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This study aimed to evaluate glare source-induced disk halo size and assess its

correlation with higher-order aberrations (HOAs), pupillometry findings, and contrast

sensitivity in myopic adults (aged 23.8 ± 4.4 years). In this cross-sectional study,

150 eyes of 150 patients were assessed. All patients underwent routine ophthalmic

examinations, wavefront aberrometry, halo size measurement, dynamic pupillometry,

and contrast sensitivity tests. Spearman’s correlation analysis and independent sample

t-tests were performed for data analysis. The mean halo radius was 82.5 ± 21.8 and

236.7 ± 52.2 arc min at 5 and 1 cd/m2 luminance levels, respectively. The values were

inversely correlated with internal spherical aberration (SA) (r = −0.175, p = 0.032 and

r = −0.241, p = 0.003, respectively), but not correlated with spherical equivalent (SE,

both p > 0.05). Positive correlations were observed between halo radius and pupil size,

contraction amplitude, and dilation speed during pupillary light reflex. Halo radii at 5

and 1 cd/m2 luminance levels were not significantly correlated with the area under the

log contrast sensitivity function (r = −0.093, p = 0.258 and r = −0.149, p = 0.069,

respectively). The mean halo radius was not clinically different between myopic and

healthy eyes at 5 cd/m2 luminance level and did not differ significantly between the high

and low-to-moderate myopia at 5 and 1 cd/m2 luminance levels (all p> 0.05). According

to a stepwise linear regression model, the internal SA had a negative effect on the halo

radius under low photpic condition; the average pupil diameter, internal SA and corneal

HOAs played a large role in determining the halo radius under mesopic condition.

Keywords: halo size, higher-order aberrations, pupillometry, contrast sensitivity, myopia

INTRODUCTION

Intraocular scattering is induced when strong light crosses the media in the eye. As a result,
veiling light may be produced over the retina, thereby deteriorating the retinal image and contrast
sensitivity. Therefore, glare (1) and halo (2) can occur. They have received much attention from
investigators because they have been shown to reduce the safety of night driving (3) and impair
general vision of patients who have undergone cataract or refractive surgeries (4–6). However, how
glare impairs contrast sensitivity is relatively unknown.
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Several studies based on subjective questionnaires have
investigated the relationship between patient-reported symptoms
and higher-order aberrations (HOAs) and showed that HOAs
might be correlated with visual symptom scores (index for
the severity of symptoms obtained from the questionnaire) in
patients after laser in situ keratomileusis (7, 8). Accumulating
evidence has revealed that HOAs and glare are relevant (9,
10). Visual symptoms, such as glare source-induced halo, have
been measured quantitatively using a vision monitor device,
and the halo size has been established in a normal, non-clinical
population (11). A recent study shows that the halo size of low
photopic luminance (5 cd/m2) is around 157.4 ± 56.7 arc min
from a large number of myopic patients and claims that the
size of halo is correlated with both spherical equivalent (SE)
and minimum pupil size when pupillary light reflex is mediated
(12). However, the halo size was not measured with an optimal
correction and was clinically larger than that of healthy eyes
of subjects (with uncorrected visual acuity ≥ 20/25 and similar
age), and the measured halo size was 88.4 ± 22.1 arcmin using
the same device at 5 cd/m2 (Metrovision, Pérenchies, France)
(11). Therefore, whether there is a clinical difference in the size
of halo (≥30 arc min, which is the interval scale for halo size
measurement and it was also statistically significant) between
myopic and healthy eyes and between high and low-to-moderate
myopic eyes needs to be further investigated.

In addition, both haloes and HOAs can affect visual functions.
The intraocular scattering affects the light distribution of the
retinal image, and the size of the halo provides an estimate for an
angle domain of>1◦. However, HOAsmainly degrade the central
peak of the point spread function (PSF), causing light to spread
∼0.1◦. It would be interesting to examine whether there would be
a relationship between halo size and HOAs in myopic patients.
We examined the halo size in individuals who exhibit different
degrees of myopia under low photopic and mesopic luminance
levels. We also investigated how disk halo correlated with other
factors (e.g., HOAs, pupillometry, and area under the log contrast
sensitivity function [AULCSF]).

