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Objective: Evaluation of the endoscopic features of Crohn’s disease (CD) and ulcerative
colitis (UC) is the key diagnostic approach in distinguishing these two diseases.
However, making diagnostic differentiation of endoscopic images requires precise
interpretation by experienced clinicians, which remains a challenge to date. Therefore,
this study aimed to establish a convolutional neural network (CNN)-based model to
facilitate the diagnostic classification among CD, UC, and healthy controls based on
colonoscopy images.

Methods: A total of 15,330 eligible colonoscopy images from 217 CD patients,
279 UC patients, and 100 healthy subjects recorded in the endoscopic database
of Tongji Hospital were retrospectively collected. After selecting the ResNeXt-101
network, it was trained to classify endoscopic images either as CD, UC, or normal.
We assessed its performance by comparing the per-image and per-patient parameters
of the classification task with that of the six clinicians of different seniority.

Results: In per-image analysis, ResNeXt-101 achieved an overall accuracy of 92.04%
for the three-category classification task, which was higher than that of the six clinicians
(90.67, 78.33, 86.08, 73.66, 58.30, and 86.21%, respectively). ResNeXt-101 also
showed higher differential diagnosis accuracy compared with the best performing
clinician (CD 92.39 vs. 91.70%; UC 93.35 vs. 92.39%; normal 98.35 vs. 97.26%). In
per-patient analysis, the overall accuracy of the CNN model was 90.91%, compared
with 93.94, 78.79, 83.33, 59.09, 56.06, and 90.91% of the clinicians, respectively.

Conclusion: The ResNeXt-101 model, established in our study, performed superior to
most clinicians in classifying the colonoscopy images as CD, UC, or healthy subjects,
suggesting its potential applications in clinical settings.

Keywords: inflammatory bowel disease, Crohn’s disease, ulcerative colitis, artificial intelligence, deep learning,
convolutional neural network, colonoscopy image, classification

Abbreviations: AI, artificial intelligence; CD, Crohn’s disease; CNN, convolutional neural network; IBD, inflammatory
bowel disease; UC, ulcerative colitis.
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INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic and progressive
inflammatory condition characterized by a relapsing and
remitting course of inflammation of the gastrointestinal tract
lining. IBD mainly includes two forms of diseased conditions,
namely Crohn’s disease (CD) and ulcerative colitis (UC).
Internationally, the prevalence of IBD is increasing at an alarming
rate, especially in the developed and industrialized countries
(1, 2).

Accurate identification and differential diagnosis of IBD
remains a challenge due to the involvement of several
disease influential factors, such as increasing prevalence of
intestinal infections, absence of a universal diagnostic standard,
overlapping clinical manifestations with respect to non-IBD
gastrointestinal disorders (3), etc. Often, it becomes very
challenging to diagnose between CD and UC differentially, as
both of them involve multi-factorial parameters, such as medical
history, clinical manifestations, laboratory findings, radiological
examinations, histopathology, and endoscopy (4–6). Amongst
them, endoscopic evaluation plays a key role in the effective
diagnosis, management, prognosis, and surveillance of IBD
patients (7). However, in such cases, except for repetitive and
arduous manual operations, subjectivity is still one of the
major drawbacks that greatly depend on knowledge, professional
experience, and perceptual factors of the clinician performing
the procedure (8–10). Thus, developing intelligent auxiliary tools
is of immense importance for efficiently and quickly processing
tons of medical data, not only to practically overcome the above
shortcomings but also to gear up the IBD surveillance globally.
In fact, several researches have shown artificial intelligence (AI)
could partially make up the deficiency caused by clinicians, and
it is expected to support lesion recognition and guide therapeutic
decision making by providing feedback (11, 12).

Notably, AI with deep learning-guided high-capacity image
recognition has successfully been applied and clinically tested
in the diagnosis and classification of various diseases, including
skin cancer, premature retinopathy, large vessel occlusion
of CT angiography detection (13–15), etc. More recently, a
convolutional neural network (CNN), an end-to-end deep
learning system in combination with pattern recognition, feature
extraction, and classification, has opened the door to elaborate
image analysis (16–18).

