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Objective: Microalbuminuria (MAU) occurs due to universal endothelial damage, which

is strongly associated with kidney disease, stroke, myocardial infarction, and coronary

artery disease. Screening patients at high risk for MAU may aid in the early identification

of individuals with an increased risk of cardiovascular events and mortality. Hence,

the present study aimed to establish a risk model for MAU by applying machine

learning algorithms.

Methods: This cross-sectional study included 3,294 participants ranging in age from

16 to 93 years. R software was used to analyze missing values and to perform multiple

imputation. The observed population was divided into a training set and a validation set

according to a ratio of 7:3. The first risk model was constructed using the prepared data,

following which variables with P < 0.1 were extracted to build the second risk model.

The second-stage model was then analyzed using a chi-square test, in which a P ≥

0.05 was considered to indicate no difference in the fit of the models. Variables with P

< 0.05 in the second-stage model were considered important features related to the

prevalence of MAU. A confusion matrix and calibration curve were used to evaluate the

validity and reliability of the model. A series of risk prediction scores were established

based on machine learning algorithms.

Results: Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood

glucose (FBG), triglyceride (TG) levels, sex, age, and smoking were identified as

predictors of MAU prevalence. Verification using a chi-square test, confusion matrix,

and calibration curve indicated that the risk of MAU could be predicted based on the

risk score.

Conclusion: Based on the ability of our machine learning algorithm to establish an

effective risk score, we propose that comprehensive assessments of SBP, DBP, FBG,

TG, gender, age, and smoking should be included in the screening process for MAU.
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INTRODUCTION

Microalbuminuria (MAU) is defined as a urinary albumin
excretion of 20–200 mg/L in a spot urine test or 30–
300mg in a 24-h urine collection test (1). The presence
of MAU represents an early manifestation of general
endothelial damage, which can occur secondary to diabetes,
hypertension, and coronary heart diseases (2, 3). Research has
demonstrated that MAU is closely associated with stroke,
myocardial infarction, coronary artery disease, and all-
cause mortality (4). Several studies have also indicated that
MAU is predictive of vascular disease, diastolic dysfunction,
congestive heart failure, and hypertension (5–7). Hence,
clinical screening and early identification of MAU remains
especially important.

Advancements in proteomics technology such as protein
separation, biological mass spectrometry, and bioinformatics
have decreased the difficulty of examining proteome
expression (8). Despite these advancements, there are
still many drawbacks in the detection of urine albumin
(8). The gold standard in chronic kidney disease (CKD)
screening is the 24-h urine collection test; however, this
method is difficult to implement on a large scale due to its
inconvenience (2).

Therefore, in the present study, we aimed to establish
and validate a risk model for early prediction of MAU
using machine learning algorithms rather than the results
of 24-h urine microalbumin tests. Application of risk scores
derived using such a model would be more convenient for
the monitoring and follow up of patients at higher risk
for MAU.

METHODS

Study Population
This cross-sectional study was performed between June
2011 and January 2012 and included participants randomly
selected using a clustered sampling technique (9), with
probabilities proportionate to the size of the population
in each cluster. All participants were from Ningde City in
Fujian province in southeast China. Overall, 3,294 Chinese
(age: 16–93 years) participants who had no cognitive
dysfunction and were not pregnant participated in the
survey. MAU was defined as a urinary albumin excretion
of 20–200 mg/L and was assessed using a spot urine test
(1, 4). The exclusion criteria were as follows: history of
type-1 diabetes mellitus (DM), history of kidney disease or
urinary albumin excretion ≥200 mg/L, and pregnancy. The
study was performed in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of Fujian
Provincial Hospital (approval No. K2009-12-020), and written
informed consent was obtained from each participant. All
investigators who were unaware of the study’s aims or the
characteristics of the participants received special training
before the investigation. Figure 1 shows a flowchart describing
patient selection.

Data Collection
All participants were required to complete a standard self-
reported questionnaire comprising 10 questions addressing age,
sex, personal and family medical history, smoking and drinking
habits, and so on.

Weight, height, and waist circumference (WC) were
measured to the nearest 0.1 kg and 0.1 cm, respectively, by
experienced nurses, with patients wearing light clothing
and no shoes. WC was measured at the middle point
between the costal margin and iliac crest. Systolic and
diastolic blood pressures (SBP and DBP) were both
measured twice using a standard OMRON auto-electronic
sphygmomanometer, and the mean of the two readings was used
for analysis.

