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Background: The fusion of PET metabolic images and CT anatomical images can

simultaneously display the metabolic activity and anatomical position, which plays an

indispensable role in the staging diagnosis and accurate positioning of lung cancer.

Methods: In order to improve the information of PET-CT fusion image, this article

proposes a PET-CT fusion method via Siamese Pyramid Fusion Network (SPFN). In this

method, feature pyramid transformation is introduced to the siamese convolution neural

network to extract multi-scale information of the image. In the design of the objective

function, this article considers the nature of image fusion problem, utilizes the image

structure similarity as the objective function and introduces L1 regularization to improve

the quality of the image.

Results: The effectiveness of the proposed method is verified by more than 700 pairs of

PET-CT images and elaborate experimental design. The visual fidelity after fusion reaches

0.350, the information entropy reaches 0.076.

Conclusion: The quantitative and qualitative results proved that the proposed PET-CT

fusion method has some advantages. In addition, the results show that PET-CT fusion

image can improve the ability of staging diagnosis compared with single modal image.

Keywords: PET-CT fusion, image quality, siamese neural network, pyramid transform, structural similarity

1. INTRODUCTION

Medical imaging is a technique and process for obtaining images of a certain part of the human
body in a non-invasive manner (1–3). With the continuous development of computer imaging
technology, medical imaging has derived multi-modal forms. Common medical images can be
divided into Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic
Resonance Imaging (MRI), UltraSound, and so on. Medical images of different modalities can
reflect disease information from different angles. The correlation and complementarity of image
information from different imaging modality can be used to merge different modalities of medical
image. Effective fusion can provide doctors with richer diagnosis and treatment information. For
lung cancer, the common imaging screening procedures mainly include CT and PET (4, 5). Among
them, CT images have the characteristics of short scanning time and clear images, which can
provide clear human bone tissue anatomy and lesion images, and are widely used for screening
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diseases such as chest and abdomen; PET uses short-lived
radionuclide metabolites (common fluorodeoxyglucose, FDG) to
reflect the metabolic activities in the human body to perform
imaging. PET has the advantages of high sensitivity and high
specificity. The PET-CT fusion image can simultaneously reflect
the pathophysiological changes and morphological structure of
the lesion. It has important clinical value for the staging of
non-small cell lung cancer, the judgment of the recurrence and
metastasis of lung cancer, and the formulation of radiation
treatment plans.

Medical image fusion technology is an important application
area in the field of information fusion technology. The fused
image has more information than the source image, which is
suitable for human eyes to distinguish, and can further enrich
some details of the image, which can provide more practical
information for clinical diagnosis. At present, researchers have
proposed many PET-CT fusion methods. The mainstream
fusion methods mainly include methods based on multi-scale
decomposition and methods based on wavelet transformation
(6, 7). For example, a multi-modal medical image fusion method
in the non-subsampled wavelet transform domain was proposed
in (8). This method first performs non-subsampled wavelet
transform on the source image, and then uses Pulse Coupled
Neural Network(PCNN) andMax selection fusion rule to analyze
high frequency sub-band and low frequency sub-band fusion,
this strategy simultaneously solves the two problems of energy
preservation and detail extraction in image fusion. An image
fusion based on guided filtering (9) used average filtering to
obtain two-scale base and detail layers, and determined the
two-scale weight of the fusion result according to the saliency
map of the image. These fusion methods follow certain fusion
rules to process the images point by point when fusing images.
Therefore, the quality of the fused image is largely affected by the
fusion rules, and the noise resistance effect is not high. During
multi-scale decomposition and transformation, some original
brightness information of the image is often lost.

