MET could relay signals to the activator of the transcription 3 (STAT3) pathway. STAT3 directly
binds to MET, enabling STAT3 phosphorylation, which regulates cell transformation and invasion. RTK, receptor tyrosine kinases; Raf, rheumatoid
arthritis factor; MEK, MAP kinase-ERK kinase; ERK, extracellular regulated protein kinases; HGF, hepatic growth factor; MET, mesenchymal to
epithelial transition factor; GAB1, Grb2-associated binders 1; GAB2, Grb2-associated binders 2; PI3K, phosphoinositide-3 kinase; AKT, protein
kinase B; mTOR, mammalian target of rapamycin; BAD, Bcl-xL/Bcl-2 associated death promoter; MDM2, murine double minute 2; SOS, son of
sevenless; GTP, guanosine triphosphate; GDP, guanosine diphosphate; STAT3, signal transducer and activator of transcription 3.

metastasis is associated with downregulation of WNT5A by
E2F1 via ERK1/2 pathway (33). A recent study elucidated that
Y-box Binding protein (YB-1), an important drug sensitivity
modulator, could activate AKT signaling and epithelial-to-
mesenchymal transition (EMT) via targeting major vault
protein (MVP), especially in EGFR mutant LAUD (34).

Moreover, the crosstalk of EGFR with the tumor
microenvironment (TME) could affect the immunity to
cancer. High level of IL-6 is a biomarker in lung cancer patients,
Cao et al. revealed that mutant EGFR could upregulate IL-6
via gp130/JAK signaling pathway targeting signal transducer
and activator of transcription (STAT) 3, a known oncogenic
protein (35). Patients with EGFR activation showed upregulated
CD73/adenosine via EGFR-ERK signaling pathway, which
contributes to the immune-inert environment for EGFR-
mutant NSCLC (36–39). Chen et al. reported that activated

EGFR NSCLC cells enhance ILT4 expression, which suppresses
T cell proliferation and immunity and thereby leads to immune
escape (40).

2.2 KRAS mutations

RAS is the most frequent mutant oncogene in cancer
(41, 42). Among all kinds of isoforms, KRAS, which belongs
to GFPase superfamily, accounts for 86% RAS-mutants (43).
Research demonstrated that 20–40% of LUAD and 30% NSCLC
have been observed with KRAS mutation, which is more
prevalent in smokers (44). KRAS mutation could destruct the
activation of GTPase, which would lead to the accumulation
of KRAS under GTP binding condition and thus cause the
activation of basic downstream pathways related with cellular
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life events, including MAPK, PI3K, and Ras-like (Ral) 2 guanine
nucleotide exchange factor (RalGEF) and so on (45, 46).

KRAS mutations act as strong drivers for tumorigenesis
by modulating multiple signaling pathways. It has been
demonstrated that mutant RAS gene, could activate Raf–MEK–
ERK phosphorylation cascade to enhance tumorigenesis (47).
SIRT1, an oncogene or tumor suppressor, was found decreased
by KRAS in a PI3K and MEK dependent way, which contributes
to lung carcinogenesis (48). RASSF1A is believed to be a
weak suppressor of human tumors. Transgenic mice with
RASSF1A-defective background demonstrated that the loss of
RASSF1A apparently enhances the RAS-driven lung cancer
(49). EGFR palmitoylation has been shown to inhibit EGFR
activity and alter downstream signaling in the KRAS mutant
lung cancer. Blocking EGFR palmitoylation decreased PI3K
signaling, negatively regulating lung carcinogenesis (50, 51).
The ERBB/EGFR signaling pathway is also dysregulated in lung
cancer. The activation of KRAS induces the phosphorylation
of iRhom2, which induces excessive shedding of ERBB ligand
and tumorigenesis (52). Escaping from oncogene surveillance
is a vital part in tumorigenesis. RUNX3, which serves as a
mediator of multiple tumor suppressor pathways, is inactivated
in KRAS mutant lung cancer. KRAS-activated cells could
develop into ADCs when Runx3-mediated tumor suppress
signaling pathways are abrogated (53).

Accumulating evidence suggests that inflammation is an
essential factor for tumor promotion (54). The JAK-STAT
pathway is considered as a central player for inflammation
mediated tumorigenesis and targeting this pathway in KRAS-
driven LC has been proposed. KRAS mutant LC secrete
pro-inflammatory cytokines which activate JAK1 and JAK2,
thereby improving cell survival. Besides, deletion of STAT3
could enhance KRAS-driven lung cancer development (55).
Previous studies have found that the abnormal activation of
STAT3 in the development of KRAS mutant lung cancer, which
will be attenuated under anti-IL-6 therapy, suggesting a tight
association between IL-6/STAT3 signaling and inflammation in
KRAS-activated tumorigenesis (56, 57). A study established a
murine model and confirmed that this route is gender-specific,
deletion of epithelial STAT3 in KRAS mutant LC female mice
will decrease tumorigenesis, while the outcome is completely
opposite in male mice (58). Later, their team showed that
NF-κB is activated in KRAS-driven mouse model of LUAD
(59). Bassères et al.’s work indicated that NF-κB is significant
in KRAS-driven tumorigenesis, as the deficiency of p65/RelA
profoundly impairs KRAS-driven lung tumorigenesis. Besides,
inhibition of IKKβ expression suppressed NF-κB expression in
KRAS-driven lung cells (60).