For gastroenterological disorders, AI has been widely used
to recognize early esophageal neoplasia in Barrett’s esophagus,
classify gastric cancers and ulcers, localize and identify polyps
(19–21), etc. The proposed computer-aided endoscopic diagnosis
systems have shown potential advantages in reducing manual
workload as well as undesired human error and improving the
accuracy of medical diagnosis. However, the clinical application
of deep learning has rarely been investigated in training a CNN
model to analyze, interpret and extract characteristic features of
IBD from colonoscopy images to achieve the distinction of CD,
UC, and healthy controls. Therefore, the primary aim of the
present study was to apply an AI-guided image analysis model
for classifying CD, UC, and normal gastrointestinal conditions at
the endoscopy image level.

MATERIALS AND METHODS

Study Subjects
We retrospectively searched the in-patient medical record
database for subjects undergoing colonoscopy between January
2014 and May 2021 at three campuses of Tongji Hospital,
Tongji Medical College, Huazhong University of Science and
Technology. The inclusion criteria for enrolling CD/UC patients
were as follows: (1) the clinical diagnoses were made via a
combination of clinical, laboratory, endoscopic, and histological
criteria according to the third European Crohn’s and Colitis
Organization (ECCO) consensus (5, 6), (2) CD/UC patients
in the active stage under the endoscopy. Exclusion criteria
were: (1) ileocolectomy was performed before colonoscopy, (2)
colonoscopy revealed no active lesion, (3) CD patients with
lesions restricted to the ileum. Included healthy controls were
adults who showed no abnormalities in the health check-up.
Endoscopic examination was performed using CF-H260AI, CF-
Q260AI, CF-H260AZI, CF-H290I, or CF-HQ290I endoscope
(Olympus Optical Co., Ltd., Tokyo, Japan).

For estimating the sample size, we referred to the content
of “a supervised deep learning algorithm will generally achieve
acceptable performance with around 5,000 labeled examples per
category” recorded in the Deep Learning textbook written by
Goodfellow et al. on page 24 (22). Generally speaking, 60–80
images would be captured during one colonoscopy, of which the
images of the lesion area of a CD/UC patient account for about
20–40%, and the colonic images of a healthy control account for
about 70–80%. To meet the size requirement of approximately
5,000 eligible examples per category, we set the sample sizes of
about 200 CD/UC patients and 100 healthy controls based on the
data availability.

Image Collection Procedure
Conventional white light colonoscopy images captured from
included CD patients, UC patients, and healthy controls were
enrolled for this study. Before being fed to the deep learning
model, multiple preprocessing operations can be performed on
raw image data to reorganize them into a uniform format:
(1) Data exclusion: non-informative images were excluded.
(2) Boundary cropping: the black margin surrounding the
colonoscopy image with date and time of acquisition was cropped
by software. (3) Resizing: images were resized to a standard
resolution of 256× 256 to fit the expected size for model training.
(4) Horizontal flipping: images were flipped horizontally for data
augmentation. (5) Normalization: gray-scale normalization was
performed to increase the rate of convergence of the network.
Specifically, non-informative images were excluded according
to the following exclusion criteria: (1) images of poor quality,
(2) poor bowel preparation, (3) fragmented images of the small
intestine, (4) inactive IBD lesion, and (5) CD/UC images with
normal endoscopic features (Supplementary Figure 1).

The randomization was performed in the CD image set,
UC image set, and normal image set, respectively. Within
these sets, images were divided into the training phase and
testing phase, while the former one is further partitioned into a

Frontiers in Medicine | www.frontiersin.org 2 April 2022 | Volume 9 | Article 789862

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-789862 April 7, 2022 Time: 12:54 # 3

Wang et al. AI for UC/CD Endoscopy Classification

training dataset consisting of approximately 90% of the images
and a validation dataset consisting of the remaining 10%. The
overall experimental design, dataset selection, and distribution
procedures are presented in Figure 1. The study was conducted
in accordance with the Declaration of Helsinki and approved by
the Ethical Committee of Tongji Hospital.