In recent years, medical image fusion technology based
on convolutional neural network (10–12) has been developed
rapidly. With the help of symmetric network structure or co-
learning method, it automatically learns the direct mapping
between the original image and the fused image, which is
different from the multi-scale decomposition method and the
wavelet transform method, the convolutional neural network
learns to extract features from a large number of images
autonomously, and can obtain low-level features and high-level
semantic features at the same time. In order to obtain a clearer
fusion image, the multi-focus convolutional neural network (11)
used a high-quality image patch and its blurred patch as input to
automatically learn the coding features of the source image and
the target image; A novel image fusion framework, IFCNN (10),
was designed, which uses convolutional layers to extract salient
image features from input images, selects appropriate fusion
rules to fuse the extracted features, and finally obtains the fused
image through convolutional layer reconstruction. A multi-layer
cascaded fusion network was proposed in (12), this end-to-end
deep convolutional neural network can automatically perform
feature extraction, feature fusion, and image reconstruction on

the fused medical images, and use fast deconvolution to reduce
the number of features. The main feature of the convolutional
neural network is the invariance of feature translation. It does not
require complex fusion rules to obtain high-quality fused images
and can also retain the structural information in the original
image to the greatest extent. However, the convolutional neural
network only takes a single-dimensional picture is used as an
input, which lacks the diversity of image scales, and the standard
convolution still has the problem of unknowable content (13, 14).

The feature pyramid (15, 16) is a method that can efficiently
extract the features of each dimension in the picture. The
method of image transformation is used to generate images
of various scales. The convolutional neural network model is
used to express the characteristics of images of different scales
from the low to the top, so as to generate feature maps with
stronger content expression ability. In order to consider the
multi-scale information of the image, this article introduces the
feature pyramid transformation in the traditional convolution,
which enhances the content of the original convolution feature
on the scale. Specifically, this article proposes a Siamese Pyramid
Fusion Network, which implements end-to-end image feature-
level fusion by constructing a siamese structure and multi-scale
feature modules. The network fusion process includes a multi-
scale feature extraction stage and bimodal cross-correlation.
The fusion stage and the image reconstruction stage consist of
three parts. In particular, the contribution of this article can be
summarized in the following three aspects:

• We use a siamese structure composed of a PET encoder and a
CT encoder. The two encoders have the same structure and
share parameters. This structure can extract the two modal
image features of PET and CT separately.

• When extracting image feature maps, we design a multi-scale
convolution structure. This structure can not only extract the
translation invariance of features in the original image, but also
increase the multi-scale features of image.

• When designing the objective function, we propose a novel
objective function, which takes the structural similarity
between the original image and the fusion image as the
backbone, and adds the L1 norm as a regularization term to
reduce noise interference.

The rest of the article is organized as follows. The Section 2
describes the proposed algorithm in detail. The Section 3
describes the experiment and results. The discussion is in
Section 4 and the conclusion follows in Section 5.

2. METHOD

This article uses Xct and Xpet to represent the original CT
image and PET image, Xpc represents the fused PET-CT image,
Xpc = F(Xct ,Xpet), F() represents the fusion method. In order
to be able to find this fusion method, this article designs the
Siamese Pyramid Fusion Network (SPFN). When performing
image fusion, SPFN is mainly divided into feature extraction
part, fusion part, and image reconstruction part. The feature
extraction part is mainly composed of two encoders based on
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the Convolutional Layer Coupling Module (CLCM) to extract
features from original image. The fusion part is composed of
cross-correlation layer to fuse the characteristics of the two
modality images. And the image reconstruction part is a decoder
composed of three de-convolutional layers, which decodes the
fused features to reconstruct the fused PET-CT image. The
specific process is shown in the Figure 1.

2.1. Architecture Design
The main framework of the siamese autoencoder architecture
proposed in this article is mainly inspired by the siamese
network (17). The siamese network initially takes two samples
as input and outputs its embedding high-dimensional space
representation to compare the similarity of the two samples.
Based on this siamese structure, this article designs an improved
siamese autoencoder to fuse the features of two samples. The
siamese autoencoder includes two encoders, a fusion layer and
a reconstruction decoder.

The two encoders have the same structure, sharing
parameters, and respectively accept PET and CT as input.
In the encoding stage, the two inputs of the siamese encoder are
the same size 512 × 512, and the images of the two modalities
will be input to the two encoders with different parameters at
the same time. The encoder designed in this article is mainly
composed of CLCM, which specifically includes three parts:
convolutional layer, channel coupling module, and spatial
pyramid coupling module.