More and more studies have explained the underlying
mechanism from various perspectives including proliferation,
invasion and EMT. By upregulating DUSP6, a negative
regulator of p-ERK, KRAS mutant lung cancer retrained the
ERK1/2 mediated toxicity and promote cell proliferation (61).

Wang et al. demonstrated that mutant KRAS could enhance
the Cathepsin L/CUX1 axis, thereby promoting lung cancer
invasion and migration (62). Hsu et al. firstly reported Yes-
associated protein (YAP) in LUAD, their study stressed that YAP
promote the brain metastasis of NSCLC cell lines H2030-BrM3
(KRASG12C mutation), especially by, targeting the downstream
genes CTGF and CYR61 (63).

2.3 BRAF mutations

V-raf murine sarcoma viral oncogene homolog B (BRAF),
which plays a vital part in cell proliferation, differentiation, and
growth through mediating the MAPK pathway, belongs to the
RAF family of serine/threonine protein kinase (64). Over 40
missense mutations have been discovered in human, while the
most common BRAF mutation occurs in exon 15 is a thymidine
to adenosine transversion at the level of T1799A, leading to
the valine to glutamate substitution at codon 600 (V600E),
which contribute to approximately half of the BRAF-mutant
NSCLC (65, 66). This alteration could result in the activation
of B-RAF kinase and constitutive MAPK/ERK cascade signal
transduction, which leads to 500 folds BRAF activity compared
with WT (67).

Mutant BRAF plays a positive key player in the
tumorigenesis (68). Li et al. reported that ARHGEF19, one
of Rho guanine nucleotide exchange factors (RhoGEFs), could
interact with BRAF and promote MEK1/2 phosphorylation
during the NSCLC formation (69). Tumor necrosis factor
receptor (TNFR)–associated factors (TRAF) is a kinases
modulator of TNFR family. Wang et al. firstly proposed the
relationship between BRAF and TRAF1. The study explained
that overexpressed TRAF1 could regulate BRAF/MAPK/ERK
axis to promote NSCLC cells’ viability (70). C-RAF, which
could promote adenoma initiation and growth, belongs to
RAF family as well. Zanucco et al. reported that elimination
of BRAF in oncogenic C-RAF expressed alveolar epithelial
type II cells inactivates MAPK signal and lung Tumor growth
(71). Upregulated terminal differentiation-induced non-coding
RNA (TINCR) is associated with poor survival in NSCLC
patients, Zhu et al. pointed out that TINCR could target BRAF
and mediate downstream MAPK pathway to promote NSCLC
tumorigenesis (72).

Abundant evidence indicates that inactivation of BRAF
could cause cancer cell apoptosis, thus demonstrating the
necessity of mutant BRAF in tumor cells (73). Lin et al.
comprehensively evaluated the molecular determinants of
BRAF mutant in lung cancer. Their study summarized
that inhibition of MEK/ERK signaling targeting p61VE
could suppress the cell escape from BRAFV600E oncogenic
inhibitions in NSCLC. Besides, they found the MAPK pathway
could mediate EGFR signaling and alleviate the dependence
on BRAFV600E (74). Kotani et al. analyzed the role of MAPK
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signaling in BRAFV600E mutant lung cancer. The results
showed that EGFR signaling could govern MEK/ERK pathway
more strongly, however, the situation is not the same in
BRAFV600E mutant lung cancer, which induce the receptor
tyrosine kinases (RTKs) resistance problem (75). However,
a previous study claimed that although BRAFV600E could
initiate some benign tumors, lung cancer is seldomly induced.
Trejo et al. suggested that co-mutation of PIK3CAH1047R
and BRAFV600E could promote lung cancer progression,
including transformation of tumor phenotype into malignant
and accelerate tumor growth rate (76). The team of Mcmahon
also demonstrated similar conclusion. Their research confirmed
that the co-mutant BRAFV600E and PIK3CAH1047R in
alveolar type 2 pneumocytes accelerate cell dedifferentiation
(77). Tumor suppressor STK11 (LKB1) gene is frequently
deficient in lung cancer. A study revealed that Lkb1 loss could
promote tumorigenesis in BRAFV600E induced LUAD (78).