Training of the Convolutional Neural
Network Model
To construct the AI-based classification system, we selected
the CNN architecture of ResNeXt-101 after measuring the
performances of five different networks, namely, ResNet-50,
ResNet-101, ResNeXt-50, ResNeXt-101, and EfficientNet-V2.
ResNeXt-101 was a deep CNN pre-trained with data from
ImageNet and then re-trained using our image set by fine-tuning
the parameters of all layers. Figure 2 shows the entire architecture
of ResNeXt-101. The linear rectifying unit activation function is
implemented to all the convolution layers, followed by the batch
normalization. The network enters the fully connected layer
through the average pooling layer and outputs the classification
category through the Softmax function. Through the shortcut
connection, which encourages the feature reuse to reduce the
feature redundancy, the ResNeXt-101 can address the problem
of accuracy of classification tasks that tend to be saturated or
even degraded as the network deepens (23). The ResNeXt-101
network reached the highest accuracy after running a total of
300 training epochs with a batch size of 64. Eventually, the
model yielded the categorical classification of each of the input
endoscopic images as CD, UC, or normal with the maximum
probability in the output.

Outcome Measures and Statistical
Analysis
Using a test image set of 1,458 images, the classification
performance of the constructed CNN model was evaluated and
compared with that of six clinicians of different endoscopic
operation experiences. Clinicians were blinded to any relevant
information about the test image set and classified these
images independently.

The per-image analysis was defined as per-image diagnosis
of CD, UC, or normal. Evaluation indicators, including the
accuracy, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and F1-score of the classification
capability of CD, UC, or normal images, were compared. F1-score
was calculated as follows:

F1− score =
2 ∗ true positive

2 ∗ true positive + false positive + false negative
.

In the per-patient analysis, the judgment of whether the
patient was correctly categorized by the clinician or the CNN
model was based on the majority voting rule method (24, 25).
The threshold value was defined as the lowest value to judge
whether the clinician or the CNN model correctly classified a
patient into one of the three categories, and it was set to at least
50% to ensure there is no more than one category proportion

could exceed the threshold value. In the voting rule method,
the clinician or the CNN model was considered to correctly
categorize a patient when the proportion of the patient’s correctly
classified images exceeded the threshold value, otherwise, the
clinician or the CNN model was considered to miscategorize the
patient. The categorization accuracy of a clinician or the CNN
model was calculated as the proportion of patients considered to
be correctly categorized by the clinician or the CNN model under
different threshold values in the per-patient analysis.

Categorical variables were expressed as numbers in
percentages. Continuous variables were expressed as the
median of the interquartile range (IQR) if data were not
normally distributed. All relevant data were analyzed using SPSS
software, version 21.0.

RESULTS

Characteristics of Subjects and Image
Set
The clinical and demographic data of 217 CD patients, 279
UC patients, and 100 healthy controls were systematically
documented and detailed in Table 1. Among them, the median
(IQR) age of CD, UC, and healthy subjects were 28 (22–35), 45
(31–54), and 42 (34–51) years, respectively, while the proportion
of male subjects in each group was 163 (75.12%), 179 (64.16%),
and 56 (56.00%), respectively. Among the 217 CD patients, 115
(53.00%) were ileocolonic (115, 53.00%) and 96 (44.24%) were
colonic, and 129 (59.45%) patients were non-stricturing and
non-penetrating. Of the 279 UC patients, 142 (50.90%) had a
pancolitis, 92 (32.97%) had a left-sided colitis, and 45 (16.13%)
had a disease limited to the rectum.

After image preprocessing, 42,267 images were excluded
according to the exclusion criteria as mentioned previously. The
remaining 15,330 eligible colonoscopy images, consisting of 5,111
active lesion images from 217 CD patients and 5,219 active
lesion images from 279 UC patients and randomly extracted
5,000 normal images from a group of 100 healthy controls, were
included to generate the image set in our study. Representative
images that can be input to the CNN model are presented in
Supplementary Figure 2.