After the features of PET and CT extracted by the encoder,
the features of the two modality images will be fused through
the cross-correlation layer, which is implemented by inter-
correlation operations. It will be described in detail in Section
2.3. Finally, the fused features are fed into the decoder and
reconstructed to obtain the final fused image. The decoder is
mainly composed of three deconvolutional layers, which aims to
reconstruct the final input according to the features in the latent
space. The decoder is mainly composed of three de-convolutional
layers, which aims to reconstruct the final input according to the
features in the latent space.

2.2. Convolutional Layer Coupling Module
In the neural network, data will be transmitted along the designed
channel. When a module in the network changes, the data will
change accordingly, and it can also affect other channels to
change accordingly. Data coupling makes the network model
more cohesive, while designing different types of modules can
allow the model to dynamically focus on specific types of features
in the image, which is more conducive to the PET-CT fusion
image of tumor staging.

In this article, we designed the Convolutional Layer Coupling
Module. This module mainly includes a convolutional layer, a
channel couplingmodule and a spatial pyramid couplingmodule.
The initial convolutional layer is to extract the feature map
from original images. The traditional convolutional encoder is
composed of stacked convolutional layers (18, 19). The change in
the weight of each layer in this stacked convolutional structure
will cause the subsequent output to change accordingly. For
fusion tasks, the features extracted by the convolutional layer

are different from the heavy classification or segmentation of
traditional image processing tasks. There is no need to expand
the receptive field to extract features that can distinguish as many
categories as possible, but to preserve the details of the image as
much as possible. Under the conditions, it is used to characterize
the key information in the two modality of PET and CT.

Therefore, after the convolution layer in the encoder, this
article does not directly use the stacked convolution operation,
but uses the channel coupling module and the spatial pyramid
coupling module to extract the multi-scale characterization
features of the image. The role of the channel coupling module is
to assign different weights for each channel, so that the network
can focus on important features and obtain task relevance
features. The function of the spatial pyramid coupling module
is to transform the spatial information in the original image to
another space and generate multi-scale key information (20).

Specifically, this article first uses a set of 3×3 size convolution
kernels to extract features from the original image. The first
layer of convolutional layer can extract some low-level features
in the image (21). In the image fusion task, there is no need
for the network to process a larger receptive field. In addition,
deeper abstract features representing the unknowability of the
fusion task will increase the computational complexity of the
network. Therefore, after the convolution operation, the stacked
convolution and pooling operations are not performed, but
the channel coupling module and the spatial pyramid coupling
module are used. The two coupling modules perform data
coupling. The feature map generated by the convolutional layer
determines the input in the channel coupling module. At the
same time, the channel couplingmodule also directly controls the
input of the spatial pyramid coupling module.

Given a feature map F generated by the convolutional layer,
after the coupling module, the fusion task relevance feature map
and the multi-scale feature map will be sequentially obtained,
and the two types of maps obtained are superimposed with the
original image to obtain the final The characteristics of the image.
The calculation process of the two types of data coupling is
as follows:

F′ = Cc(F) (1)

F′′ = Cs(F′) (2)

Cc and Cs represent channel coupling operation and spatial
pyramid coupling operation, respectively. Under the effect
of cross-layer connection, the difficulty of training model
parameters is greatly reduced, making it easier to train a coding
model with good effect. F′′ is the final output. Next, we will
introduce the details of the two coupling module in detail.

2.2.1. Channel Coupling Module
Channel coupling module mainly use the relationship between
feature maps to generate channel coupling features. Each channel
in the feature map is regarded as a feature extractor, the features
extracted by each feature extractor are different, and the focus
of the channel coupling module is to find the most meaningful

Frontiers in Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 792390

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiao et al. PET and CT Image Fusion

FIGURE 1 | The strategy of the proposed medical image fusion method. The source images first feed into encoder composed of CLCM to extract feature. Then two

modality features are fused by cross correlation layer. Finally, the fused PET-CT image is reconstructed through the deconvolutional decoder.