2.4 ALK rearrangements

ALK gene locates on the short arm of chromosome
2 (2p23), and belongs to the insulin receptor superfamily
(79). As a tyrosine kinase receptor, ALK generally expresses
in the brain and spinal cord during embryo genesis and
dominantly decreased following maturation (79). The high
correlation between ALK and tumorigenesis was firstly
identified in 1994 as a fusion partner of nucleophosmin (NPM)
in anaplastic large-cell lymphoma (80). Further research
revealed underlying mechanism of NSCLC genesis with ALK
translocation, as well (81, 82). ALK rearrangement presented
potent oncogenic drivers in approximately 5–6% of NSCLC
patients population characterized with young age, barely
smoking and adenocarcinoma histology (83, 84).

The most common fusion partner of ALK is EML4
(echinoderm microtubule associated protein like 4) (85).
Heat shock protein 90 (Hsp90) is a novel cancer therapy
target owning to its positive role in controlling oncogenic
signaling proteins. Normant et al. proposed that inhibition
of Hsp90 could decrease EML4-ALK thereby inducing tumor
regression in ALK-driven NSCLC (86). The crosstalk between
Programmed cell death-ligand 1 (PD-L1) and its receptor
programmed cell death-1 (PD-1) conferred profound strength
in immunotherapy. A study examined the role of ALK
rearrangement in affecting PD-L1 expression, their result
showed that EML4-ALK fusion could decrease the PD-L1
expression through suppression of PI3K–AKT or MEK–ERK
signaling pathway, which contributes to the immune escape
in NSCLC (87). Shen et al. reported that EML4-ALK G1202R
mutation could increase the invasion and migration ability
of A549 cells. Besides, their research proved the EML4-ALK
G1202R mutation could lead to EMT phenotype transformation
in NSCLC cells by activating STAT3/Slug pathway (88).

2.5 ROS1 rearrangements

The ROS1 gene, which is located on chromosome 6 (6q22.1),
is a widely known proto-oncogenic gene that belongs to the
sevenless subfamily of tyrosine kinase insulin receptor. ROS1
rearrangements were primarily described in glioblastoma, the
close correlation with NSCLC was discovered in 2012 (89). The
ROS1 tyrosine kinase has been discovered to play a vital role in
plenty of intracellular signaling pathways (90).

The (c-ros oncogene1) ROS1 rearrangements, which drive
malignant transformation of NSCLC, affect approximately
0.7–1.7% NSCLC patients (91). The fusion partners include
CD74, SLC34A2, FIG, TPM3, SLC12A2, CCDC6, and SDC4,
while CD74-ROS1 fusion is the most prevalent phenotype
in NSCLC (92, 93). Gou et al. demonstrated that CD74-
ROS1 mutation could lead to EMT and enhance the NSCLC
invasion and migration ability by upregulating Twist1 (94).
Chromosomal rearrangement of the Solute Carrier Family
34 Member 2 (SLC34A2)-ROS1 fusion accounts for more
than 14% of all ROS1 fusion in NSCLCs. Cai et al.’s study
revealed that BA/F3 fusion NSCLC cells (harboring SLC34A2-
ROS1) could activate ROS1-SHP2 signaling to elevate PD-L1
expression and mediate immunogenicity (95). Interestingly,
another study supplemented that ROS1-fusion positive NSCLC
cells could target MEK/ERK signaling pathway to upregulate
PD-L1 expression significantly (96).

2.6 MET mutations

The proto-oncogene MET, located on chromosome 7q31,
is one of the tyrosine kinase receptors. HGF is a common
ligand of MET, upon their binding, MET will be dimerized and
auto-phosphorylate, thus leading to the activation of activity
of intracellular tyrosine kinase. Activation of MET could lead
to the modulation of multiple downstream signaling pathways
including RAS/RAF/ERK/MAPKA, PI3K/AKT/mTOR, Wnt/β-
catenin, STAT and so on, which play vital roles in regulating
tumor growth, progression and migration (97). Aberrant
activation of MET signaling pathway may contribute to the
tumorigenesis process of lung cancer.

About 3–5% of NSCLC patients have MET mutations, most
of which are adenocarcinoma. Up to date, various mutations
of MET have been identified, including MET amplification,
MET point mutations, exon 14 skipping mutation, fusions and
overexpression, all of which are oncogenic in lung cancer (98).
The skipping of MET exon 14 mutation occurs in 3% LUAD
and 13–22% sarcomatoid lung cancer (99). Studies revealed that
the exon 14 skipping could lead to the lack of Y1003-Cbl, a
ligand mediating c-MET degradation and ubiquitination, which
subsequently prolong the activation of c-MET, downstream
proliferation, and tumorigenesis (100). MET amplification is
another major subtype of MET mutations which occur mainly
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in TKI-resistance lung cancer. Because single amplification of
MET rarely contributes significantly to cancer development, co-
mutant of MET and other cancer drivers, such as EGFR, appear
more commonly (101, 102). A study indicated that only high
amplification level of MET could display an oncogenic effect
(103). However, there’s still a lack of research to fully elucidate
the mechanism of MET-driven tumor development.