Blood samples were collected after an 8- to 12-h overnight
fast and were stored at −20◦C until analysis. Participants were
provided with oral and written instructions on the collection
of urine samples and advised to postpone urine collection
in case of urinary tract infection, fever, or menstruation,
and to avoid heavy exercise as much as possible during the
collection period. The blood samples were evaluated at the
Laboratory of Ningde Municipal Hospital. Each blood sample
was independently assessed by two qualified examiners. Blood
glucose levels were determined using the glucose oxidase
method (Sclavo, Siena, Italy). The automatic colorimetric
method (Hitachi, Boehringer Mannheim) was used to determine
total cholesterol (TC), total triglyceride (TG), and high-
density lipoprotein cholesterol (HDL-C) levels. Low-density
lipoprotein cholesterol (LDL-C) levels were calculated using the
Friedewald formula.

Type-2 DMwas defined as a fasting blood glucose (FBG)≥7.0
mmol/L or 2-h postprandial blood glucose (PBG)≥11.1 mmol/L,
previous diagnosis of type-2 DM, or use of hypoglycemic
medications (10). Hypertension was defined as SBP ≥140
mmHg and/or DBP ≥90 mmHg, or use of antihypertensive
medications (11). The Homeostatic Model Assessment (HOMA)
values for β-cell function and insulin resistance (IR) were
determined using the following simplified equations: HOMA-IR
= [fasting plasma insulin (FPI) × FPG]/22.5; HOMA-β = (20
× FPI)/(FPG−3.5) (12, 13). The following were used as indices
of insulin secretion in the current study: insulinogenic index
= (Ins30-Ins0)/(Gluc30-Gluc0), where Insy and Gluy represent
values at time (y:min) during the oral glucose tolerance test
(OGTT) (14, 15).

Statistical Analysis
All calculations were performed using R software (version 3.6.3
GUI 1.70 EI Capitan build, 7735).

The “vim” package for R software was used to analyze
missing values and visualize the data. The “mice” package
was used to perform multiple imputation on missing
values (m = 5, method = “pmm,” maxit = 100, seed =

1,234). The imputed data and their distribution in the
original dataset were analyzed and visualized using the
“lattice” package.

The observed population was divided into a training set and
a validation set according to a ratio of 7:3. The “glm” package
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FIGURE 1 | Study design flow.
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was used to build the first risk model using the prepared data.
Then, variables with P < 0.1 were extracted to build the second
risk model, also using the “glm” package. A chi-square test of the
second-stage model was performed using the “anova” package,
and a P ≥ 0.05 was considered to indicate no difference in the
fit of the model. A confusion matrix was used to verify the
accuracy of the model, and a calibration curve was constructed
using the “calibrate” package. Values of x closer to y in the
calibration curve were considered to indicate better calibration
of the model. Variables with P < 0.05 in the second-stage model
were regarded as important features related to the prevalence of
MAU. Graphical representations of the results were drawn using
the “forestplot” package, and the risk score was established using
a nomogram.

TABLE 1 | Characteristics of the study participants.

Parameters Men (%) Women (%)

Urinary albumin 444 (37.6%) 736 (62.4%)

Drinking 636 (73.4%) 231 (26.6%)

Smoker n = 668 (97.1%) n = 20 (2.9%)

Hypertension n = 480 (40.3%) n = 711 (59.7%)

Diabetes n = 174 (44.5%) n = 217 (55.5%)

RESULTS

Participant Characteristics
The enrolled participants were categorized based on urinary
albumin levels, gender, presence of hypertension/diabetes,
and smoking and drinking habits. The study population
comprised 3,294 study participants [men: 1,294 (39.3%);
women: 2,000 (60.7%)]. The characteristics of the
participants are shown in Tables 1, 2. A visual depiction
of the distribution of these characteristics is shown in
Figure 2.