features of the input image in these features (22). In order to
effectively extract the channel coupling features of the image,
this article designs the structure as shown in the Figure 2.
The channel coupling module will pass the input feature map
through global max pooling and global average pooling based
on width and height, respectively, and then feed into multi-
layer perceptron (MLP). The outputs from MLP are performed
element-wise summation operation and sigmoid operation. After
a series of operations, the final channel featuremaps are obtained.
The channel feature maps are used as the input of the spatial
coupling module. The calculation process for the features of the
channel coupling module is as follows:

Fc = Cc(F) = Sig(MLP(AvgPool(F))+MLP(MaxPool(F))) (3)

Sig() indicates that the sigmoid operation is performed on the two
sets of results

2.2.2. Spatial Pyramid Coupling Module
Spatial pyramid coupling module mainly uses the spatial
relationship between pixels in the image to generate spatial
feature maps. Since the convolutional layer only keeps the
translation of an object in the image invariance, and the scale
transformation of the object cannot be processed, so when
extracting the spatial feature map, this article adds the spatial
pyramid transformation (23) to extract the multi-scale spatial
feature map. The spatial pyramid coupling module is equivalent
to performing feature convolution from the bottom up on the
feature map of the image, and then fusing feature maps of
multiple scales.

The spatial pyramid coupling module uses the feature map
obtained by the channel coupling module as the input feature
map. First, the convolution operation in the spatial pyramid
coupling module detaches the input features then uses spatial

pyramid pooling to perform multi-scale transformation of the
abstract features to obtain four features of different sizes. And
the different scales feature maps are obtained through multi-
scale convolution after spatial pyramid coupling module. Finally,
the four convolution feature results are performed through
the channel concatenation operation to obtain the final spatial
pyramid feature map, as shown in Figure 3. The calculation
process of the spatial pyramid coupling module is as follows:

Fs = Cs(F) = Concat(Conv(SPP(Conv(Fc)))) (4)

SSP() represents for spatial pyramid pooling operation.
Specifically, the pyramid pooling operation is to divide the
original input features using four different pooling scales
(16, 4, 2, 1).

2.3. Cross Correlation Layer
For the fusion of PET features and CT features, the simplest
fusion method is to linearly add them. However, this operation
ignores the association between adjacent pixels in the area, and
lacks the expression of the overall information of the image. In
order to better enhance the display ability of the fused image
features without losing the original information in PET and
CT, this article uses the cross correlation layer (24) to fuse the
features extracted by the encoder. Given the image features Fct
and Fpet , their fusion results will be calculated according to the
cross-correlation layer. The specific formula is as follows:

Fpc = Cor(Fct , Fpet) (5)

Cor() represents for cross-correlation layer, and the cross-
correlation layer is a special convolutional layer that uses cross-
correlation operation. Different from the ordinary convolution
function, the cross-correlation function is an operation between
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FIGURE 2 | The channel coupling module. The channel coupling module utilizes two different pooling operation and feed results to multi-layer perceptron. The output

of multi-layer perceptron continue to forward to element-wise summation and sigmoid operation.

FIGURE 3 | The spatial pyramid coupling module. The spatial pyramid coupling module utilizes spatial pyramid pooling to get multi-scale feature maps and

concatenate them.

two data. When the data is transferred in the network, the weight
to be trained is not needed. The calculation equation is as follows

Cor(x1, x2) =
∑

m

∑

n

x1(m, n) ∗ x2(m+ o, n+ o) (6)

x1, x2 represent the feature patch on the two feature maps fct and
fpet respectively, m,n are the size of patch, o represents the patch
stride, this article set o as 3. Each patch on the feature map fct
must be cross-correlated with all the patch on the other feature
map fpet . In order to obtain the output of the same size as the
original image, the padding pattern selects the “SAME” when
performing cross-correlation in this article (25, 26).

