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Fast and accurate segmentation of knee bone and cartilage on MRI images is
becoming increasingly important in the orthopaedic area, as the segmentation is an
essential prerequisite step to a patient-specific diagnosis, optimising implant design
and preoperative and intraoperative planning. However, manual segmentation is time-
intensive and subjected to inter- and intra-observer variations. Hence, in this study,
a three-dimensional (3D) deep neural network using adversarial loss was proposed
to automatically segment the knee bone in a resampled image volume in order to
enlarge the contextual information and incorporate prior shape constraints. A restoration
network was proposed to further improve the bone segmentation accuracy by restoring
the bone segmentation back to the original resolution. A conventional U-Net-like
network was used to segment the cartilage. The ultimate results were the combination
of the bone and cartilage outcomes through post-processing. The quality of the
proposed method was thoroughly assessed using various measures for the dataset
from the Grand Challenge Segmentation of Knee Images 2010 (SKI10), together with a
comparison with a baseline network U-Net. A fine-tuned U-Net-like network can achieve
state-of-the-art results without any post-processing operations. This method achieved a
total score higher than 76 in terms of the SKI10 validation dataset. This method showed
to be robust to extract bone and cartilage masks from the MRI dataset, even for the
pathological case.

Keywords: cartilage segmentation, bone segmentation, MRI, deep learning, CNN

INTRODUCTION

Quantitative analysis of knee joint structure is a topic of increasing interest as its applications
continue to broaden from direct diagnostic purposes to the implant design and preoperative and
intraoperative planning. Due to the non-invasive nature and capability to discriminate cartilage
from adjacent tissues, magnetic resonance imaging (MRI) is the most effective imaging device to
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perform knee joint analysis. However, due to the low contrast
among different tissues (similar longitudinal and transverse
relaxation time), image artefacts, and intensity of inhomogeneity
problems in MRI (1), the accurate segmentation of the knee joint
is still an open problem, especially in the knee with a degenerative
disease (2).

To obtain an accurate mask for knee bone and cartilage,
fully manual and semi-automatic segmentation approaches were
often applied to clinical studies (3–5). Nonetheless, they were
time-consuming and the reproducibility highly depends on
the knowledge of experts. Hence, an automated method to
segment the knee joint structure was of great interest in the
past decade (6, 7). The popular methods for this aim can
be divided into model-based (8–10), atlas-based (11, 12), and
classification-based (1, 2, 13) methods. Although these three
types of methods showed promising results to automate the knee
structure segmentation, they might perform poorly in the case of
high subject variability (2).

Recently, deep convolutional neural network (CNN)-based
methods have achieved enormous success in biomedical imaging
problems, such as classification (14) and segmentation (15–18).
Regarding knee joint structure segmentation, Prasoon et al. (19)
first applied the two-dimensional (2D) tri-planar CNNs (axial,
coronal, and sagittal plane) to classify a pixel label (background
or tibial cartilage) by providing local image patches around that
pixel. Nevertheless, Ronneberger et al. (18) pointed out that there
were two drawbacks to the above architecture, large redundancy
and a trade-off between localisation accuracy and the use of
context, and proposed a dense prediction network with skip
connection, U-Net. This kind of architecture considered both the
low-level and high-level features for voxel classification and was
applied to the knee joint segmentation by Liu et al. (2), Zhao et al.
(20), and Ambellan et al. (21). In general, the pixel-wise or voxel-
wise loss, e.g., cross-entropy loss and dice loss, was utilized as the
loss function for U-Net. However, there was no guarantee of the
spatial consistency of the final output (22); thereafter, a further
optimisation step was always required to refine the segmentation
result such as deformable model (2), conditional random field
(CRF) (20) and statistical shape model (SSM) (21). Although
the deformable model and CRF considered the relevant spatial
information to refine the segmentation, it might cause serious
boundary leakage in the low-contrast regions (22). Ambellan
et al. (21) proposed to utilize SSM to refine segmentation using
the anatomical prior knowledge and achieved the state-of-the-
art result. Nevertheless, the introduction of SSM resulted in
a lot of extra calculations and the regulation was limited to
the variability of the training dataset. Overall, although deep
learning-based methods have been demonstrated as the state-of
the-art methods in knee joint segmentation, there is still much
room for improvement.