Recently, more and more target therapies are focusing
on mutant genes to improve the prognosis for lung cancer.
However, disappointedly, clinical outcomes are not positive as
expected. Firstly, the development of drug resistance is another
unavoidable theme in lung cancer. Jackman et al. primarily
defined acquired resistance when patients receive target therapy
over 6 months but the disease progression keeps evolving
(104). Accumulating evidence has elucidated that, although
the acquired resistance mechanism varies, the main reasons
are from three aspects: mutant gene modification, phenotypic
transformation and alternative signal pathway activation (105).
EGFR TKIs are the most commonly used target drugs in
EGFR mutant lung cancer patients. Previous studies have
revealed that the EGFR T790M mutation, MET amplification,
epithelial-to-mesenchymal transition (EMT), activation of the
NF-κB pathway, and so on are common foundations of later
developed EGFR TKIs resistance (105–108). These various
factors could induce signaling pathway cross talk in lung
cancer. Hepatocyte growth factor (HGF) could induce acquired
resistance to TKIs by restoring the PI3K/Akt signaling pathway
via phosphorylation of MET in EGFR mutant NSCLC (109).
Activation of Hedgehog (Hh) pathway is a common feature
of TKIs resistance. A study fully illustrated the role of Hh
signaling in EGFR mutant lung cancer, their result showed
that, through the induction of mesenchymal properties, Hh
could mediate the resistance of EGFR inhibitors (110). Several
clinical studies reported acquired resistance to targeted drugs,
such as Osimertinib, a MET tyrosine kinase inhibitor (111). The
advance in K-RAS targeted medicine faced huge challenge (112).
On one hand, clinical trial of K-RAS targeting drugs revealed
disappointing results. It was found that K-ras could activate
an alternative pathway via geranylation with resistant farnesyl
transferase inhibitors (113). Blumenschein et al. reported that
the downstream MEK signaling pathway inhibitor failed to
achieve significant positive effect on improving the survival of
lung cancer patients (114). ALK- independent resistance occurs
as well. Activating bypass signaling pathways compromising
KIT amplification, MAPK, MET amplification, EGFR and
BRAF V600E leads to the ALK TKIs resistance (115–117).
Additionally, more drugs targeting other mutant genes are
under research, which is not warranted to have a certain
therapeutic effect. What’s more, the narrow therapeutic window
is worrying. For example, the second-generation EGFR TKI
afatinib displayed an apparent adverse effect in clinical trials
(118). Besides, recurrence or metastasis of lung cancer occurs
frequently. Previous research has elucidated that brain relapse,

bone relapse, and relapse of other organs can seriously affect the
prognosis process of lung cancer (119, 120).

Taken together, gene alteration is a common and significant
phenomenon in tumorigenesis progression. Slight changes in
these central cancer-driven genes can lead to dysregulate in
downstream signal pathways, which dramatically affect lung
cancer from multiple perspectives (Figure 2). However, the
therapeutic effect is not always as positive as considered,
clinical feedback suggested that the developed drug resistance
is uncontrollable (5). Appropriate drug concentration is still in
preclinical trials and prognostic recurrence/metastasis is beyond
expectation. Therefore, a novel way of overcoming existing
dilemma is urgently needed.

3 ICD in lung cancer cells

Immunogenic cell death is a novel type of cell death
which primes an adaptive immune response (Figure 3). Its
main feature is that dying cells can secrete DAMPs, including
HMGB1, CRT, ATP, and Type I IFN, which can enhance the
antigen presentation capability of APCs, activate T cells, and
enhance the immunogenicity of tumor cells, ultimately trigger
the arise of ICD (9). In addition, induction of ER stress and ROS
accumulation are indispensable components for ICD which
increase the DAMPs (13, 14).

Apoptosis is one of the most researched forms of ICD.
Apoptosis, mediated by the activity of caspases, is regulated
by both endogenous and exogenous factors at the same time,
and both of them rely on the activation of caspase-3 and
caspase-7 (121). Yet, it has also emerged that non-apoptotic
cell death can also be immunogenic, such as necrosis and
pyroptosis. Necroptosis can be initiated firstly after activating
the extended tumor necrosis factor alpha (TNF-α) receptor
family on the surface of the cell, and transmitted in virtue
of the serine/threonine kinases, RIP1 or RIP3 interact with
receptors. Then dead cells release immunogenic DAMPs to
greatly activate both innate and adaptive immune systems.
Pyroptosis is a lytic pro-inflammatory modality of regulated cell
death (RCD), which leads to the formation of plasma membrane
pores with the help of members of the gasdermin protein family,
particularly gasdermin D (GSDMD) (122). In addition, the
anticancer immune response can be also triggered by autophagy,
while autophagy was found to be related to the resistance of
cancer cells to anti-cancer therapy (12).

