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Autosomal Dominant Polycystic Kidney Disease is a genetic disease that causes

dramatic perturbations of both renal tissue architecture and of a multitude of cellular

signaling pathways. The relationship between the products of the genes whose

mutations cause polycystic kidney disease and these signaling pathways remains

difficult to determine. It is clear, however, that cellular metabolism is dramatically

altered in cells that are affected by polycystic kidney disease mutations. Adenosine

monophosphate-stimulated protein kinase is a master regulator of cellular energy use

and generation pathways whose activity appears to be perturbed in cells affected

by polycystic kidney disease. Furthermore, modulation of this enzyme’s activity may

constitute a promising approach for the development of new therapeutics for polycystic

kidney disease.

Keywords: Autosomal Dominant Polycystic Kidney Disease, adenosine monophosphate-stimulated protein

kinase, metabolism, mTOR, CFTR, metformin

INTRODUCTION

The clinical presentation of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is most
notable for the massive enlargement of the kidneys that affected individuals often experience over
the space of decades (1). This dramatic transformation is produced through the development
of numerous fluid-filled cysts that derive from nephron epithelial cells and whose expansion
compresses and damages the surrounding normal parenchyma, resulting in end stage renal disease
in ∼50% of ADPKD patients. ADPKD is the most common life-threatening genetic disorder,
affecting ∼1:1,000 individuals independent of race, ethnicity, and gender. Mutations in either
of two genes, PKD1 and PKD2, account for ∼95% of cases of ADPKD (2). Consistent with the
condition’s autosomal dominant mode of inheritance, patients generally carry one wild type and
one mutant allele of PKD1 or PKD2. While the mechanisms that initiate cyst formation remain
the subject of investigation and debate, there is strong evidence that the stochastic acquisition
of “second hit” mutations in the wild type PKD1 or PKD2 allele can play an important role
in catalyzing the processes that lead to cyst development (3–5). According to this model, an
individual epithelial cell in which a second hit mutation occurs becomes mitotically active and the
proliferation that follows populates the wall of the resultant cyst. These cells also acquire a secretory
phenotype, which contributes to the cyst’s expanding fluid volume (6).

While the disruption of kidney architecture that ADPKD produces is anything but subtle, the
mechanisms that connect mutation of the PKD1 and PKD2 genes to this profound structural
disturbance remain obscure. The precise physiological functions of polycystin-1 (PC1) and
polycystin-2 (PC2), the proteins encoded by PKD1 and PKD2 respectively, have yet to be elucidated,
more than two decades after these genes were identified. Similarly, the processes through which
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the absence of functional PC1 or PC2 leads to the formation
of cysts have not been completely unraveled. The mystery that
shrouds the biological roles of PC1 and PC2 is not attributable
to a lack of evidence for candidate signaling pathways in which
they may participate. On the contrary, efforts to understand the
cellular and molecular basis of ADPKD pathogenesis have been
complicated in part by the overabundance of cellular processes
that appear to be connected to, regulated by or responsible for
governing some aspect of polycystin protein activity. It is clear
that perturbing the expression of PC1 and PC2 extends ripples of
downstream effects through a multiplicity of effectors (7, 8). It is
not clear, however, which of these effectors are most proximate to
the polycystin proteins themselves nor is it understood whether
or how alterations in themessages communicated by one ormore
of these effectors can initiate cyst formation.

The absence of a causative link between the polycystin
proteins and a single, direct and definitive explanation for cystic
disease has been an impediment to the development of targeted
therapeutics. Efforts to discover highly specific and efficacious
drugs typically begin with assays that have evolved from a
deep understanding of the relationship between a target and a
disease. In the case of ADPKD such efforts have, of necessity,
focused on intervening in processes that contribute to cyst
formation, proliferation or expansion, even if the connections
between those processes and the polycystin proteins are not
clearly established. Thus, while the V2R vasopressin receptor
is not thought to be an immediate upstream or downstream
consort of the polycystin proteins, its influence on the elevated
cAMP levels that clearly contribute to cystogenesis is exploited
by Tolvaptan, the first drug that has been approved for the
treatment of ADPKD (9, 10). Similarly, while the mechanisms
that account for elevated mTOR activity in ADPKD are not
fully understood, very convincing pre-clinical data from animal
studies demonstrating that mTOR inhibition ameliorates cystic
disease served as the basis for human trials of this approach
(11–21). Until such time as a consensus understanding of the
physiological roles of the polycystin proteins emerges, it is likely
that progress in the development of new ADPKD therapeutics
will resemble these efforts to target molecules and pathways that
contribute to the cystic phenotype even if the biological basis
of their connections to the functions of the polycystin proteins
is obscure.