In this study, we aim to further study a three-dimensional
(3D) CNN-based method to perform knee bone and cartilage
segmentation. The contributions in this article are: (i)
Different neural networks are proposed for bone and cartilage
segmentation based on their features and a post-processing
step is designed to generate the final segmentation result; (ii)
the adversarial loss and a restoration network are proposed

to optimize the neural network for bone segmentation and
(iii) the performance of proposed method is tested on a public
dataset from the Medical Image Computing and Computer-
Assisted Intervention (MICCAI) Segmentation of Knee Images
2010 (SKI10) grand challenge and is fully compared with the
performance of the various CNN models (3D U-Net, V-Net,
nnU-Net and cascade nnU-Net) and some traditional methods.

MATERIALS AND METHODS

Data Description
The data used in this study were from the SKI10 competition,
which was focused on the knee bone and cartilage segmentation
(6). The image datasets were acquired in a sagittal manner with
a pixel spacing of 0.4 mm × 0.4 mm and a slice thickness of
1 mm. The total number of the knee images used in this study
was 100 (60 for training and 40 for testing), and the cases of left
and right knees were approximately equally distributed. Among
the scans, 90% of the data were acquired at 1.5 T and the rest of
the data were acquired at 3 and 1 T. The majority of data used T1
weighting and the rest of them were acquired with T2 weighting.
All the images were acquired for surgery planning of partial
or complete knee replacement and, therefore, a high degree of
pathological deformations of the knee was included in the dataset.

Automatic Workflow for Knee Bone and
Cartilage Segmentation
In this study, we aimed to establish a fully automatic workflow
to extract knee joint structure (bone and cartilage) with highly
accurate and robust segmentation, including the pathological
data. Figure 1 depicts the steps of the proposed workflow. First,
MRI images were resampled to enlarge the field of view by the
networks; second, an image normalization method standardizes
the image to a similar intensity range; third, the bone and
cartilage were segmented by the bone network (Supplementary
Figures 1–3 and Supplementary Table 1) in a resampled
resolution; fourth, the segmented bone and cartilage masks
from the bone network were restored to the original resolution
through a restoration network (Supplementary Figure 4); fifth,
the cartilage was segmented through a cartilage network in
original resolution; last, the outputs of the cartilage network and
the restoration network were post-processed for the final results.

Pre-processing
Our pre-processing included pixel size normalization and
intensity normalization. The first pre-processing step in this
study was volume resampling. One of the main challenges in
medical image segmentation using deep learning is the volume
size, as it is too large to feed into the networks due to the lack
of the graphics processing unit (GPU) memory. A patch-wise
strategy was an option to solve this issue by breaking down the
volume into multiple patches (overlapping or random patches)
to fit the GPU memory requirement (23). Yet, this strategy
may result in a higher variance among the patches and lose
the contextual information (24), especially for the large target.
For the bone segmentation, we downsampled the image volume
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FIGURE 1 | Proposed workflow for the knee bone and cartilage segmentation.

FIGURE 2 | The architecture of the bone network.

by a factor of 2 resulting in a new spacing by 0.8 × 0.8 × 2.
With the resampling step, the input patch can cover more
contextual information for bone segmentation. In contrast, the
cartilage segmentation based on CNN is relatively sensitive to the
resampling due to its small volume size. Hence, for the cartilage
segmentation, we input the neural network of the image with
the original size.

The second step of pre-processing was the intensity
normalization. The imaging noise from the reconstruction
of MRI volume, such as DC spike, results in the extreme
intensity of some voxels (25). A robust intensity cut-off was
selected to prevent the long intensity tail effect for both the bone
and cartilage segmentation (25). In this study, the minimum
and maximum cut-offs were selected as the threshold with
the first and last 2% cumulative intensity histogram. Then,
a following z-score strategy was adopted to normalize the
intensity by subtracting the mean and dividing by the standard
deviation (SD).