Analysis of Missing Values
Twenty-eight observation indices were analyzed for missing
values. The insulinogenic index represented the index with the
most missing values, accounting for 10% (n = 330), followed
by HOMA-IR and HMOA-β, which accounted for <10%.
An analysis of trends in the distribution of missing values
indicated that they were randomly distributed, conforming to
the missing-at-random (MAR) assumption (Figures 3A,B). The
“mice” package was used to performmultiple imputation on data
withmissing values (m= 5,method= “pmm,”maxit= 100, seeds
= 1,234). The imputed data and their distribution in the original
dataset are shown in Figure 3C.

TABLE 2 | Laboratory data for the study participants.

Total NMAU MAU

Ins_0min (mmol/L) 7.12 (4.95 ∼ 9.98) 7.14 (4.93 ∼ 10.03) 7.09 (4.97 ∼ 9.85)

Ins_30min (mmol/L) 39.76 (24.07 ∼ 63.43) 40.78 (25.25 ∼ 63.82) 38.82 (22.20 ∼ 62.35)

Ins_120min (mmol/L) 29.88 (17.26 ∼ 51.79) 28.90 (16.77 ∼ 48.80) 31.80 (18.42 ∼ 55.62)

Height (cm) 161 (155 ∼ 167) 161 (156 ∼ 167) 160 (155 ∼ 167)

Weight (kg) 60 (53 ∼ 67) 59.2 (53 ∼ 67) 60.5 (54 ∼ 69)

BMI 23.1 (21.0 ∼ 25.4) 22.9 (20.7 ∼ 25.1) 23.6 (21.4 ∼ 26)

Waistline (cm) 79 (72 ∼ 86) 78 (72 ∼ 85) 80 (74 ∼ 88)

Hipline (cm) 93 (89 ∼ 98) 93 (89 ∼ 97) 94 (89 ∼ 98)

MSBP (mmHg) 120 (110 ∼ 134) 118 (108 ∼ 130) 123 (110 ∼ 140)

MDBP (mmHg) 78 (70 ∼ 85) 75 (70 ∼ 82) 80 (70 ∼ 86)

rHR (per min) 75 (69 ∼ 83) 75 (68 ∼ 82) 76 (69 ∼ 83)

Bg_0min (mmol/L) 4.87 (4.45 ∼ 5.36) 4.82 (4.42 ∼ 5.29) 4.93 (4.50 ∼ 5.55)

Bg_30min (mmol/L) 8.50 (7.24 ∼ 10.00) 8.38 (7.10 ∼ 9.80) 8.70 (7.43 ∼ 10.38)

Bg_120min (mmol/L) 5.88 (4.72 ∼ 7.67) 5.70 (4.61 ∼ 7.15) 6.20 (4.97 ∼ 8.47)

Cholesterol (mmol/L) 4.79 (4.14 ∼ 5.45) 4.73 (4.10 ∼ 5.36) 4.86 (4.21 ∼ 5.60)

Triglyceride (mmol/L) 1.17 (0.8 ∼ 1.8) 1.11 (0.77 ∼ 1.69) 1.28 (0.88 ∼ 1.99)

HDL (mmol/L) 1.25 (1.02 ∼ 1.50) 1.27 (1.04 ∼ 1.50) 1.22 (1.00 ∼ 1.48)

LDL (mmol/L) 2.83 (2.26 ∼ 3.44) 2.79 (2.21 ∼ 3.39) 2.90 (2.31 ∼ 3.52)

Age (years) 46 (35 ∼ 57) 44 (34 ∼ 55) 48 (38 ∼ 61)

HOMA-IR 1.56 (1.08 ∼ 2.26) 1.54 (1.08 ∼ 2.22) 1.60 (1.11 ∼ 2.36)

HOMA-β 103.42 (63.76 ∼ 168.21) 109.92 (68.19 ∼ 175.45) 95.43 (56.77 ∼ 153.86)

Insulinogenic-index 9.47 (4.71 ∼ 17.36) 9.81 (5.03 ∼ 17.69) 8.78 (4.26 ∼ 16.64)

NMAU, Nomicroalbuminuria; MAU, microalbuminuria; Ins, Insulin releasing test; BMI, BodyMass Index; MSBP, mean systolic blood pressure; MDBP, mean diastolic blood pressure; rHR,

resting heart rate; Bg, blood glucose; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, Homeostasis Model Assessment- insulin resistance; HOMA-β, Homeostasis

Model Assessment of β-cell function.