The Performance of the Convolutional
Neural Network Model on the
Three-Category Classification Task
In the three-category classification task of colonoscopy images
from CD/UC patients and healthy controls, the CNN model
achieved an overall accuracy of 92.04%. The detailed per-category
performance of the established model has been presented in
Table 2. The ResNeXt-101 showed a diagnostic accuracy of
92.39% for active CD lesion images, 93.35% for active UC
lesion images, while it peaked at 98.35% for control images. The
sensitivity, specificity, PPV, NPV and F1-score of the CNN model
for classifying CD were 87.53, 94.78, 89.19, 93.91, and 0.88%,
respectively; that for UC were 90.49, 98.14, 89.94, 95.11, and
0.90%, respectively; and for classifying control images were 98.14,
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FIGURE 1 | Overall study design. The main processes involved are eligible colonoscopy image set construction, model development, and final evaluation the
performance between CNNs and clinicians. CD, Crohn’s disease; UC, ulcerative colitis; IBD, inflammatory bowel disease; PPV, positive predictive value; NPV,
negative predictive value.
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FIGURE 2 | Proposed convolutional neural network for colonoscopy image classification with ResNeXt-101 residual network architecture. A layer is shown as (# in
channels, filter size, # out channels). Conv, convolutional layer; AvgPool, average pool; FC, full connected layer; CD, Crohn’s disease; UC, ulcerative colitis.

98.46, 96.93, 99.07, and 0.98%, respectively. The confusion matrix
for the per-category sensitivity of the ResNeXt-101 in the test
image set has been presented in Supplementary Figure 3A.

Comparison of Performances Between
the Clinicians and the Artificial
Intelligence-Guided Convolutional Neural
Network Model
Among the 1,458 test images, the overall accuracy of each of the
six clinicians was 90.67, 78.33, 86.08, 73.66, 58.30, and 86.21%,
respectively, in classifying the colonoscopy images from CD, UC,
and healthy subjects, which were lower than overall accuracy of
92.04% of the CNN model (Table 2). For the classification of CD
lesion images, the clinician with the best performance showed
an accuracy of 91.70%, a sensitivity of 86.28%, and a specificity
of 94.37%, which were all inferior to those of the CNN model.
The clinician with the best performance also achieved a slightly
lower classification accuracy when compared with that of the
CNN model (92.39 vs. 93.35% for UC lesion images; 97.26 vs.
98.35% for control images). Besides, the F1-score of clinicians in
each category was inferior to that of the CNN model. Generally,
the CNN model showed improved overall performance and
reproducibility in the classification task. The confusion matrices
of the clinicians have been shown in Supplementary Figure 3.

According to the results of per-patient analysis, clinicians of
different seniority achieved an accuracy of 93.94, 78.79, 83.33,
59.09, 56.06, and 90.91%, respectively, in conventional reading,
while the CNN model achieved an accuracy of 90.91% under
the 50% threshold value (Table 3). Based on these results, it can
be suggested that the CNN model might be better than most
clinicians but not the best when classifying individual patients. In
other words, the performance of the CNN model was somewhat
inferior to the experienced experts to a certain extent.

Analysis of Misclassified Endoscopic
Images
The specific misclassified condition of clinicians and the CNN
model is shown in Figure 3A. According to the results, there

TABLE 1 | Demographic characteristics of CD patients, UC patients and
healthy controls.