Deep Neural Network for Bone and Cartilage
Segmentation
Architecture of the Networks
Since the advent of U-Net (18), many architecture modifications
have been proposed to further improve the performance of the

segmentation task. However, Isensee et al. (26) demonstrated
that not all of them were effective and pointed out that a
typical U-Net architecture can achieve state-of-the-art results
with a thorough design of adaptive pre-processing, training
scheme, and inference strategy. In this study, we extended the
idea of nnU-Net (26) by adding the adversarial loss to refine
the segmentation and used nnU-Net as a baseline for the
segmentation performance comparison. The architecture of the
bone network was similar to pix2pix network (27) (Figure 2),
which consisted of a generator trained for mask prediction and a
discriminator trained to discriminate the produced masks (‘fake’)
from ground truth labels (‘real’) (Figure 2). The framework of the
generator in this study consisted of an encoding path to encode
the valid features and a decoding path to perform a voxel-based
classification. The encoding path contained the repeated layers of
two convolutions, followed by an instance normalization, a leaky
rectified linear unit, and a max pooling operation with stride 2 for
downsampling. The upsampling path also contained the repeated
layers of convolution, but a skip connection was adopted by a
concatenation of the correspondingly cropped feature from the
contraction path and the output of the up convolutions from
the last layer. At the final layer, a final 1 × 1 × 1 convolution
was used to map each component feature vector to the desired
number of classes, and a Softmax calculation was followed at last
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TABLE 1 | Comparison of automatic segmentation methods based on the Segmentation of Knee Images 2010 (SKI10) validation data.

Femur bone Tibia bone Femur cartilage Tibia cartilage

Team (reference) Total score AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm) VOE (%) VD (%) VOE (%) VD (%)

Vincent et al. (10) 52.3 ± 8.6 0.88 ± 0.24 1.49 ± 0.44 0.74 ± 0.21 1.21 ± 0.34 36.3 ± 5.3 −25.2 ± 10.1 34.6 ± 7.9 74.0 ± 7.7

Seim et al. (9) 54.4 ± 8.8 1.02 ± 0.22 1.54 ± 0.30 0.84 ± 0.19 1.24 ± 0.28 34.0 ± 12.7 7.7 ± 19.2 29.2 ± 8.6 −2.7 ± 18.2

Shan et al. (12) 40.0 ± 7.7 – – – – – – – –

*Liu et al. (2) 64.1 ± 9.5 0.56 ± 0.12 1.08 ± 0.21 0.50 ± 0.14 1.09 ± 0.28 28.4 ± 6.9 8.1 ± 12.3 33.1 ± 7.1 −1.2 ± 17.4

Dam et al. (30) 67.1 ± 8.0 0.68 ± 0.22 1.25 ± 0.41 0.50 ± 0.18 0.91 ± 0.35 26.9 ± 6.0 0.8 ± 13.5 25.1 ± 6.7 0.41 ± 13.4

*Ambellan et al. (21) 74.0 ± 7.7 0.43 ± 0.13 0.74 ± 0.27 0.35 ± 0.07 0.59 ± 0.19 20.99 ± 5.08 7.18 ± 10.51 19.06 ± 5.18 4.29 ± 12.34

3D U-net (17) 48.1 ± 12.3 1.77 ± 1.85 5.24 ± 3.99 2.60 ± 2.59 7.50 ± 5.29 23.80 ± 7.25 −5.45 ± 8.37 20.60 ± 6.40 5.48 ± 15.11

V-Net (28) 55.7 ± 10.7 0.88 ± 0.61 3.36 ± 2.46 1.04 ± 0.95 4.23 ± 3.53 21.91 ± 4.48 1.17 ± 9.14 20.08 ± 5.62 6.12 ± 16.57

Cascade nnU-Net (26) 75.4 ± 8.1 0.37 ± 0.12 0.63 ± 0.29 0.32 ± 0.15 0.57 ± 0.39 22.71 ± 4.88 1.76 ± 10.03 21.21 ± 5.83 7.05 ± 13.66