3.1 Extra-cellular DAMP release

One of the main features of ICD is the release of molecular
signals, which are usually called “DAMPs” (14). DAMPs can
recognize specific receptors and attract adaptive immune cells
like neutrophils, macrophages and dendritic cells (DCs). Then
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FIGURE 3

Overview of necroptosis, apoptosis, and pyroptosis signaling pathways. Binding of tumor necrosis factor (TNF) to its receptor (TNFR) activates
RIPK3 via RIPK1, leading to the formation of necrosome, which activates mixed-lineage kinase-like (MLKL), contributing to necrosis and
membrane permeation. Activation of caspase-8 induces exogenous apoptosis by triggering caspase-3 and caspase-7 activation. Meanwhile,
caspase-3 induces autophagy. The occurrence of ICD in tumor cells is accompanied by the production of a series of signaling molecules in
which released DAMPs can bind to pattern recognition receptors such as toll-like receptors (TLRs) on the surface of DC cells, activating NF-κB
and inducing expression of NLRP3 and IL-1β/IL-18 precursors. NLRP3 recognizes various DAMPs and becomes oligomerized, contributing to
activation of caspase-1 and production of mature IL-1β/IL-18. Activated caspase-1 cleaves gasdermin D (GSDMD) and releases the n-terminal
(GSDMDNT) pore-forming fragments, thereby resulting in membrane permeation and pyroptosis. DAMPs, damage-associated molecular
patterns; TLR, toll-like receptors; NF-κB, nuclear factor-kappa B; IL-6, interleukin-6; TNF, tumor necrosis factor, TNFR, tumor necrosis factor
receptor; TNF-α, tumor necrosis factor alpha; NLRP3, NOD-like receptor thermal protein domain associated protein 3; IL-1β, interleukin-1 beta;
GSDMD, gasdermin D; FADD, Fas-associating protein with a novel death domain; TRADD, TNF receptor 1 associated via death domain; RIPK1,
receptor interacting serine/threonine kinase 1; RIPK3, receptor interacting serine/threonine kinase; MLKL, mixed lineage kinase domain-like
protein.

DAMPs promote activation and maturation of these immune
cells, including dead cell removal, antigen uptake, processing,
and presentation, and cytokine production (123). Some of the
most widely researched ICD-linked DAMPs include HMGB1,
CRT, ATP, and Type I IFN (124).

High mobility group box 1, which can trigger strongly
inflammatory response when released from nucleus of dead
cells, is an abundant nuclear non-histone chromatin-binding
protein (125). HMGB1 binds to several receptors, such as
Toll-like receptor 4 (TLR4), a type of receptor for advanced
glycation end products (RAGE) to activate MAPKs and NF-
κB in DCs, which are widely expressed in lungs (126–129).
After CRT exposure, dead lung cancer cells will secrete HMGB1,
which has a dual effect depending on whether it is extracellular

or intracellular (14). Extracellular HMGB1 can facilitate the
processing and presentation of antigens by DCs (128, 130),
while intracellular HMGB1 can promote cancer cell growth and
invasion, and resist therapy (129). Studies found that high level
of HMGB1 is associated with poor prognosis in NSCLC (131).
Moreover, Łagiedo et al. discovered that the levels of HMGB1
in NSCLC patients’ serum had a significant positive correlation
with the size of the tumor (132).

Adenosine triphosphate is dependent on autophagy to be
released from dying cancer cells in virtue of the active exocytosis
of ATP-containing vesicles through pannexin channels (13, 133,
134). After being secreted out of cells and binding to purinergic
receptor P2Y2 on the target cells, ATP will send a “find-me”
signal to DCs and macrophages to promote DC maturation and
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macrophage expansion (135, 136). Moreover, ATP can mediate
immune stimulation by activating the NLRP3 inflammasome
and the subsequent secretion of interleukin 1 beta (IL-1β)
(127, 137).

Calreticulin, a soluble protein in ER lumen, is exposed on
the cell surface at a premortem stage and confers an “eat me”
signal (122). After that, CRT interacts with the CD91 receptor
in phagocytes to effectively engulf dead cells, thus providing
abundant antigenic substance (13, 138). CRT also induces
increased expression of endothelial cell adhesion molecules
to promote infiltration of specific lymphocytes in the TME
(139). Research has found that high CRT levels were shown
to be in association with eIF2α phosphorylation in biopsies
from NSCLC patients, which is independently relevant to better
prognosis in NSCLC (140). Besides, in the treatment of lung
cancer, CRT plays a similar role as HMGB1 so that it can be used
to assess the extent of ICD induced by the treatment (141).

Type I IFNs, which can be driven by RNA or DNA
species, are actively synthesized and activate other downstream
genes including genes coding for chemokines to favor an
immune response (142, 143). In RNA species, the receptor
is endosomal TLR3, whereas the latter setting mainly works
through cytosolic cyclic GMP-AMP synthase (CGAS) and its
signal transducer stimulator of IFN response cGAMP interactor
1 (STING1) (144–146). Moreover, type I IFN can trigger
macrophages to secrete pro-inflammatory mediators and inhibit
the immunosuppressive functions of regulatory T cells (147,
148). Apart from these direct immunostimulatory functions,
type I IFN can also elicit the synthesis of the CX-C motif
chemokine ligand 10 (CXCL10) by tumor cells in ICD via an
autocrine signaling loop (149).