Variables CD patients UC patients Healthy controls

(n = 217) (n = 279) (n = 100)

Gender, n (%)

Male 163 (75.12) 179 (64.16) 56 (56.00)

Female 54 (24.88) 100 (35.84) 44 (44.00)

Age, Median (IQR), y 28 (22–35) 45 (31–54) 42 (34–51)

Montreal classification, n (%)

UC extent

E1 Proctitis NA 45 (16.13) NA

E2 Left-sided colitis NA 92 (32.97) NA

E3 Extensive colitis NA 142 (50.90) NA

Age at diagnosis (A), n (%)

A1 16 years or younger 18 (8.29) NA NA

A2 17–40 years 159 (73.27) NA NA

A3 Over 40 years 40 (18.43) NA NA

Location (L), n (%)

L1 Terminal ileum 6 (2.76) NA NA

L2 Colon 96 (44.24) NA NA

L3 Ileocolon 115 (53.00) NA NA

L4 Upper GI 0 NA NA

Behavior (B), n (%)

B1 Non-stricturing, non-penetrating 129 (59.45) NA NA

B2 Stricturing 69 (31.80) NA NA

B3 Penetrating 19 (8.76) NA NA

P Perianal disease modifier 12 (5.5) NA NA

CD, Crohn’s disease; UC, ulcerative colitis; IQR, interquartile range; GI,
gastrointestinal; NA, not applicable.

were 3 UC images and 1 normal image misclassified as CD
images by the CNN model, but not by the clinicians (Figure 3B).
Furthermore, 12 images were mispredicted by all clinicians, while
those were correctly predicted by the CNN model. Among them,
11 CD lesion images were misclassified as UC by most clinicians
(Figure 3C). In general, clinicians were more inclined to classify
active CD lesion images into UC, while the CNN model tended
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TABLE 2 | Diagnostic performance of the CNN model and clinicians in classifying CD, UC or normal on endoscopic images in the test dataset.

The CNN model Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Clinician 6

CD

Accuracy 92.39 (90.88–93.67) 91.70 (90.14–93.04) 81.28 (79.16–83.23) 87.24 (85.39–88.89) 78.53 (76.31–80.59) 73.53 (71.17–75.76) 86.90 (85.03–88.57)

Sensitivity 87.53 (84.16–90.28) 86.28 (82.80–89.16) 76.92 (72.84–80.56) 65.49 (61.03–69.70) 36.38 (32.10–40.88) 26.82 (22.96–31.06) 80.04 (76.13–83.46)

Specificity 94.78 (93.14–96.05) 94.37 (92.69–95.69) 83.42 (80.90–85.67) 97.95 (96.79–98.71) 99.28 (98.46–99.68) 96.52 (95.12–97.54) 90.28 (88.21–92.03)

PPV 89.19 (85.95–91.77) 88.30 (84.96–90.99) 69.55 (65.41–73.40) 94.03 (90.78–96.22) 96.15 (91.91–98.30) 79.14 (71.94–84.94) 80.21 (76.30–83.62)

NPV 93.91 (92.18–95.28) 93.32 (91.53–94.76) 88.01 (85.70–90.00) 85.22 (82.98–87.22) 90.15 (88.17–91.83) 72.82 (70.29–75.21) 90.18 (88.10–91.94)

F1–score 0.88 (0.85–0.91) 0.87 0.84–0.90) 0.73 (0.69–0.77) 0.77 (0.73–0.81) 0.53 (0.48–0.58) 0.40 (0.35–0.45) 0.80 (0.76–0.84)

UC

Accuracy 93.35 (91.92–94.55) 92.39 (90.88–93.67) 79.84 (77.67–81.85) 90.26 (88.59–91.71) 83.20 (81.16–85.06) 59.60 (57.02–62.12) 86.76 (84.89–88.44)

Sensitivity 90.49 (87.47–92.86) 92.91 (90.19–94.94) 67.81 (63.46–71.88) 92.51 (89.73–94.60) 84.62 (81.06–87.63) 96.36 (94.20–97.76) 80.57 (76.74–83.91)

Specificity 94.81 (93.17–96.09) 92.12 (90.19–93.71) 86.00 (83.61–8810) 89.11 (86.93–90.97) 82.47 (79.89–84.79) 40.77 (37.66–43.96) 89.94 (87.82–91.73)