MATERIALS AND METHODS

Participants
In this cross-sectional study, 150 eyes of 150 myopic patients
(aged 23.8 ± 4.4 years, 52 males and 98 females) who underwent
preoperative routine examinations at the Eye, Ear, Nose &
Throat (EENT) Hospital of Fudan University between July and
October 2020 were recruited. The mean spherical equivalent
(SE) of the group was −6.01 ± 2.01 diopters (range: −1.00 to
−10.38 diopters). This study adhered to the principles of the
Declaration of Helsinki, and the study protocol was approved
by the EENT Hospital ethics committee (Registration number:
ChiCTR1800017594). All patients provided an informed consent
before the study.

The inclusion criteria were: ① myopic patients or those
who had myopic astigmatism, aged 18–33 years, and corrected
distance visual acuity of ≥20/20; ② those who had stopped using
contact lens for at least 1 week, and those who had stopped using
lens that were permeable to rigid gas or orthokeratology lens
for at least 3 months before the study; ③ an intact refractive

status (annual variation of myopic power ≤ 0.50 diopters); and
④ no disturbance in night vision. The exclusion criteria were:
① patients with any refractive media opacity; ② eyes with active
inflammation, trauma or surgical history, or systemic diseases;
and ③ the usage of drugs that affect the movement of the iris.

All patients underwent routine ophthalmic examinations,
including slit-lamp microscopy, uncorrected distance visual
acuity, intraocular pressure, axial length, corneal topography
(Pentacam HR, Oculus Optikgeräte, Germany), subjective
refraction, and wavefront aberration (OPD-Scan, Nidek, Japan),
halo size measurement, pupillometry, contrast sensitivity test
(MonPack One, Metrovision, France), and fundoscopy. Patients
were divided into high (SE range: −6.25 to −10.38 diopters) and
low-to-moderate myopia (SE range: −1.00 to −6.00 diopters)
groups for comparisons (13).

Measurements
Wavefront Aberration
Wavefront aberrations of the human eye are defined as
deviations from the ideal wavefront. OPD-Scan III (Nidek,
Gamagori, Japan), which is based on automatic retinoscopy and
features 2,520 aberrometry measurements, was used to measure
wavefront aberrations of all included eyes (14). This device is
designed to provide ocular, corneal, and internal HOAs across
various pupil diameters. In this study, we collected data by
measuring vertical Zernike coefficients, including ocular, corneal,
and internal HOAs, for a 6-mm pupil.

Halo Size
Halo size was measured using a method similar to that reported
by Puell et al. (11). A glare-inducing light source with a brightness
of 200,000 cd/m2 was installed on both sides of the monitor
(Metrovision, Pérenchies, France). The light source positioned
to the right of the patient was used for the measurement of
the right eye, and that positioned to the left of the patient was
used for the measurement of the left eye. In this study, the
luminance of the optotypes (arranged in three radial lines of
letters presenting from the periphery toward the light source) was
set to 5 and 1 cd/m2. The viewing distance was 2.5m, after 5min
of dark adaptation, the light source was turned on followed by the
optotypes presented on the monitor, patients with best-corrected
spectacles were asked to read optotypes from the opposite side
of the light source. When the observers told us that they were
unable to recognize the shown letters, we recorded the visual
angles, which were marked as halo radius and calculated in arc
min (Supplementary Figure 1). In addition, the light source and
visionmonitor would be turned off simultaneously. One eye from
each patient was randomly selected for the measurements.