AMPK: A NEW TARGET FOR ADPKD DRUG
DEVELOPMENT

When considered through the lens of this rather broadminded
approach to target identification, the cellular energy sensor and
regulator adenosine monophosphate-stimulated protein kinase
(AMPK) comes into focus as an extremely interesting candidate
for ADPKD drug development (8). As its name implies, the
kinase activity of AMPK is stimulated when AMP levels rise
(22). This occurs when ATP levels fall, thanks to the function of
the ATP:AMP transphosphorylase, which converts twomolecules
of ADP into one ATP and one AMP. As befits a master
regulator of cellular energy utilization and generation, activation

FIGURE 1 | Activation of the AMPK enzyme, depicted as a heterotrimer of α,

β and γ subunits, can result in inhibition of of the mTOR pathway, of

CFTR-mediated fluid secretion and of cAMP accumulation. AMPK activity can

be stimulated indirectly by interventions that reduce ATP production

[metformin, thiazolidinediones, 2-deoxy-D-glucose (2DG), calorie restriction] or

directly (salicylate). All of interventions slow disease progression in animal

models of ADPKD. Created with Biorender.com.

of AMPK leads to inhibition of energy-intensive processes and
upregulation of energy generating processes. Among the energy-
intensive pursuits that are shut down by AMPK are several that
are relevant to processes that drive cyst expansion in ADPKD.
Fluid secretion into the ADPKD cyst lumen depends upon
active electrolyte transport that requires, at least in part, the
participation of the cystic fibrosis transmembrane conductance
regulator (CFTR) chloride channel (23, 24). AMPK-mediated
phosphorylation of CFTR inhibits its channel activity, thus
reducing energy-consuming transepithelial ion fluxes (25, 26). By
phosphorylating the tuberin protein (TSC2), AMPK stimulates
the GTPase-activating protein (GAP) activity of the TSC1/2
tuberous sclerosis complex (27). This in turn leads to conversion
of the small GTP binding protein Rheb from its GTP bound
form to its GDP bound form, which results in the inhibition
of the mTORC1 complex and its kinase activity. Inhibition of
mTOR suppresses protein synthesis and cell proliferation (28),
both of which are energy-demanding processes that contribute to
ADPKD cyst formation. Interestingly the chromosomal location
of the TSC2 gene is extremely close to the 3’ end of the PKD1
gene. Mutations that compromise the expression of both the
TSC2 and PC1 proteins produce ADPKD with a severe, early
onset course, reinforcing the importance of TSC2 and the mTOR
pathway that it regulates in the development of the cystic
phenotype (29). Finally, in at least some cell types activation of
AMPK may reduce cAMP levels, since AMPK phosphorylates
and activates the cAMP degrading enzyme phosphodiesterase
4B (30) (Figure 1). It is also worth noting that cilia, which play
an important role in pathways associated with polycystin-related
signaling, also exert influence on the regulation of AMPK activity
(31, 32). Because of its potential to decrease the contributions of
three key pathways to cyst expansion, Takiar et al. proposed in
2011 that AMPK could constitute a novel and accessible target
for ADPKD therapeutic development (33).

AMPK is a heterotrimer, composed of an α-subunit that
possesses the kinase activity, a γ-subunit that binds to AMP and
a β-subunit that serves as the structural connection between α
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and γ. There are two isoforms each of the α and the β-subunits,
and three isoforms of the γ-subunit (34). Renal epithelial cells
predominantly express the α1 and β1-subunit isoform proteins,
as well as both the γ1 and γ2 isoforms of the γ-subunit
protein (35). Interaction with AMP induces a conformational
change in the γ-subunit that is communicated to the α-subunit,
as a result of which the α-subunit becomes a substrate for
triggering phosphorylation by LKB1 or CAMKK, both of which
can serve as upstream activators of the AMPK kinase (36).
This phosphorylation, which occurs at Thr172, can be detected
by western blotting using a phospho-specific antibody directed
against phospho-AMPK (pAMPK) and the signal obtained in
such assays is widely used as a surrogate for the level of AMPK
kinase activity.

Perturbations in cellular energetics are features of a wide
variety of diseases, including diabetes and cancer. Because of
its central role as a regulator of the cell’s energy economy,
AMPK has been viewed as a potentially useful tool that could
possibly be brought to bear to correct these perturbations and
thus to treat the diseases that cause them (37). In order for
the useful properties of AMPK to be exploited for therapeutic
purposes, it is necessary to identify safe and well-tolerated
treatments that effectively induce AMPK kinase activation.
Fortunately, this can be achieved through several different direct
and indirect approaches.