*nnU-Net 2D (26) 73.4 ± 10.7 0.37 ± 0.15 0.69 ± 0.35 0.38 ± 0.27 0.80 ± 0.77 21.34 ± 5.59 4.49 ± 11.46 21.43 ± 5.67 5.74 ± 13.41

*nnU-Net 3D full res (26) 72.5 ± 14.2 0.56 ± 1.00 1.67 ± 2.96 0.44 ± 0.57 1.34 ± 2.46 19.45 ± 5.06 6.79 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

*nnU-Net 3D low res (26) 75.3 ± 9.3 0.35 ± 0.12 0.65 ± 0.30 0.34 ± 0.23 0.75 ± 1.19 21.72 ± 4.70 3.66 ± 12.14 21.78 ± 5.39 6.58 ± 12.11

*Proposed method 76.2 ± 7.6 0.38 ± 0.15 0.69 ± 0.37 0.29 ± 0.07 0.52 ± 0.12 19.45 ± 5.06 6.78 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

* indicates the deep learning-related method; ‘res’ indicates resolution.

to output a probability for each class. Both the U-Net-like (17)
and V-Net-like (28) architectures were used for the generator in
this study, which might result in some slight variations compared
to the above description, and the detail of all the used networks
in this study is summarized in the Supplementary Material.

The architecture of the discriminator of the bone network was
a convolutional ‘PatchGAN’ classifier that uses the module form
of convolution-batch normalization-ReLu (27). The input of the
discriminator was the combination of the image patch and the
corresponding segmentation patch. The detail of the architecture
is provided in the Supplementary Material.

The input of the restoration network was the concatenation
of the resampled image and the segmented mask from the
bone network. The architecture of the restoration network
consisted of two convolutional layers, followed by an
upscaled deconvolutional layer, and then finally another
two convolutional layers to convert the feature maps into the
desired number of classes.

The architecture of the cartilage network was nnU-Net 3D at
full resolution (26). The input of the cartilage network was in the
original resolution, with a patch size of 160× 192× 64.

The details of both the cartilage network and restoration
network are described in the Supplementary Material.

Loss Function
As Figure 2 and Equation (1) illustrate, to test the optimal loss
options for a robust knee bone segmentation, the loss function,
Lgen, used in the generator (bone network) consisted of three
parts: category cross-entropy loss (Lcce), dice loss (Ldice), and
adversarial loss (Ladv). Lcce and Ldice concern the low-level
pixel-wise prediction, while the Ladv preserves the higher-level
consistency conditioned on the input.

Lgen
(
x, y; θgen, θdisc

)
= λcceLcce

(
G
(
x; θgen

)
, y
)
+ λdiceLdice(

G
(
x; θgen

)
, y
)
+ λadvLadv

(
G
(
x; θgen

)
, x; θdisc

)
, (1)

where x and y are the input image volume and the corresponding
label. λcce, λdice, and λadv are the weights for the corresponding
losses and the loss is ignored if the corresponding weight
sets to 0. θgen and θdisc are the parameters of the networks
of the generator and discriminator, respectively. The
pixel-wise category cross-entropy loss is formulated as
Lcce

(
ŷ, y

)
=

1
whd

∑whd
i

∑c
j yi,jln

(
ŷi,j
)
, where c represents

the number of target classes and w, h, and d indicate the width,
height, and depth of the volume patch. The pixel-wise dice loss is
formulated as:

Ldice
(
ŷ, y

)
= −

∑c
i

2
∑whd

j yi,jln(ŷi,j)∑whd
j y2

i,j+
∑whd

j ln(ŷi,j)
2 . For the adversarial

loss, we chose the adversarial loss of the Least Squares Generative
Adversarial Network (LSGAN) (29) in this study and, therefore,
is formulated as:

Ladv
(
x; θgen, θdisc

)
= LMSE

(
D
(
G
(
x; θgen

)
; θdisc

)
, 1
)
, (2)

where LMSE
(
ẑ, z
)
= (ẑ − z)2, and x indicates the input patch.