Pupillometry
Pupillometry was performed by a skilled technician in the same
location as the other tests. To reduce the influence of circadian
rhythm on pupillometry, all measurements were completed
during the same time period (09:00–11:00). The procedure was
similar to that described in previous studies (12, 15, 16). The
patient’s head was placed on the chin rest, and the patient was
asked to gaze at the center of the monitor. The MonPack One R©

system (Metrovision, Pérenchies, France) with near-infrared

Frontiers in Medicine | www.frontiersin.org 2 January 2022 | Volume 9 | Article 743543

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhao et al. Disk Halo in Myopic Patients

FIGURE 1 | Dynamic pupillometry output data determined via the automatic quantitative pupillary vision monitor system (MonPack One, Metrovision, France). At the

left, an averaged response is shown, and at the right, a temporal response is shown.

illumination (880 nm) and a high-resolution infrared camera was
used and allowed automated real-time image processing of pupil
parameters with a measurement sensitivity of 0.1 mm.

After the observers underwent 15min of dark adaptation,
their pupillary light reflex was able to be mediated with white-
light flashes (stimulation on time 200ms, stimulation off time
3,300ms, total luminance 100 cd/m2). We recorded the response
using an infrared camera. The valid response was measured
at least 10 times in a 90-s period. We calculated it as the
dynamic pupillary response of each eye. Twelve parameters,
including average response parameters (initial pupil diameter,
contraction amplitude, contraction latency, contraction time,
contraction speed, dilation latency, dilation time, and dilation
speed) and temporal response parameters (maximum pupil
diameter, minimum pupil diameter, and average pupil diameter)
were recorded for our data analysis (see Figure 1).

Contrast Sensitivity
As described by Zhao et al. (17), to measure the contrast
sensitivity of the observers, we showed a sinusoidal grating at
various spatial frequencies (cycles per degree (cpd) under a
visual angle of 1◦), such as of 0.5, 1.1, 2.2, 3.4, 7.1, and 14.6
cpd. Contrast sensitivity (luminance: 80 cd/m2) was measured
using the MonPack One R© system at a distance of 2m. Contrast
sensitivity was measured monocularly and recorded sequentially
(Supplementary Figure 2).

Contrast = (Lmax – Lmin)/(Lmax + Lmin) where Lmax is the
maximum luminance of the grating, and Lmin is the minimum
luminance of the grating.

Measures of contrast sensitivity are given in decibels (dB) and
are in a logarithmic scale. C (dB) = −10 × log (Contrast). The
AULCSFwas determined by calculating the area under curve (i.e.,
integrals) of best-fitted curve of contrast sensitivity as a function
of spatial frequency (from 0.5 cpd to 14.6 cpd).

Statistical Analysis
SPSS 24 statistical software (IBM Corp., Armonk, NY, USA)
was used for data analysis. Quantitative data are described as

mean ± standard deviation in this study. The Kolmogorov–
Smirnov test was used to assess whether the data were
normally distributed. Spearman correlation was used to analyze
the linear correlation between halo radius and refraction,
axial length, HOAs, pupillometry parameters, and contrast
sensitivity. A stepwise regression analysis was performed to
evaluate the contributions of the variables. An independent
sample t-test was used to compare the differences between
the high myopia and low-to-moderate myopia groups.
Bonferroni correction was used to correct the p-values
for multiple comparisons. P-values <0.05 were deemed as
statistically significant.

RESULTS

A total of 150 subjects (52 men and 98 women) with myopia
and myopic astigmatism were enrolled in this study. Of the
150 subjects considered, 75 exhibited high myopia, and 75 had
low-to-moderate myopia. Demographic characteristics and the
refractive status of the participants are shown in Table 1. With
best optical correction, the mean halo radius was 82.53 ± 22.84
and 236.73 ± 52.21 arc min at luminance levels of 5 and 1
cd/m2, respectively.