ADPKD AND CELLULAR ENERGETICS IN
ADPKD

Although AMPK was first proposed and explored as a target
for ADPKD therapeutic development in 2011 (33), the first
demonstration that AMPK activity might be inappropriately
suppressed in the context of ADPKDwas provided in a landmark
paper by Rowe et al. (38). These investigators discovered that
cells that lack expression of PC1 exhibit a profound alteration
in their metabolic processes. Even in the presence of oxygen,
the highly proliferative cells that lack PC1 prefer to generate
ATP via glycolysis. This behavior resembles the Warburg effect,
which is characteristic ofmany types of highly proliferative tumor
cells (39). In the case of the cells that lack PC1 expression,
this metabolic dysregulation leads not only to a suppression
of oxidative phosphorylation in favor of glycolysis, but also
to a surprisingly large increase in the rate of glycolysis and
ATP production. The levels of ATP in cells that lack PC1 are
sufficiently elevated to result in the suppression of the activity of
AMPK, which is normally triggered when ATP levels fall. This
behavior was observed both in cultured cells and in renal tissue
for an ADPKD mouse model (38). In an effort to exploit the
metabolic vulnerability created by this switch to glycolysis, these
investigators treated mice with 2-deoxy-D-glucose (2DG), which
is a competitive inhibitor of an early step in glycolysis. Treatment
with 2DG slowed the progression of cystic disease and, consistent
with its capacity to interrupt ATP production in the glycolysis-
dependent ADPKD cells, it also led to the activation of AMPK
(38, 40). Thus, it is tempting to hypothesize that the beneficial
effects produced by 2DG in the context of cystic disease are
referenceable at least in part to its stimulatory effect on AMPK.

INDIRECT AMPK ACTIVATORS

Calorie restriction is another indirect but simple and very well-
tolerated intervention that leads to AMPK activation. In the
context of ADPKD, Warner et al. showed that food restriction
dramatically slowed cyst development in a mouse model of
ADPKD (41). This effect was “dose dependent,” in that the degree
of cystic disease suppression was well-correlated with the extent
of the food restriction, which ranged from 10 to 40% in this study.
Perhaps most striking was the observation that the imposition of
calorie restriction was able to at least partially reverse established
cystic disease. While many mechanisms could contribute to the
suppression of cystic disease by food restriction, it is interesting
to note that food restrictionmight be expected to produce AMPK
activation since it should reduce the availability of the substrate
molecules that are required to fuel cellular energy production.
In fact, in renal tissue from food restricted animals AMPK
activity is substantially increased, as evidenced by increased levels
of pAMPK. In addition, the activity of the mTOR pathway
is reduced in these animals, consistent with increased AMPK
activation. Thus, it is possible that some or all of the influence
of food restriction on the course of cystic disease progression is
attributable to its capacity to activate AMPK.

Calorie restriction and 2DG deny cells the high energy
substrates that they require to produce ATP, thus lowering ATP
levels, raising AMP levels and producing AMPK activation. A
number of insulin-sensitizing drugs that are widely used to
treat Type 2 diabetes, the metabolic syndrome and polycystic
ovary syndrome, also reduce ATP levels, elevate AMP levels
and produce consequent AMPK activation. These drugs do not
act by reducing the availability of high energy substrates but
instead by interfering with the capacity of mitochondria to
carry out the oxidative phosphorylation that liberates the energy
embedded in those substrates. Metformin has been used for this
purpose for more than 60 years. The precise mechanism through
which metformin produces reduced ATP levels and increased
AMP levels is not entirely clear, but it is generally thought that
metformin inhibits the mitochondrial electron transport chain
by blocking the function of Complex I (42). It is also important
to note that metformin appears to affect numerous cellular
processes and that therapeutic doses of metformin administered
to treat Type 2 diabetes may not be sufficient to incite AMPK
activation in vivo (30, 37, 43–46). It is likely, therefore, that
its insulin-sensitizing and hypoglycemic effects are not directly
related to its capacity to activate AMPK. Thiazolidinediones are
another class of insulin-sensitizing drugs that produce multiple
effects, among which are both inhibition of mitochondrial
Complex I and AMPK activation (47, 48). It has recently been
shown that, at least in the liver, the elevated AMP produced by
metformin treatment can act to inhibit adenylate cyclase and
thus prevent hormone-stimulated increases in cAMP (44). It is
possible, therefore, that in addition to possessing the potential to
activate AMPK, metformin may also have the ability to suppress
cAMP levels. Thus, at least in theory, metformin may be able
to influence three pathways that are thought to be critical to
cyst progression. Two of these pathways (mTOR and CFTR)
could be suppressed by indirect metformin-induced activation of
AMPK, while the third (cAMP) could be the product of indirect
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metformin-induced elevation of AMP and consequent inhibition
of adenylate cyclase or of direct stimulatory effects of AMPK on
the activity of phosphodiesterase 4B.