2.4. Loss Function
For the loss function of the network, this article selects the
structural similarity loss (6, 27) as loss function. After obtaining

the fused PET-CT, it will first calculate the structural similarity
with the original PET and CT respectively, as in the formula:

SSIM(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ 2
x + σ 2

y + C2
(7)

x and y are the fused image and the original image, respectively.
µ represents image mean, σx, σy represent image variance, σxy
represents co-variance of images. C1 and C2 are constants (avoid
the denominator being 0), the calculation formula is C1 =

k1L
2,C2 = k2L

2, where L is the grayscale change of the image.
Since this article is performing feature extraction, the image is
normalized, so L is 1. K1 and K2 are two constants, the default
value is 0.01 and 0.03. The loss of the network can be defined as:

Lssim(x, y) = 1− SSIM(x, y) (8)
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When using SSIM, there will be a problem with edge noise
defects. Therefore, this article introduces an L1 regularization
term (28) in the original loss function. The L1 regularization term
‖ω‖ can be used to estimate the difference between the target
value x and the estimated value y, which can effectively reduce
the noise in the image, has a certain degree of robustness, and can
also prevent the neural network from overfitting during training.
Therefore, the loss of the final fusion network is as follows:

Lf (xct , xpet; ypc|ω) = 2−
2µctµpc + C1

µ2
ct + µ2

pc + C1
·

2σct,pc + C2

σ 2
ct + σ 2

pc + C2

−
2µpetµpc + C1

µ2
pet + µ2

pc + C1
·

2σpet,pc + C2

σ 2
pet + σ 2

pc + C2
+ ‖ω‖

(9)

3. EXPERIMENT AND RESULT

3.1. Dataset
The PET-CT images used in this article are from Soft-tissue-
Sarcoma (29). This dataset includes clinical images of 21 patients
with lung tumors. All patients underwent FDG-PET and CT
screening from November 2004 to November 2011 by McGill
University Health Centre (MUHC). The median of intravenous
FDGwas 420MBq. The dataset also includes patient information,
histopathological type, tumor grade, follow-up information
(metastasis, survival rate). In this article, only PET and CT
corresponding to the patient’s organs including the lungs are
used as the experimental dataset, and a total of 840 CTs and
corresponding FDG-PET are extracted from the dataset. The PET
and CT images of each patient are registered by (30). We adopted
a leave-one-out cross-validation strategy to test the effectiveness
of the method in this article and divided the data set into a
training set and a validation set according to a ratio of 4:1 to
840 pairs of images. In the training verification, 672 imaging
data were used as training, and the remaining 168 imaging
data were verified, repeated five times. All patient information
are de-identified.

3.2. Implementation Details
In the used dataset, the resolution of CT is 512× 512 pixels, and
the resolution of PET is 128×128 pixels. Before fusion, this article
uses image zoom to up-sampling PET to obtain an image with the
same resolution as CT. In addition, the human body’s absorption
of X-rays recorded in CT images, unit is Hounsfield Unit (HU),
and the human body’s absorption of isotopes recorded in PET
images. Therefore, this article uses the min-max standardization
method to normalize the images in the extracted dataset. We
implement our fusion algorithm using Tensorflow 1.12.0 on a
machine running Ubuntu 16.04 with CUDA 8.0 and CuDNN
5.1. Training is performed on 32 GB NVIDIA GTX 1080 Ti. The
parameter initialization in the fusion algorithm uses the Xavier
method (31); for the optimization algorithm. This article uses
the adaptive optimization algorithm AdaGrad algorithm (32) to
optimize the parameters.

3.3. Evaluation Metric
In order to quantitatively evaluate the performance of the
proposed fusion algorithm, there are reference image evaluation

indicators and no reference evaluation indicators. This article
uses the following seven indicators for evaluation: average value,
standard deviation, average gradient, entropy, root mean square
error, normalized mutual information, visual fidelity.

The average value x̄ of the image represents the average level
of the overall pixels of the image and reflects the brightness of the
image. Assuming that the size of the image I ism ∗ n, the average
value of the image is averaged for each pixel,

x̄ =

∑m
i=1

∑n
j=1 xi,j

m ∗ n
(10)

The standard deviation σ of the image represents the degree of
dispersion between the pixel value and the average of the image,
and reflects the contrast of the image,

σ =

√∑m
i

∑n
j (xi,j − x̄)2

m ∗ n
(11)

The average gradient G of the image reflects the clarity and
texture changes of the image,

G =
1

m ∗ n

m∑

i

n∑

j

√
( ∂I
∂x )

2 + ( ∂I
∂y )

2

2
(12)

∂I
∂x represents the gradient in the horizontal direction, ∂I

∂y

represents the gradient in the vertical direction.
The entropy Ent of the image is expressed as the average

number of bits in the grayscale set of the image, reflecting the
spatial characteristics of the grayscale distribution of the image.