HOAs
Table 2 shows the ocular, corneal, and internal HOA data
based on a 6-mm pupil diameter. Independent sample t-tests
showed that no significant difference was detected between the
high and low-to-moderate myopia groups (αnew = 0.0042).
Spearman correlation analysis showed that the halo radius was
not significantly related to ocular and corneal HOAs (including
total HOAs, coma, trefoil, and spherical aberration [SA]) at
luminance levels of 5 and 1 cd/m2 (Supplementary Table 1), but
was significantly correlated with internal SA (r = −0.175, p =

0.032 and r=−0.241, p= 0.003, respectively).
Linear regression equations between the halo radius and

internal SA were: Yhalo =−31XiSA + 88.9 (F= 3.95, R2 = 0.026,
p = 0.05) and Yhalo = −95.6XiSA + 256 (F = 6.68, R2 = 0.043,
p = 0.01) at a luminance level of 5 and 1 cd/m2, respectively
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TABLE 1 | Demographic and refractive data.

All eyes

(n = 150)

High myopia

(n = 75)

Low-to-

moderate

myopia

(n= 75)

Age

(years)

23.84 ± 4.38

(18–33)

24.20 ± 4.19

(18–33)

23.48 ± 4.57

(18–33)

Sphere

(D)

−5.58 ± 2.00

(−10.00

to −0.50)

−7.21 ± 1.00

(−10.00 to

−6.25)

−3.95 ± 1.27

(−5.75 to −0.50)

Astigmatism

(D)

−0.86 ± 0.58

(−3.25 to 0.00)

−0.87 ± 0.61

(−3.25 to 0.00)

−0.85 ± 0.56

(−2.50 to 0.00)

Spherical

equivalent

(D)

−6.01 ± 2.01

(−10.38

to −1.00)

−7.65 ± 1.04

(−10.38 to

−6.25)

−4.38 ± 1.27

(−6.00 to −1.00)

Axial

length

(mm)

26.06 ± 1.04

(23.94 to 29.21)

26.59 ± 0.92

(23.39 to 29.21)

25.52 ± 0.86

(23.94 to 27.56)

CDVA

(logMAR)

−0.01 ± 0.03

(−0.10 to 0.00)

−0.01 ± 0.03

(−0.10 to 0.00)

−0.01 ± 0.04

(−0.10 to 0.00)

Values are represented as mean ± standard deviation.

CDVA, corrected distance visual acuity; logMAR, logarithm of the minimum angle

of resolution.

(Figure 2). No correlation was noted between the halo size and
other parameters.

SE and Intergroup Comparisons
For mean halo radius and pupil size comparisons, an
independent sample t-test revealed no significant difference
between the high and low-to-moderate myopia groups, except
with respect to SE (t = −17.225, p = 0.000, Table 3). Moreover,
Spearman correlation analysis showed that a significant
relationship was not found between SE and halo radii at
luminance levels of 5 and 1 cd/m2 (r = 0.026, p = 0.748 and r =
0.082, p= 0.032, respectively).

Dynamic Pupillometry
Dynamic pupillometry demonstrated that the mean response
parameters, including initial pupil diameter, contraction
amplitude, contraction latency, duration of contraction,
contraction speed, dilation latency, duration of dilation,
and dilation speed, were 4.86 ± 0.57mm, 1.82 ± 0.24mm,
2,230.28 ± 38.73ms, 622.91 ± 57.62ms, 5.65 ± 0.72 mm/s,
853.19 ± 49.46ms, 1,638.46 ± 50.95ms, and 2.07 ± 0.26
mm/s, respectively (Supplementary Table 2). For temporal
response parameters, the maximum, minimum, and average
pupil diameter were 5.32 ± 0.63, 2.88 ± 0.40, and 4.33 ±

0.49mm, respectively. Spearman correlation analysis indicated
that the average response parameters (including initial pupil
diameter and dilation speed) and temporal response parameters
(including maximum, minimum, and average pupil diameter)
were positively correlated with halo radii at 5 and 1 cd/m2,
whereas contraction amplitude was positively correlated with
halo radius at 1 cd/m2 (r= 0.167, p= 0.041; Table 4).