Data are shown as the median (interquartile range).
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FIGURE 2 | The distribution of characteristic of the participants.
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FIGURE 3 | (A,B) Analysis of missing values; (C) Multiple imputed data and its distribution in the original data.

Risk Model for MAU
The observed population was divided into a training set and
a validation set according to a ratio of 7:3 (training set: 2,305;
validation set: 989). The 2,305 cases in the training set were
used to build the first predictive model, which is described in
Table 3. Significant factors in this model (P <0.10) included
SDP, DBP, Bg_0min, TC, TG level, HDL level, gender, age,
and smoking. Logistic model fitting was performed again after
extracting the variables with P < 0.10. The second-stage model
was then evaluated using a chi-square test, confusion matrix,
and a calibration curve. The specificity of the model in the
verification set reached as high as 0.9, with an accuracy of 0.63.
The positive and negative predictive values were 0.55 and 0.65,
respectively (Figure 4A). In the calibration curve, values of x
remained close to y, indicating good calibration in both the
training and validation sets (Figures 4B,C). Based on a P <

0.05, important features related to the incidence of MAU in the
second-stage model includedmean SBP, mean DBP, FBG, TC, TG
level, HDL, gender, age, and smoking (Figure 5A).

Development of an MAU Risk Score
Given their significant relationship with MAU based on our
analysis of the second-stage model, the following variables
were used to develop the risk prediction system: mean
SBP, mean DBP, FBG, TC, TGs, HDL, gender, age, and
smoking. Figure 5B shows how total risk scores for MAU
are calculated.

DISCUSSION

MAU is an early marker of diabetic kidney disease (DKD)
(2), cardiovascular disease, and renal risk (1). Accounting for
∼50% of end-stage kidney disease (ESKD) cases in the developed
world (16), DKD has a major effect on global healthcare
costs and resources (2). Estimates indicate that the prevalence
of MAU among patients with type-2 DM in the Asia-Pacific
region ranges from 17.0 to 18.2%, while severe albuminuria and
reduced estimated glomerular filtration rate (eGFR) are observed
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TABLE 3 | Initial risk model.

Estimate Std. error P-value

Ins_0min (mmol/L) −2.20e-03 1.81e-02 0.90

Ins_30min (mmol/L) 2.65e-03 1.28e-03 0.04**

Ins_120min (mmol/L) −4.40e-04 1.07e-01 0.68

Drinking (Yes) −3.02e-03 1.17e-02 0.98

Height (cm) −1.47e-02 2.49e-02 0.55

Weight (kg) 3.01e-02 3.18e-02 0.34

BMI −7.31e-02 8.22e-02 0.37

Waistline (cm) 7.52e-03 7.96e-03 0.34

Hipline (cm) −8.49e-03 1.10e-02 0.44

MSDP (≥140 mmHg) 6.61e-03 3.66e-03 0.07*

MDBP (≥90 mmHg) 1.23e-02 5.74e-03 0.03*

rHR (per min) −1.69e-03 4.48e-03 0.71

Bg_0min (≥7 mmol/L) 1.43e-01 6.41e-02 0.03**

Bg_30min (mmol/L) −3.31e-02 2.74e-02 0.23

Bg_120min (mmol/L) 3.45e-02 2.63e-02 0.19

Cholesterol (mmol/L) −2.68e-01 1.56e-01 0.09*

Triglyceride (≥1.7 mmol/L) 1.94e-01 7.44e-02 0.01**

HDL (mmol/L) 4.65e-01 2.08e-01 0.03*

LDL (mmol/L) 2.56e-01 1.60e-01 0.11

Gender (women) 4.61e-01 1.51e-01 0.001***

Age (years) 7.47e-02 4.02e-02 0.06*

Smoking (Yes) 2.92e-01 1.43e-01 0.04**

Hypertension (Yes) 1.70e-01 1.19e-01 0.15

Diabetes (Yes) −2.93e-01 2.14e-01 0.17

HOMA-IR −2.39e-02 6.11e-02 0.70

HOMA-β −6.47e-05 6.98e-05 0.35

Insulinogenic index −3.16e-03 1.93e-03 0.10

Ins, Insulin releasing test; BMI, Body Mass Index; MSBP, mean systolic blood pressure;

MDBP, mean diastolic blood pressure; rHR, resting heart rate; Bg, blood glucose;

HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, Homeostasis

Model Assessment- insulin resistance; HOMA-β, Homeostasis Model Assessment of

β-cell function.