PPV 89.94 (86.87–92.37) 85.79 (82.48–88.58) 71.28 (66.92–75.29) 81.32 (77.79–84.41) 71.21 (67.33–74.81) 45.46 (42.42–48.54) 80.40 (76.57–83.75)

NPV 95.11 (93.50–96.35) 96.21 (94.71–97.31) 83.91 (81.43–86.12) 95.87 (94.30–97.04) 91.27 (89.15–93.02) 95.62 (93.40–97.31) 90.03 (87.92–91.81)

F1–score 0.90 (0.87–0.93) 0.89 (0.86–0.92) 0.70 (0.65–0.74) 0.87 (0.83–0.89) 0.77 (0.74–0.81) 0.62 (0.58–0.65) 0.80 (0.77–0.84)

Normal

Accuracy 98.35 (97.52–98.92) 97.26 (96.25–98.01) 95.54 (94.32–96.52) 94.65 (93.34–95.72) 85.60 (83.67–87.34) 83.47 (81.44–85.32) 98.77 (98.02–99.25)

Sensitivity 98.14 (96.37–99.09) 92.75 (89.97–94.83) 90.48 (87.42–92.88) 100 (99.02–100) 99.59 (98.35–99.93) 50.72 (46.17–55.26) 98.14 (96.37–99.09)

Specificity 98.46 (97.41–99.10) 99.49 (98.74–99.81) 98.05 (96.91–98.79) 92.00 (90.07–93.59) 78.67 (75.94–81.17) 99.69 (99.02–99.92) 99.08 (98.19–99.55)

PPV 96.93 (94.87–98.21) 98.90 (97.30–99.60) 95.83 (93.45–97.40) 86.10 (82.89–88.80) 69.81 (66.21–73.19) 98.79 (96.21–99.69) 98.14 (96.37–99.09)

NPV 99.07 (98.18–99.55) 96.52 (95.14–97.53) 95.41 (93.88–96.58) 100 (99.47–100) 99.74 (98.96–99.95) 80.33 (77.95–82.51) 99.08 (98.19–99.55)

F1–score 0.98 (0.96–0.99) 0.96 (0.93–0.97) 0.93 (0.90–0.95) 0.93 (0.90–0.94) 0.82 (0.79–0.84) 0.67 (0.62–0.71) 0.98 (0.96–0.99)

Overall
accuracy

92.04 (90.50–93.35) 90.67 (89.03–92.09) 78.33 (76.11–80.40) 86.08 (84.17–87.79) 73.66 (71.30–75.89) 58.30 (55.72–60.84) 86.21 (84.31–87.92)

All results are given as a percentage (95% CI).
CNN, convolutional neural network; CD, Crohn’s disease; UC, ulcerative colitis; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

TABLE 3 | Diagnostic accuracy of the CNN model and clinicians in per-patient analysis.

Threshold
value

The CNN model Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Clinician 6

50% 90.91 (80.62–96.25) 93.94 (84.44–98.04) 78.79 (66.66–87.52) 83.33 (71.71–90.99) 59.09 (46.30–70.82) 56.06 (43.35–68.07) 90.91 (80.62–96.25)

60% 87.88 (76.96–94.25) 93.94 (84.44–98.04) 69.70 (57.00–80.09) 81.82 (70.01–89.96) 59.09 (46.30–70.82) 50.00 (37.56–62.44) 86.36 (75.18–93.19)

70% 86.36 (75.18–93.19) 89.39 (78.77–95.27) 63.64 (50.82–74.86) 75.76 (63.38–85.11) 53.03 (40.43–65.27) 46.97 (34.73–59.57) 77.27 (65.01–86.32)

80% 77.27 (65.01–86.32) 81.82 (70.01-89.86) 53.03 (40.43—-65.27) 66.67 (53.89–77.50) 46.97 (34.73–59.57) 40.91 (29.18–53.70) 63.64 (50.82–74.86)

90% 60.61 (47.80–72.18) 68.18 (55.43–78.80) 36.36 (25.14–49.18) 54.55 (41.89–66.68) 40.91 (29.18–53.70) 36.36 (25.14–49.18) 50.00 (37.56–62.44)

All results are given as a percentage (95% CI).
CNN, convolutional neural network; CI, confidence interval.

to misdiagnose UC lesion images as CD lesions. We speculated
that the CNN model might correct the clinicians’ bias toward
misclassification of CD as UC to some extent, but there was an
overcorrection situation.