The discriminator attempts to learn the differences between the
label and prediction distributions by minimising the loss function
as:

Ldisc
(
G
(
x; θgen

)
, y
)
= LMSE

(
D
(
G
(
x; θgen

)
; θdisc

)
, 0
)

+ LMSE
(
y, 1

)
, (3)

where x and y indicate the input patch and the corresponding
annotation, respectively.

For the cartilage network, the loss function is formulated as:

Lcart
(
ŷ, y; θcart

)
= λcceLcce

(
ŷ, y

)
+λdiceLdice

(
ŷ, y

)
, (4)

where y and ŷ indicate ground truth and the prediction result
of the cartilage network, respectively, and θcart indicates the
parameters of the cartilage network.
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For the restoration network, the loss function was formulated
as:

Lrestore
(
ŷ, y; θrestore

)
= Lcce

(
ŷ, y

)
, (5)

where y and ŷ indicate ground truth and the prediction result
of the restoration network, respectively, and θrestore indicates the
parameters of the cartilage network.

Training Procedure
One common challenge in deep learning training is limited
training data. Data augmentation is one of the options to be
taken to prevent overfitting and has been generally accepted as
an add-in in the deep learning method. The data augmentation
adopted in this study was random scaling (0.85–1.15), random
elastic deformations, gamma correction augmentation, and
random mirroring along the frontal axis (simulating the left or
right knee joint).

In order to implement a fair comparison among the different
architectures, the training strategy similar to a pervious study
(26) was adopted. There are 6,000 training batches in an epoch.
The Adam optimizer with an initial learning rate of 1 × 10−3

was utilized for both the generator and the discriminator in this
study, and the learning rate was reduced by a factor of 5 if the
loss was not improved in the last 5 epochs and the training was
stopped if the loss was not improved in the last 20 epochs. The
maximum epoch was limited to 500. The proposed deep CNNs
were implemented in Python 3.7 using PyTorch with a 3.7-GHz
Intel (R) i7 Xeon (R) E5-1620 V2 CPU and a GTX 1080 Ti
graphics card with 11 GB GPU memory.

Inference
In the inference phase, the new input image volume was split
into many sub-volume patches and input to the networks. Then,
the class of each voxel was determined by the largest probability
of the output probability maps from the neural network. At
last, we needed to combine all the sub-volume patches back to
form a full volume.

Post-processing
The main purpose of the post-processing is to combinate the
advantages of the bone network and the cartilage network in
order to generate final bone and cartilage masks. Compared
to the cartilage mask from the cartilage network, the bone
network could provide less mis-segmented results due to the
large contextual information, however, less accurate due to lower
resolution. Therefore, the output of the cartilage mask from the
bone network after the restoration network was dilated by a
7 × 7 × 7 kernel, which was later used to filter the cartilage
mask from the cartilage network. Finally, the ultimate output of
the proposed workflow was the combination of the bone mask
from the restoration network and the filtered cartilage mask of
the cartilage network.

Evaluation Design
Methods Designed by the Segmentation of Knee
Images 2010
The evaluation method for knee bone and cartilage was different.
Regarding bone segmentation, average surface distance (AvgD)

Frontiers in Medicine | www.frontiersin.org 5 May 2022 | Volume 9 | Article 792900

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-792900 May 18, 2022 Time: 7:57 # 6

Chen et al. Knee Bone and Cartilage Segmentation

FIGURE 3 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net two-dimensional (2D); and (D) proposed
method.

FIGURE 4 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net three-dimensional (3D) full resolution;
and (D) proposed method.

FIGURE 5 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net 2D; (D) nnU-Net 3D full; (E) nnU-Net 3D
low; and (F) proposed method.

and root mean square symmetric surface distance (RMSD) were
proposed (6, 30).

AvgD =
1

NS+NR

( NS∑
i = 1

min
r∈∂R
||si−r||2+

NR∑
i = 1

min
s∈∂S

∣∣∣∣rj−s∣∣∣∣2
)

, (6)

RMSD =

√√√√ 1
NS+NR

( NS∑
i = 1

min
r∈∂R
||si−r||2+

NR∑
i = 1

min
s∈∂S

∣∣∣∣rj−s∣∣∣∣2
)

, (7)

where ∂R and ∂S are the boundary of the automatic segmentation
and reference segmentation, respectively, and NS and NR are the
number of boundaries, respectively.