Contrast Sensitivity
At spatial frequencies of 0.5, 1.1, 2.2, 3.4, 7.1, and 14.6 cpd,
contrast sensitivity was 16.43 ± 2.02, 20.42 ± 1.74, 21.80
± 1.70, 21.57 ± 1.88, 19.57 ± 2.34, and 11.86 ± 2.34
dB, respectively. Moreover, the calculated AULCSF was 28.44
± 2.32 dB. Spearman correlation analysis showed that halo
radii at 5 and 1 cd/m2 were not significantly correlated with
AULCSF (r = −0.093, p = 0.258 and r = −0.149, p =

0.069, respectively).

Multivariate Stepwise Regression Analysis
At 5 cd/m2 luminance level, the internal SA had a negative
effect on the halo radius [halo = 88.965 – (31.586 × internal
SA)] according to a stepwise linear regression model (F = 4.085,
adjusted R2 = 0.020, p = 0.045). At 1 cd/m2 luminance level, the
average pupil diameter, internal SA and corneal HOAs had an
effect on the halo radius [halo = 116.877 + (25.723 × average
pupil diameter) – (93.034 × internal SA) + (14.544 × corneal
HOAs)] (F= 7.197, p= 0.000) with an adjusted R2 of 0.111.

DISCUSSION

Glare symptom assessment is often required when visual health is
examined. Glare is a common concern for patients and refractive
surgeons. In this study, the disk halo size of patients with myopia
and myopic astigmatism was evaluated using a vision monitor
device (MonPack One, Metrovision, France), and the factors
potentially associated with disk halo size were analyzed. The
results showed no differences in the mean halo radius between
myopic and healthy eyes at 5 cd/m2, nor between high and low-
to-moderate myopia at 5 and 1 cd/m2. According to a stepwise
linear regression model, the internal SA had a negative effect on
the halo radius at 5 cd/m2; the average pupil diameter, internal
SA and corneal HOAs played a large role in determining the halo
radius at 1 cd/m2.

In this study, we evaluated the disk halo size of myopic
patients within −10.0 diopters, and compared the results with
the values from age-matched healthy eyes reported by Puell
et al. (11). In this previous study, 147 subjects with sphere
within ±3.75 diopters or cylinder within ±1.50 diopters were
included and stratified into six age groups (range: 20–77 years).
The mean halo size for each age group and reliability of
the halo measurements were determined by the same device
(Metrovision, Pérenchies, France) at 5 cd/m2. There was no
correlation between SE and halo size. Also, no significant
difference in halo size was found between the high and low-
to-moderate myopia groups. The mean halo radius for low
photopic luminance (82.5 ± 21.8 arc min) agreed with the
normal values of healthy eyes (88.4 ± 22.1 arc min) (11),
unoperated eyes (80.8 ± 26.9 arc min) (17), and even younger
individuals (77.2 ± 25.0 arc min) (18). Also, we measured the
mean halo size (236.7 ± 52.2 arc min) at a mesopic luminance
level (1 cd/m2). Since all measurements were obtained with
optimal correction, our results could elucidate about myopic and
healthy eyes. Another previous study (12) examines the halo
size for a large sample of myopic patients under a photopic
condition (luminance: 5 cd/m2). However, the measurements
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TABLE 2 | Participant OPD-scan data (zone: 6mm, n = 150).

Parameters High myopia Low-to-moderate myopia t P

(n = 75) (n = 75)