3.2 ER stress

Immunogenic cell death can be divided into two modes
according to its induction mechanism (13). Instead of inducing
ROS and ER stress directly, type I ICD is stimulated by
indirect signals. Quite the opposite, type II ICD targets the
ER, inducing ER stress and immunogenic cell death (150).
The process of ER stress activation is termed as unfolded
protein response (UPR), featured with phosphorylation of
eukaryotic translation initiation factor 2α (eIF2α) by Protein
Kinase RNA-activated (PKR)-like ER Kinase (PERK) (151, 152).
Several studies have shown that ER stress is the core of the
occurrence of ICD (153). Moderate ER stress may be conducive
to creating an immunosuppressive environment, while severe
ER stress can stimulate immune response, as what happens
in ICD (154). The more concentrated the ER stress is, the
higher the immunogenicity of cell death is (155). ER stress
is the main cellular mechanism for the cell surface exposure
of CRT, which is closely linked to the phosphorylation of
eIF2α. In Fucikova et al.’s study, they stated a subgroup of

NSCLC associated with strong ER stress, which erupts in CRT
expression and exposure (156). The high CRT driven by ER
stress response has a positive prognostic value for NSCLC
patients, however, its specific molecular mechanism remains to
be further studied. ER stress also has an influence on levels
of intracellular ATP by stimulating mitochondrial respiration,
and cells can fill their bioenergy reserves in this way to restore
cellular homeostasis (157).

4 Induction of ICD for lung cancer
therapy

Immunogenic cell death can be caused by different types
of stimulation and antitumor therapy, such as chemotherapy
and radiation, some targeted drugs, oxygen-boosted PDT and
ICIs. A lot of evidence shows that ICD can stimulate anticancer
immune responses in vivo, and provide an opportunity to
improve the cancer treatment and outcomes (158, 159).
However, recently, only a few ICD inducers have been
successfully translated into clinical practice. Here we elaborated
on the role of ICD in the therapy of lung cancer.

4.1 Targeted therapy

Most anti-cancer drugs kill cancer cells in a non-
immunogenic way. However, many studies demonstrated that
ICD can be induced by different targeted agents. We will review
these targeted drugs in detail to illustrate the important role of
targeted therapy in the treatment of lung cancer (Table 1).

Crizotinib, a TKI used to treat NSCLC carrying activated
ALK, ROS1, and MET, serves as an ICD stimulator via off-
target effects (160). Drewry et al. have provided preclinical
evidence that crizotinib can be expediently in combination
with non-ICD inducing chemotherapeutics, as much with
immune checkpoint blockade, to treat NSCLC in an effective
way (161). One research has shown that the combination of
cisplatin and high-dose crizotinib brings about an increase
of PD-1 and PD-L1, and induces greatly ICD in NSCLC
cells (12, 162). Hence, a sequential combination treatment
including conventional chemotherapy together with crizotinib
and immune checkpoint blockade may be effective for NSCLC.
Besides, another ALK inhibitor ceritinib also has the function
of targeting which can induce ICD in ALK-dependent NSCLC
cell lines (124). For the past few years, the receptor tyrosine
kinase AXL has been considered as a promising target for
tumor treatment. The AXL signaling can promote a pro-survival
pathway and reduce reactivation of the MAPK pathway to
develop acquired resistance to EGFR TKI in NSCLC cells. And
there is a positive correlation between AXL and autophagy
(163, 164). Boshuizen et al. showed that an antibody–drug
conjugate targeting AXL called enapotamab vedotin (EnaV) not
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TABLE 1 Targeted therapies inducing immunogenic cell death (ICD) and their molecular targets in lung cancer treatment.

Drug Molecular
targets

Acquired
mutations

Mechanisms References

Crizotinib ALK, ROS1 ALK, EGFR, KRAS, ROS1 Off-target effects (124, 162, 210)

Ceritinib ALK ALK Off-target effects (124)

EnaV AXL Induce inflammatory response and the induction of a
memory-like phenotype in cytotoxic T cells

(165)

Bemcentinib AXL Abrogate the transcription of autophagy-associated genes (164)

BI2536 PLK1 Promote apoptosis and mitotic cell death, promote DC
maturation and T-cell infiltration

(167)

Auranofin Trx/TrxR p53 Induce apoptosis and ferroptosis (169)

Statins RAS KRAS Induce severe ER stress (170)

Biscoumarin OT52 STAT3 KRAS Trigger cell cycle arrest and senescence, and multiple cellular
stress mechanisms

(211)

EGFR, epidermal growth factor receptor; EnaV, enapotamab vedotin; DC, dendritic cell; Trx, thioredoxin; TrxR, thioredoxin reductase; ER, endoplasmic reticulum; STAT3, signal
transducer and activator of transcription.