*P < 0.10, ** P < 0.05, *** P < 0.01.

in 2.1–14.1 and 15.3–61.6% of patients, respectively (17, 18).
These statistics highlight the importance of screening, early
detection, and prevention efforts to reduce the overall impact
of MAU.

Given that diabetic glomerulopathy can be only be diagnosed
definitively via a kidney biopsy, few studies to date have
investigated methods for predicting MAU (3), making it difficult
to perform a detailed analysis of MAU risk (19). DKD
may be present long before the patient develops traditional
indications for a kidney biopsy (20). Careful screening and
prediction using the risk score developed in our study may
allow for early detection of MAU without the need for a
kidney biopsy.

In contrast to previous findings, DM was not identified
as an independent factor influencing MAU risk in the

current study. This inconsistency may be related to
the low proportion of patients with DM among our
participants (11.9%). In the surveyed population, elevated
FBG and PBG were more prevalent than DM, suggesting
that diabetes had not been identified in some patients.
However, the risk associated with elevated FBG was as high
as 1.11 [odds ratio (OR): 1.11, 1.05–1.19], indicating that
elevated blood glucose was still an independent risk factor
for MAU.

Increased intraglomerular capillary pressure, which is
related to systemic blood pressure as well as pre- and post-
glomerular resistance, is the most important determinant
of MAU (21, 22). Previous studies have reported that blood
pressure is closely associated with albuminuria in patients
with hypertension and in the general population (23–25). A
study conducted among the Japanese population demonstrated
that SBP exhibited an independent positive correlation with
MAU (21). Another Japanese study indicated that both
systolic hypertension and hyperglycemia were independent
risk factors for MAU, in accordance with our findings
(21). Saadi et al. have also observed that SBP and DBP are
significantly higher patients with MAU than in the general
population (26).

One study conducted in China reported that, for
each 10mg increment in 24-h urinary microalbumin
excretion within the normal range, the odds of significantly
elevated TG levels increased by 41% (24). Our analysis
indicated that, when compared with the normal TG
range, abnormally elevated TG levels increase the
risk of MAU by a factor of 1.10 [odds ratio (OR):
1.10, 1.02–1.20].

Although Ge et al. (24) observed no significant difference in
gender in 24-h urinary microalbumin excretion in a study of
Chinese adults, our results are in contrast to these findings. Our
analysis identified gender as an important feature influencing
the incidence of MAU (OR: 1.47, 1.17–1.86). In Japan, the
albumin/creatinine ratio is higher in women and older adults
than in men and younger individuals, respectively, but this
is not true for the albumin concentration (21). Our findings
also indicated that, for each 10-year increment, the odds of
TG elevation significantly increased by 9% (OR: 1.09, 1.03–
1.18).

Several previous studies have reported that MAU is related
to smoking (27–29) and obesity (30–32), while others have
noted the influence of race and region on MAU prevalence (33–
35). Our study suggests that smoking is indeed an important
feature affecting the prevalence of MAU (OR: 1.35, 1.02–
1.77), while no such relationship was observed for obesity.
However, despite appropriate calibration of the model, the low
incidence of obesity among our patients may have influenced
our results.

To our knowledge, the current study is the first to establish
a risk score for MAU using a large sample of patients, to
establish such a model using multiple imputation to account
for missing data, and to utilize chi-square and logistic fitting
for double-verification of model quality. Nonetheless, the study
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FIGURE 4 | (A) Confusion matrix; (B) The calibration curve of the training set; (C) The calibration curve of the validation set.

also had some potential limitations, including relatively limited
variations in race and region. Furthermore, this was a single-
center and cross-sectional study, necessitating verification of
our model in multicenter studies with long-term follow-
up periods.

In conclusion, based on our analysis using machine learning
algorithms, we propose that comprehensive assessments of SBP,
DBP, FBG, TG, gender, age, and smoking be included in the
screening process for MAU. The risk score established in the
present study may allow clinicians and patients to initiate
early interventions that can delay or prevent the development
of MAU.
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