DISCUSSION

In the present study, we developed and validated a superior AI-
based model using the ResNeXt-101 network to precisely classify
between CD, UC, and normal colonoscopy images. Despite
the significant importance of AI application in clinical image
analysis, the deep learning technology has not been routinely
applied in the classification and distinction of colonoscopy
images of CD, UC, and healthy individuals. According to the
results of the per-image classification analysis, the CNN model
showed a superior overall accuracy compared with that of the six

clinicians. Although it outperformed most clinicians, however,
the accuracy of expert clinician (93.94%) was comparatively
higher than that of the CNN model (90.91%) while making
the diagnosis based on all enrolled endoscopic images of
certain patients. Thus, it indicates that the CNN model has
excellent classification performance in the task, and could be
an instructive and powerful tool to assist the inadequately
experienced clinicians.

Although endoscopy plays a pivotal role in the diagnosis
of IBD, diagnostic precision highly depends on the technical
skills and extensive experiences of the operators. The most
typical endoscopic features of UC are continuous and confluent
colonic involvement with clear demarcation of inflammation and
mucosal friability, while CD is characterized by discontinuous
lesions, longitudinal ulcers, cobblestone appearance, the presence
of stricture, fistulas, or perianal involvement (26). It is not an easy
task to identify different forms of IBD based on the endoscopic
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FIGURE 3 | Comparison of prediction results between the CNN model and clinicians for each test image. (A) Bar diagram of the comparison of results between
clinicians and the CNN model. The horizontal axis represents a corresponding proportion of the number of clinicians who classified the images correctly, and the
corresponding quantities of the images are shown according to the height of the column and the number on the longitudinal axis. The blue column: the CNN model’s
prediction is correct; the red column: the CNN model’s prediction is wrong. (B) Illustration of misclassified images by the CNN model, but not by the participating
clinicians: (a–c) UC images misclassified as CD. (d) Normal images misclassified as CD. (C) Illustration of images that were misclassified by all clinicians, but not by
the CNN model: (a–c) CD images misclassified as UC by all clinicians; (d–k) CD images misclassified as UC by most clinicians and misclassified as normal images by
the rest; (l) UC misclassified as CD by all clinicians. CD, Crohn’s disease; UC, ulcerative colitis; CNN, convolutional neural network.

images alone, even for the experts, due to the exclusivity and
comprehensiveness of the diagnosis of IBD. Besides, there has
been a shortage of expert gastroenterologists in the field of
IBD. In addition, professional IBD training for junior clinicians
has not yet been popularized. Thus, intelligent adjunctive tools
with promising applications in clinical image analysis could
potentially facilitate effective endoscopic diagnosis.

AI has recently been applied to the research of IBD diagnosis.
For example, Hubenthal et al. used a penalized support vector
machine for analyzing microarray-based miRNA expression
profiles from peripheral blood samples to achieve a differential
diagnosis of CD and UC with a remarkably small classification
error rate of 3.1%. However, the generalizability of the model
to other technologies was limited as the model was trained
based on the same type of data originated from the Geniom
Array (27). Mossotto et al. developed a supervised model based
on the support vector machine utilizing combined endoscopic
and histological disease location data to classify pediatric IBD
with a diagnostic accuracy of 82.7% (28). Furthermore, Tong
et al. built a classifier by random forest to differentiate between

CD and UC based on the endoscopic results in the form
of free text rather than images, which yielded sensitivity and
specificity of 89 and 84%, respectively (29). Although previous
studies had a certain reference for further investigation, each
had different footholds. Importantly, our study focused on
applying the CNN to the intelligent processing of a large
set of colonoscopy images to establish a practicable model.
Furthermore, clinicians of different levels of seniority performed
the classification task and their performances were evaluated,
which increased the generalizability of the study. In addition to
the state-of-the-art deep learning architecture of the model, our
CNN model included several other user-friendly interfaces in
terms of its simplicity, feasibility, and cost-effectivity, since the
model required only the input of original clinical data, such as
endoscopic images.