only has direct tumor killing, but also induces inflammation
and ICD of tumor cells in melanoma and lung cancer
models (165). Lotsberg et al. reported that a small molecule
inhibitor bemcentinib inhibits the transcription of autophagy-
associated genes, releases DAMPs and then gives rise to ICD
in NSCLC cells by targeted inhibition of the AXL signaling
pathway (164). Erlotinib, a kind of TKI, can inhibit tumor
development by inhibiting intracellular phosphorylation of
EGFR-related tyrosine kinases, which commonly used in the
treatment of NSCLC and pancreatic cancer. Studies have shown
that targeting AXL in ER cells induces massive autophagic
vacuolation before death in erlotinib-resistant cancer cells and
triggers ICD (164). Hence, we suggest that ICD induction
may have an unexpected effect on AXL-targeted NSCLC with
drug-resistant EGFR mutations. Besides, PLK1 is a member
of polo-like kinase family associated with cell division. PLK1
is overexpressed in NSCLC and it often predicts a poor
prognosis (166). A selective PLK1 inhibitor BI2536 can act
as an ICD inducer to cause apoptosis and alter the tumor
immune microenvironment by promoting DC maturation and
increasing T-cell infiltration (167).

In addition, several drugs widely used for other diseases have
been found to have the ability to induce ICD in lung cancer cells.
Auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor, is
known as an antirheumatic drug (168). TrxR is considered as a
potential target in NSCLC on account of its high expression in
NSCLC patients. A recent study indicated that AF can initiate
release of DAMPs and DC maturation, then trigger apoptotic
and ferroptotic cell death by targeting TrxR and launching ICD.
It may provide new ideas for the treatment of NSCLC (169).
Moreover, statins are one of the most frequently used drugs
to treat hyperlipidemia. Statins can stimulate CD8 + T cells
and provoke severe ER stress by inhibiting RAS prenylation in
KRAS-mutant (KRASmut) lung tumor models, thereby leading
to the ICD effects (170). Besides, coumarin is a kind of natural

compounds with anti-inflammatory and anti-cancer function.
Lee et al. found that biscoumarin OT52 strongly inhibited
the proliferation of KRASmut NSCLC cells via ICD pathways
(171). Mechanistically, biscoumarin OT52 suppresses STAT3
transactivation and expression of its target genes. Altogether,
these drugs may become novel candidates in the future for
more effective treatment of lung cancer. However, the specific
signaling pathway in ICD inducing and other mechanisms still
need to be explored in-depth.

4.2 Chemotherapy and radiation
therapy

Chemotherapeutic drugs are considered to kill cancer cells
selectively via direct cytotoxicity (12). A main mechanism
of immunity stimulation by chemotherapy involves the
induction of ICD (121). Unfortunately, only a little part
of anti-cancer drugs can effectively trigger ICD (172).
Some kinds of chemotherapeutic agents have been tried
to modulate activity of DCs, such as cyclophosphamide,
doxorubicin, oxaliplatin and anthracyclines, which can make
tumor antigens be vaccines to the immune system and induce
ICD, consequently provoking robust adaptive immune response
(173–175). Chemotherapy with a combination regimen of
oxaliplatin with cyclophosphamide is approved in clinical
practice for lung cancer. Previous studies found that in a
lung mouse cancer model, this regimen can foster CD8+ T
cell infiltration and increase TLR4+ DCs in tumor tissues,
and further increase tumor sensitivity to immune checkpoint
therapy (176). But the research by Fileswasser et al. has shown
that oxaliplatin does not induce ICD in NSCLC cells (4).
Pemetrexed, a multi-targeting antifolate antagonist which is
established as the main chemotherapy drug for the first-line
treatment of advanced non-squamous NSCLC (NSq-NSCLC)

Frontiers in Medicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2022.1102550
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1102550 December 19, 2022 Time: 14:14 # 11

Xu et al. 10.3389/fmed.2022.1102550

and mesothelioma, has also been shown to induce ICD and
to increase of immune-regulatory genes (177, 178). Liu et al.
found that crizotinib, a kind of drugs used to treat NSCLC
patients which carries activated ALK/ROS1, is an efficient ICD
stimulator via off-target effects (162). Wang et al.’s results show
that trametinib also has the ability to induce ICD by sensitizing
lung cancer cells to endoplasmic reticulum stress and triggering
the release of DAMPs, and can be effective in treating KRAS-
mutant LUAD when used in combination with interleukin-12
(IL-12) (179). A study by Gao et al. showed that, DOC, a
kind of tubulin stabilizer belonging to the taxane family, can
induce DAMPs and significantly upregulated release of HMGB1
in human NSCLC cell line (180). In addition, the results of
Furuwaka et al. suggest that osimertinib induced NSCLC tumor
cell death may lead to exposure and release of CRT to induce
ICD, and then improve the anti-tumor immunity (181).