Zernike/Ocular HOAs (µm) 0.35 ± 0.12 0.38 ± 0.13 −1.438 0.152

Coma (µm) 0.17 ± 0.10 0.17 ± 0.10 −0.488 0.626

Trefoil (µm) 0.20 ± 0.12 0.23 ± 0.13 −1.428 0.156

SA (µm) 0.12 ± 0.08 0.12 ± 0.08 0.102 0.919

Zernike/Cornea HOAs (µm) 0.40 ± 0.11 0.43 ± 0.15 −1.437 0.153

Coma (µm) 0.21 ± 0.11 0.21 ± 0.13 0.059 0.953

Trefoil (µm) 0.14 ± 0.09 0.19 ± 0.10 −2.789 0.006

SA (µm) 0.26 ± 0.07 0.27 ± 0.09 −0.855 0.394

Zernike/Internal HOAs (µm) 0.38 ± 0.13 0.40 ± 0.16 −0.987 0.325

Coma (µm) 0.20 ± 0.10 0.20 ± 0.10 −0.025 0.98

Trefoil (µm) 0.17 ± 0.10 0.18 ± 0.13 −0.898 0.371

SA (µm) 0.20 ± 0.12 0.21 ± 0.10 −0.605 0.546

HOAs, higher-order aberrations; SA, spherical aberration.

Bonferroni Correction (αnew = 0.0042).

FIGURE 2 | Disk halo size as a function of internal spherical aberration in patients with myopia and myopic astigmatism (n = 150). The overlapped dots were

characterized by bigger size and different color.

were conducted with the subjects’ personal spectacles (hence,
no optimal correction). Their results (157.4 ± 56.7 arc min)
differ from those of other studies (11, 17, 18) under the same
luminance condition.

The difference in halo size from said study (12) and other
studies could have resulted from several issues. First, said study
investigated whether the disk halo size in myopic patients
differs from the normal values of healthy eyes. Furthermore,
the subjects were asked to put on their personal spectacles
(12), which might have been affected by defocus or surface
scratch and particles, so that everyday visual experiences could

be simulated. This might have caused the halo size to be different
from those that were obtained when there was a proper optical
correction. In addition, evidence has shown that eyes with higher
myopia might exhibit larger objective scattering index values
(19), which was positively correlated with the halo radius (18).
Consequently, the disk halo size in eyes with ultra-high myopia
(−10.0 diopters or over) might be greater than in high myopic
eyes (within −10.0 diopters). Therefore, the discrepancy may be
partly attributed to the differences in SE distribution between
the present and previous studies (range: −10.38 to −1.00 vs.
−18.00 to −1.50 diopters) (12). Furthermore, patients showed
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TABLE 3 | Halo radius and dynamic pupil values in different myopic groups.

High myopia Low-to-moderate myopia t P

(n = 75) (n = 75)

Halo radius, 5 cd/m2 (arc min) 80.80 ± 20.45 84.27 ± 23.14 −0.972 0.333

Halo radius, 1 cd/m2 (arc min) 232.80 ± 51.77 240.67 ± 52.69 −0.922 0.358

Age (years) 24.20 ± 4.19 23.48 ± 4.57 1.006 0.316

Spherical equivalent (diopter) −7.65 ± 1.04 −4.38 ± 1.27 −17.225 0.000

Initial pupil diameter (mm) 4.83 ± 0.59 4.89 ± 0.56 −0.675 0.501

Maximum pupil diameter (mm) 5.30 ± 0.69 5.34 ± 0.56 −0.394 0.694

Minimum pupil diameter (mm) 2.88 ± 0.39 2.89 ± 0.41 −0.234 0.815

Average pupil diameter (mm) 4.30 ± 0.49 4.36 ± 0.49 −0.740 0.460

TABLE 4 | Correlations between halo radius and dynamic pupillometry in the

study population (n = 150).

Parameters Disk halo size (arc min)

5 cd/m2 (r, P) 1 cd/m2 (r, P)

Averaged response Initial PD, mm 0.259, 0.001 0.260, 0.001

Amplitude of

contraction,

mm

0.153, 0.062 0.167, 0.041

Latency of

contraction,

ms

−0.154, 0.060 −0.134, 0.103

Duration of

contraction,

ms

0.130, 0.113 0.121, 0.140

Velocity of

contraction,

mm/ms

0.072, 0.380 0.051, 0.539

Latency of

dilation, ms

0.049, 0.554 −0.061, 0.461

Duration of

dilation, ms

−0.053, 0.518 −0.084, 0.307

Velocity of

dilation,

mm/ms

0.207, 0.011 0.171, 0.037

Temporal response Maximum PD,

mm

0.313, 0.000 0.297, 0.000

Minimum PD,

mm

0.294, 0.000 0.271, 0.001

Average PD,

mm

0.297, 0.000 0.291, 0.000

PD, pupil diameter.

different baseline values in pupillometry parameters from those
of other study (18), thereby potentially affecting the radius
of halo.