Ent = −
∑

pxlnpx (13)

px represents the proportion of pixels in the image that have a
grayscale value of x.

The root mean square error RMSE of the image is used to
measure the difference between the two images. The mean square
error is to find the sum of the square of the error for each pixel
and find the mean and then square off:

RMSE =

√√√√ 1

m ∗ n

m∗n∑

i

(yi − ŷi)2 (14)

yi and ŷi represent the original image and the fused image,
respectively.We calculate the RMSE between the fused image and
PETCT, respectively, and take the average value as the final result.

The normalized mutual information NMI (33) of the image
reflects the information correlation between the two images,

NMI = 2[2+
Ent(I1, IF)

Ent(I1)+ Ent(IF)
+

Ent(I2, IF)

Ent(I2)+ Ent(IF)
] (15)

where Ent(Ik, IF) is the joint entropy between the input image Ik
and IF .
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The visual fidelity VIF (34) of the image was originally an
evaluation index using the statistical characteristics of natural
scenes. The image information will follow the distortion process,
which will result in poor visual quality. Therefore, the image
quality can be calculated by calculating the fidelity of the image.
The visual fidelity of the image can be defined as:

VIF =

∑
i I(ci, fi)∑
i I(ci, ei)

(16)

Among them, I(c, f ) and I(c, e) represent the information that the
human eye can extract from the original image and the distorted
image, and c, f , e represent image blocks of different scales in the
image, i represents the index of the image block in the image.

In order to verify the quality of the fused images for clinical
diagnosis, we also invited four radiologists from the partner
hospital to visually evaluate the fused images. Four radiologists
evaluated the fusion image from four indicators: Noise
Suppression (NS), Artifact Reduction (AR), Detail Information
(DI), and Comprehensive Quality (CQ). The evaluation score
ranges from 1 to 5 points, with 1 point representing “bad”
and 5 points representing “excellent.” Each doctor conducts an
independent evaluation.

3.4. Comparative Experiment
In order to verify the effectiveness of the proposed method,
this article compared five representative methods: Multi-
layer Concatenation Fusion Network (MCFNET) (12), Guided
Filtering (GF) (9), Adaptive Decomposition(AD) (5), Parameter
Adaptive Pulse Coupled Neural Network (PAPCNN) (8), Image
Fusion Convolutional Neural Network (IFCNN) (10). The
implementation of the abovemethods has corresponding authors
to provide source code, all parameters are the default parameters
set by the author. This article verifies from qualitative results,
quantitative comparisons, and details of fusion results.

This article selects two cases of early lung cancer patients (A
and B) from the test dataset for qualitative display, as shown
in Figures 4, 6. It can be seen from Figures 4A, 5A that CT
mainly provides detailed edges, contours and other structures
of lung lesions and tissues, while PET reflects the accurate
location of lung lesions in Figures 4B, 5B. The fusion images
of different methods have obtained satisfactory results on the
texture and edges, which proves the effectiveness of the fusion
method for PET-CT. From the perspective of each fusion result,
the fusion image of AD contains some noise in Figures 4C, 5C.
In Figures 4D, 5D, the fusion result of GF has low contrast.
In Figures 4E, 5E, there are slight artifacts near the lung wall.
In Figures 4F,G, 5F,G, the brightness of the fusion result of
MCFNET and IFCNN is higher than other results. The contrast
and sharpness of the fusion result of the proposed method are
relatively high.