As a topical treatment approach, radiation therapy (RT)
is widely used in clinical cancer treatment. RT can induce
ICD, which promotes DCs activation and the presentation of
tumor antigen to prime CD8+ T cells (182). The CD8+ T cells
then enter the unirradiated tumor area and attack cancer cells
(14, 183). RT and many traditional chemotherapeutic agents
give rise to DNA damage and multiform cell death ultimately
(184). In various preclinical settings, similar to chemotherapy,
induction of ICD by RT has been shown associated with
increased sensitivity to immune checkpoint blockade (144, 185),
and many clinical trials have proven that (186). In the same
way, ablative RT can induce necroptosis in NSCLC and mediate
HMGB1-driven immunological response (187).

4.3 PDT

Photodynamic therapy is able to kill cancer cells by
manipulating photosensitizers and generating reactive ROS,
which triggers ER stress and induces the anti-tumor immunity
to eliminate residual or metastatic tumors effectively and
selectively (155, 171, 188). After accumulating selectively in
the tumor area, the photosensitizer (PS) is activated by
illumination with visible light of appropriate wavelength,
and then illuminated by red light (690 nm), which can
induce local ICD at the tumor sites and strong anti-tumor
immunity (10, 189). In recent years, the concept of PDT
has been actively pursued. The binding of near-infrared PS
to antibodies or nanocarriers improves the efficiency of PDT
(190). One typical PS shown to induce ICD is hypericin,
which is an anthraquinone derivative of natural origin with
specific ER localization (155, 171). The other promising non-
porphyrin PS is benzophenazine, OR141, which also has specific
location in the ER (191). OR141 induces cell death mainly
via the mammalian target of rapamycin signaling pathway
and by inhibition of proteasomal deubiquitinases, leading to
ER stress (192). One study reveals that in a prophylactic

tumor vaccination model using PDT-treated TC1 lung cancer
cells, redaporfin acts as an ICD inducer that can trigger
eIF2a phosphorylation, DAMPs release and inhibit tumor
growth (193). ICD can also be induced by PDT based on 8-
methoxypsoralen (8- MOP) (194). But it is worth noting that it
doesn’t need oxygen but intercalates into DNA and forms cross-
links with one or two DNA strands under UVA irradiation (195).
Furthermore, it has been shown that photofrin-based PDT of
Lewis lung carcinoma cells induced release of HSPs, and surface
exposure of CRT in vitro and in vivo in an hour after PDT, as
well as an increase of HMGB1 (196). These data also indicate
that photofrin is a potential inducer of ICD.

4.4 ICIs

The antitumor effect of ICIs works by interfering with
immune tolerance (178). The most clinically common immune
checkpoints include: PD-1/PD-L1, cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4), indoleamine 2.3-dioxygenase
(IDO), and CD47 (197, 198). ICIs have established a new
model of lung cancer treatment and improved patients’ survival
benefits (199, 200). It also has revolutionized the prognosis
of multiple lung cancers, especially NSCLC, which have a
high sensitivity to the immunotherapy against PD-1 (201).
The combination therapy of platinum, PEM and ICIs has
been proposed as a standard first-line treatment for advanced
LUAD (202, 203). Also, numerous studies have shown platinum-
based combination chemotherapy and combination ICIs, like
PD-1 or for its ligand PD-L1, can markedly prolong survival
in patients with stage III unresectable NSCLC (204–207). In
clinical application, the combination of ICIs and chemotherapy
can improve the efficacy of anti-tumor therapy, this may
be because chemotherapy drugs increase tumor sensitivity to
ICIs (208). Pemetrexed and ICIs targeting PD-1/PD-L1 are
applied widely for the treatment of advanced NSq-NSCLC (178).
Moreover, lurbinectedin is a kind of DNA-binding inhibitors
of transcription, which is efficient at inducing ICD (209). The
combination therapy of lurbinectedin and ICIs targeting PD-
1/PD-L1 is supposed to be a salvage therapy for relapsed SCLC
be over the years (172).

5 Conclusions and perspectives

Worldwide, lung cancer is one of the most common cancers
and the leading cause of cancer-related deaths. For decades,
researchers are exploring the pathogenesis of lung cancer and
trying to find more effective treatments, such as by finding
oncogenic driver gene mutations to improve targeted therapy.
However, it is disappointing that clinical results have not been
as positive as we expected. In recent years, ICD was noticed
for evoking adaptive immune response of cancer cells. ICD
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can be induced by a variety of anticancer therapies, including
chemotherapy, radiotherapy, targeted drugs, PDT and ICIs, etc.
And it is becoming increasingly evident that ICD may offer a
new idea in the anti-cancer therapeutic approaches in the future,
especially for lung cancer.

In summary, it is a breakthrough to harness ICD to elevate
the immunogenicity of tumor cells to maintain the efficacy
of anti-tumor therapies for lung cancer. ICD induction is a
promising area to explore and the mechanism of function
and regulatory networks of ICD deserve further investigation.
Finally, due to the limitations of current study, there are still
many unanswered questions, such as whether ICD is associated
with ferroptosis or cuproptosis, whether ICD is associated with
anti-angiogenic drugs, and so on.
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