Because of its well-established safety profile and its possible
capacity to inhibit cystogenesis through AMPK activation, Takiar
et al. tested the effects of metformin treatment in cell culture
systems that recapitulate aspects of ADPKD-related processes as
well as in two rapidly progressing orthologous ADPKD mouse
models (33). In all of these experimental settings, metformin
treatment inhibited pathways associated with cyst development
and slowed the progression of cystic disease. These results
have since been recapitulated in other animal models of renal
cystic disease, including zebrafish (49), mice (50) and pigs (51).
Metformin also slowed hepatic cyst development in a rodent
model of polycystic liver disease (52). It is important to note that
one study employing an orthologous mouse model of ADPKD
did not detect a suppressive effect of metformin treatment on cyst
development (53). It will be important to understand the basis for
these discrepant results, since illuminating differences in mouse
strain susceptibilities, dose administration, pharmacokinetics,
etc. might reveal important factors that should be considered if
metformin were to be developed as a therapeutic for patients with
ADPKD. At the other extreme, the data obtained with metformin
and 2DG, alone or in combination, in the pig system was
especially striking, since each of these treatments impressively
suppressed the dramatic cystic pathology that is characteristic
of this highly orthologous model of ADPKD (51). Preclinical
studies have tested two thiazolidinediones, pioglitazone and
rosiglitazone, in non-orthologous rodent models of PKD and
found that both compounds reduced the progression of cystic
disease (54–56).

The well-understood safety profiles of metformin,
pioglitazone and rosiglitazone, coupled with the accumulated
promising pre-clinical data, has inspired the initiation of
several small clinical trials designed to assess the safety of these
compounds in ADPKD patients (57–59). Two of these have
recently concluded and demonstrated that both metformin and
pioglitazone are safe and well-tolerated in ADPKD patients
(57, 60, 61). The TAME metformin trial employed the relatively
high doses of the drug that are administered to treat polycystic
ovary syndrome (60). Neither study was adequately powered
to provide an assessment of efficacy. Thus, a determination
as to whether metformin or thiazolidinediones can produce
clinical benefit for ADPKD patients will await the results of
future larger trials. One such large trial, administered through
the University of Queensland in Australia, is currently enrolling
1,164 patients with rapidly progressing ADPKD. This Phase 3
study, “Implementation of Metformin theraPy to Ease Decline of
Kidney Function in Polycystic Kidney Disease” (IMPEDE-PKD),
will test the efficacy of 2 years of treatment with a slow-release
form of metformin (61). The results of this study, which
is expected to conclude in 2026, should provide a valuable
assessment of metformin’s promise as an ADPKD therapeutic.

DIRECT AMPK ACTIVATORS

The interventions that have been discussed up to this point
achieve AMPK activation indirectly by interfering with cellular

energy production. There are also a number of AMPK-
interacting compounds whose administration produces direct
effects on this enzyme’s kinase activity. Salicylate, the active
ingredient in aspirin, physically binds to the AMPK β-subunit
and induces phosphorylation-independent AMPK activation
(37, 62, 63). A recent very promising study showed that
administration of salsalate, which is metabolized into salicylate,
produced impressive suppression of cystic disease in an
orthologous mouse model of ADPKD (53). In light of its
very long history as a component of the pharmacopeia
and its excellent safety profile, these observations should
hopefully be translatable into a human clinical trial in the
near future.

Another direct, but potentially more problematic,
intervention involves the administration of chemical compounds
that can mimic the capacity of AMP to bind to the AMPK
γ-subunit and initiate the consequent conformational changes
that are prerequisites for activating phosphorylation of the
α-subunit by LKB1 or CAMKK. One such compound, AICAR,
has been used extensively in research studies that have helped
to elucidate the physiological consequences of AMPK activation
in vitro and in vivo (64). MK-8722, a compound that employs
this same mechanism to achieve AMPK activation, was tested
as a potential treatment for diabetes and diabetic sequelae
(65, 66). Administration of this compound to rodent and
monkey models produced impressive improvements in glucose
tolerance and also ameliorated aspects of diabetic nephropathy.
Importantly, however, exposure to this compound produced
cardiac hypertrophy. As a result, concerns have been raised as to
the safety of chronic administration of direct AMPK activators
that share this mechanism of action.

DISCUSSION

It is not clear whether the activity of AMPK is directly
regulated by some aspect of polycystin protein function. It is
clear, however, that AMPK modulates the activity of several
pathways that participate in ADPKD pathogenesis. Furthermore,
a number of metabolism-related therapeutic approaches that
have shown promise in preclinical models of ADPKD induce
AMPK activation and may achieve their beneficial effects in
slowing cyst development through their influence on AMPK
(8). A great deal of work remains to be done to determine
whether and how AMPK responds to polycystin-related signals.
It is clear, however, that AMPK is an interesting and attractive
potential target for the development of safe and effective
ADPKD therapeutics.
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