The innovation of wavefront-sensing techniques has redefined
the limitations of the individual optical system by wavefront
aberration, including low-order aberrations (defocus, tilt, and
astigmatism) and HOAs (e.g., ocular or corneal SA, coma,
trefoil, etc.). Therefore, it has enabled us to accurately describe
or decompose the optical components (ocular, cornea, and

internal) properties of the eye. The HOAs illustrated by corneal
refractive surgery are predominantly SA and coma (20–22). In
addition, the relationship between patient-reported symptoms
and HOAs has been investigated in patients after refractive
surgery (7, 9, 10, 23, 24). However, only very weak correlations
and clinically irrelevant associations between visual symptom
scores and corneal HOAs have been found (9, 10). To date, little
is known about the connection between the preoperative SA
and disk halo size. The present data shows a weak association
between the halo size and internal SA at both low photopic
and mesopic luminance levels. In the human eye, there is a
compensation mechanism between corneal aberrations and lens
aberrations (25). We speculate that the negative (rather than
positive) correlation between halo size and internal SA can be
attributed to the compensation mechanism originating from
internal aberrations.

In this study, Spearman correlation analysis indicated that
the halo radius correlated with pupil size (initial, maximum,
minimum, and average pupil diameter) and contraction
amplitude at 5 cd/m2. These findings differ from those of
Zhao et al. (12) and Yao et al. (18), who reported that halo size
was only related to minimum pupil diameter under the same
condition. Although pupillary responses might not be influenced
by refractive errors (26–28), differences in pupil size (initial
pupil diameter, pupil maxima, pupil minima, and average pupil
diameter) among the three studies could be responsible for the
difference. The pupil size, as controlled by the pupillary light
reflex, determines both retinal illuminance and image quality
(29). Theoretically, the presence of HOAs, such as SA, can
push the light eccentricity of the PSF (∼0.1◦) so much that
retinal image quality can deteriorate as a fuction of an increasing
pupil size (30). In the present study, the mean halo radius was
>1◦. Hence, the weak relationship between the internal SA
and halo radius might be attributed to their difference in the
angle domain.

As for contrast sensitivity, Spearman correlation analysis
showed no correlation between the halo radius and AULCSF.
This finding was unexpected. The whole curve of contrast
sensitivity function (CSF) could be affected by glare if contrast
sensitivity was measured under glare. This could be due to
the fact that contrast sensitivity was measured without glare in
this study.
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Our study has some limitations. Although patients without
night vision disturbances were enrolled in the study, patients with
high myopia over −10 diopters were not included. In addition,
due to the common daily-life under-correction, which may have
led to bias, a subjective evaluation was not applied. In contrast,
the retinal image can be affected by HOAs, light scatter, and
diffraction. However, scatter and diffraction were not evaluated
in this study; this might be a potential reason for our significant,
but low correlations between the variables.

In conclusion, the disk halo size of patients with myopia and
myopic astigmatism within −10 diopters and correlated factors
were identified. The internal SA had a negative effect on the halo
radius at 5 cd/m2; the average pupil diameter, internal SA and
corneal HOAs played a large role in determining the halo radius
at 1 cd/m2. Our data demonstrated that the mean halo radius
was not clinically different between myopic and healthy eyes at
5 cd/m2 luminance level and that it was not significantly different
between high and low-to-moderate myopia. These results will
be useful in comparing the values of ametropic patients who
complain about glare after having a refractive surgery. In future
studies, disk halo size in patients after refractive surgery should
be investigated.
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