For medical images, the brightness of the image is not
the main indicator of quality considerations, but mainly the
presentation of the lesion area in the image and the display of
details. Therefore, this article discusses two details in the original
image, as shown in the area marked in Figures 6A,B, 7A,B.
The details are shown in Figures 5, 7. We can clearly observe

two highlighted areas from Figure 5B, which means that the
nodules in this area have rapid metabolism and the nodules
are extremely malignant. In the Figure 7, there is an obvious
adhesive nodule, however it is not highlighted in PET. This
nodule has a slow response rate and lowmalignancy, which needs
follow-up observation. Among these fusion detail results, the
fusion results of the proposed algorithm show more excellent
results in terms of the contrast between the lesion area and the
background and the details of the lesion area.

Next, in order to further verify the effectiveness of the
proposedmethod, this article evaluates the fusion results through
different objective indicators and the physician’s subjective
scores. The specific results are shown in Tables 1, 2.

Table 1 lists the objective results of the entire test dataset for
evaluating fusion images of different fusion algorithms. From the
results, it can be observed that the standard deviation, average
gradient, image entropy, normalized mutual information, and
visual fidelity of the original image mentioned in this article
have a high level, which proves that the proposed method has a
high level of image clarity, contrast and information. The mean
value of IFCNN are higher than the method in this article, which
reflects that the image fused by IFCNN is better than the method
in this article in terms of brightness index, and it also corresponds
to the qualitative result.

After displaying the objective evaluation label of image quality,
this article also lists the doctor’s subjective evaluation scores
(mean±std) of the results of different fusion algorithms, as shown
in Table 2.

The evaluation of image quality is one of the main evaluation
indicators of the fusion algorithm. In addition, the computational
complexity is also one of the factors considered by the fusion
algorithm. Therefore, this article also compares the average time
for a pair of PET-CT fusion of several algorithms, as shown in
Table 3. All fusion methods are run on the same device, and the
device parameters are shown in Section 4.2.

Among these methods, the fusion speed of the method
proposed in this article is slightly slower than that of the GF
fusion method at 2.12 s, but it is within the acceptable range,
which also indicates that the proposed method has considerable
potential in clinical applications.

3.5. Results for Staging Diagnosis
One of the main functions of PET-CT is to determine the staging
of tumors in patients with lung cancer. In order to evaluate the
fusion of PET-CT for the diagnosis of lung cancer staging, this
section uses some simple classification methods to evaluate the
collected image data and the corresponding staging information.
Specifically, different classification methods are used to train and
test PET, CT, PET-CT, including Support Vector Classifier (SVC),
Multilayer Perceptron (MLP), K-Nearest Neighbor (KNN),
Random Forest (RF), and Naive Bayes Classifier (NB), the
comparative performance is shown in the Table 4. The kernel
function of SVC adopts radial basis function that penalty slack
variable is 100 and kernel coefficient is 0.5. The maximum
iteration number of MLP is set to 300. The hyper-parameter,
neighbor numbers, of KNN is 4. The number of the RF is 100,
maximum depth is 2 and the function tomeasure is gini function.
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FIGURE 4 | The qualitative comparison results of patient A. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

FIGURE 5 | The qualitative comparison results of patient B. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

FIGURE 6 | The detail of fusion results of patient A. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.
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FIGURE 7 | The detail of fusion results of patient B. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

TABLE 1 | Evaluation metric of different fusion algorithm results.

Mean Std AG Ent RMSE NMI VIF

AD 0.102 0.026 0.063 0.051 0.030 3.25 0.321

GF 0.134 0.020 0.072 0.049 0.028 3.16 0.075

PAPCNN 0.204 0.021 0.072 0.065 0.030 3.27 0.303

MCFNET 0.260 0.045 0.091 0.062 0.013 3.25 0.292

IFCNN 0.273 0.065 0.082 0.072 0.019 3.21 0.287

OURS 0.157 0.085 0.091 0.076 0.013 3.28 0.350

TABLE 2 | Image quality evaluation scores of different algorithm results.