Thus, our study demonstrates the superb practical
applicability of deep learning techniques in managing the
mass image data, with a robust accuracy at a level equivalent
to or better than that of professional clinicians. This study set
the path for the further exploration of integrating endoscopic
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images with multimodal clinical data to construct a combined
model with significantly higher efficiency and accuracy. This
was a pilot exploration toward clinical translation of this
method. It is worth evaluating the classification capability of
the CNN model with images at the initial stage, although it
would not be sufficient to train the model in the sense that
endoscopic still images could not reflect the actual situations
that the model would encounter in reality. A dataset containing
colonoscopy video recordings or a similar clinical setting must
be implemented to confirm the applicability of the CNN model
in precisely analyzing gastrointestinal images. Following that,
we would go into the details of achieving real-time use of AI
during endoscopic diagnoses, such as the interpretation of the
endoscopic images of IBD, integration of additional clinical
information as required, discrimination of the lesion types,
guiding the suspicious lesion’s biopsy, the differential diagnosis
of IBD mimics, etc.

An empirical analysis was performed for the misclassification
of the task by clinicians, and the major decision-influencing
factors were as follows: (1) images of mild lesions from CD
and UC patients shared similar characteristics; (2) some images
of patients with severe UC or CD lesions were prone to be
misclassified; (3) the area of the lesion was so limited in the
field of view that it could easily be overlooked, etc. Even though
the CNN model could not achieve absolute accuracy, it still
exhibited the satisfactory performance in the distinction between
CD, UC, and control images at the colonoscopy image level.
As observed in our investigation, the CNN model was more
sensitive than clinicians in identifying CD lesions in endoscopic
images, but at the same time, it yielded some false positives.
The tendency of the CNN model to overcorrect the clinicians’
judgment suggests the necessity for further training of our model
with more diverse and larger sets of clinical images to improve its
clinical applicability.

Despite multiple positive aspects of our CNN model in IBD
image analysis and diagnosis, our study suffers from certain
limitations that should be discussed to better understand the
potential avenues to improve the model further. Firstly, the
CNN model was developed and tested in retrospective datasets.
Secondly, our model may had been overfitted, concerning our
limited image set size and the absence of images from IBD
mimics. So, larger prospective cohorts of subjects including IBD
and IBD mimics need to be enrolled in future studies to precisely
optimize the model before its real-life clinical application.
Thirdly, all enrolled endoscopic images were Olympus images,
so it is necessary to test the CNN model on images captured
by endoscopes from other manufacturers (e.g., Pentax, Fujifilm,
etc.). Additionally, stratification of the image by the CD or UC
endoscopic scoring system and more clinical information were
not included in this CNN model. Finally, the images with normal
endoscopic features in CD or UC patients were not included
in the per-patient analysis test set, which did not fully simulate
the real clinical situation in CD and UC colonoscopy diagnosis.
Further studies need to be conducted to assess the performance
of per-patient colonoscopy images analysis based on the whole
colonoscopy images of each patient. With statistically larger
and better-designed prospective trials, this novel technology

for gastrointestinal endoscopy-based diagnosis of IBD may be
implemented in clinical practice soon.

CONCLUSION

In conclusion, the CNN model performed superior to most
clinicians in the blind review of active CD/UC lesion images
from the respective patients and normal images from healthy
subjects in per-image and per-patient analyses, suggesting that
the CNN model can assist most clinicians in the three-category
classification task. Therefore, we will further improve the CNN
model by increasing the diversity of the test datasets and
preferably incorporating clinical data to make this model better
suitable in clinical settings.
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