NS AR DI CQ

AD 2.75 ± 0.43 3.25 ± 0.43 3.75 ± 0.43 3.25 ± 0.43

GF 3.50 ± 0.50 3.00 ± 0.71 3.00 ± 0.71 3.17 ± 0.37

PAPCNN 3.00 ± 0.00 2.50 ± 0.50 3.00 ± 0.00 2.67 ± 0.41

MCFNET 3.75 ± 0.43 3.25 ± 0.43 3.75 ± 0.43 3.58 ± 0.36

IFCNN 4.75 ± 0.43 3.75 ± 0.43 4.75 ± 0.43 4.42 ± 0.28

OURS 4.75 ± 0.43 4.25 ± 0.43 4.50 ± 0.50 4.50 ± 0.37

TABLE 3 | Average runtime comparison of different fusion methods.

AD GF PAPCNN MCFNET IFCNN OURS

Mean time (s) 2.73 1.62 3.38 3.36 3.30 2.12

STD 0.04 0.01 0.20 0.14 0.12 0.03

TABLE 4 | Classification performance of different modal images for lung cancer

staging.

SVC(%) MLP(%) KNN(%) RF(%) NB(%)

PET 62.70 56.66 62.78 60.32 61.80

CT 79.37 79.01 74.86 76.17 81.11

PET-CT 82.71 81.49 80.05 82.34 84.01

Naive Bayes classifier uses the multinomial Naive Bayes classifier,
the number of sample class is 4.

As shown in Table 4, both CT and PET have certain staging
diagnostic capabilities for lung cancer. However, the performance
in staging diagnosis of lung cancer using PET-CT images is
generally higher than other monomodal data. The accuracy of
constructing individual classifiers in different sample spaces is
different, excluding the easy distinguishing characteristics of PET
images. PET-CT can improve generalization ability and stability
indeed. This result proves that the PET-CT fusion image has
diagnostic performance for the staging of lung cancer, which is
helpful to assist doctors in identifying lung tumors.

4. DISCUSSION

Taking into account the above comprehensive comparison, it can
be concluded that the fusion method proposed in this article has
a certain competitive performance on the quality improvement
and information retention of PET-CT. Nevertheless, this article
still has some shortcomings that need to be studied in the future.
Since the purpose of this article is to diagnose lung cancer in
stages, the collected image data are all CT and PET images of
patients, which are limited by technical problems and lack the use
of images such as Angiography (35). By selecting different tracers,
it can achieve the best results in disease diagnosis. Angiography
can show the tumor vascular characteristics of lung cancer and
provide a basis for interventional therapy. If the images of
different modalities can be fused, the comprehensive judgment
of the tumor is of great significance for the stage diagnosis of the
tumor and the formulation of the treatment plan.

In addition, the siamese network proposed in this article
requires the same resolution of the input two modal data.
However, in clinical practice, the resolution of CT and PET are
often different. Therefore, in the preprocessing, this article image
zoom PET to expand it to the same resolution as CT. Although
PET functional imaging does not display too many structure
details compared to CT, image distortion often occurs during
the up-sampling process. For the fusion of images with different
resolutions, how to avoid distortion caused by image scaling is
another new challenge.

The main research of this article is the staging diagnosis of
lung cancer through PET-CT after fusion. Although experiments
have proved that PET-CT after fusion does have a certain
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improvement in the diagnosis of lung cancer, because of
the limited space of this article, only some traditional image
classification algorithms are used. In the follow-up work, this
article will make corresponding research on the staging diagnosis
method of lung cancer.

5. CONCLUSION

In this article, we propose a novel siamese autoencoder network
for the fusion of PET and CT. The CLCM in the proposed
siamese autoencoder can extract features from both PET and
CT modal images, and while ensuring that the original image
information remains feature invariance, it can also increase
the multi-scale information of the features. In addition, this
article also designs a structural similarity loss function combined
with the L1 regularization term as the object of the model
solution. We collected 840 pairs of PET-CT images to verify the
effectiveness of the proposed fusion method in this article. From
the results of quantitative comparison, qualitative comparison
and subjective evaluation, the performance of fusion results
is relatively outstanding, which proves the effectiveness of the
proposed method. In future work, we will conduct research on

the fusion of PET-CT, aiming to propose high accuracy model
for staging diagnosis of lung cancer based on PET-CT.
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