For the cartilage segmentation, volume difference (VD) and
volume overlap error (VOE) were proposed (6, 21).

VD = 100 ·
|S| − |R|

R
, (8)

VOE = 1−
|S ∩ R|
|S ∪ R|

, (9)

where S and R indicate automatic segmentation and reference
segmentation, respectively. As indicated by Heimann et al. (6),
the cartilage boundaries to the sides were not always accurate;
regions of interest (ROIs) for cartilage mask comparison were
used in the above calculation.
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TABLE 3 | Results of the different loss functions based on the proposed network.

Femur bone Tibia bone Femur cartilage Tibia cartilage

Loss Total score AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm) VOE (%) VD (%) VOE (%) VD (%)

CE loss 73.85 ± 9.37 0.43 ± 0.36 1.17 ± 1.88 0.48 ± 0.79 1.25 ± 2.64 21.46 ± 5.17 4.44 ± 9.83 18.44 ± 5.07 6.11 ± 13.49

SD loss 67.54 ± 14.78 0.92 ± 1.50 2.57 ± 4.15 0.82 ± 1.85 2.08 ± 4.57 19.89 ± 5.70 7.65 ± 10.01 18.64 ± 6.49 13.08 ± 13.04

CE loss + SD loss 74.38 ± 10.39 0.38 ± 0.23 1.08 ± 1.33 0.31 ± 0.30 0.58 ± 0.71 20.00 ± 5.63 6.60 ± 9.98 18.62 ± 5.95 10.75 ± 13.41

Proposed loss 76.2 ± 7.6 0.38 ± 0.15 0.69 ± 0.37 0.29 ± 0.07 0.52 ± 0.12 19.45 ± 5.06 6.78 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

Dice Similarity Coefficient
The Dice similarity coefficient (DSC) score is defined as:

DSC =
2TP

2TP+FP+FN
, (10)

Sensitivity =
TP

TP + FN
, (11)

Specificity =
TN

TN + FP
, (12)

where TP is true positive, TN is false negative, FP is false positive,
and FN is false negative. The thickness difference is calculated by
the thickness difference from each vertex along the normal vector
between automated and manual segmentation masks.

RESULTS

Table 1 summarizes the results of previous studies (2, 9, 10,
12, 21, 30), baseline networks [nnU-Net (26, 31), including the
2D version, 3D full-resolution version, and 3D low-resolution
version], and the proposed methods for the SKI10 validation
dataset in terms of the SKI10 metrics (6). The bone and cartilage
segmentation results with proposed networks reached a total
score of 76.2 ± 7.6, which was for the first time higher than 75
using the validation dataset [the second rater’s score was 75 in
a previous study (6)]. Overall, the results of deep learning-based
methods outperformed the traditional methods [atlas based (12)
and statistical shape-based methods (9, 10, 30)]. The new baseline
(nnU-Net) could achieve state-of-the-art results without any
post-processing. Still, the proposed method outperformed the
baseline.

Moreover, Table 2 shows the accuracy evaluation for
the SKI10 dataset between the baseline networks and the
proposed methods in terms of the DSC, sensitivity, and
specificity. For the cartilage result, the DSC is only calculated
in the defined ROI according to a previous study (6).
The DSC scores of the proposed method are 0.98 ± 0.01,
0.98 ± 0.01, 0.89 ± 0.03, and 0.88 ± 0.03 for femur bone,
tibia bone, femur cartilage, and tibia cartilage, respectively.
Overall, the performance of the proposed methods achieved
the highest score.

Some segmentation results on the SKI10 validation set
are shown in Figures 3–5, which compared the baseline
networks with the proposed method. The results of nnU-Net

2D might mis-segment the low-contrast region (bottom of
Figure 3C), while the result of nnU-Net 3D full resolution
might mis-segment some of the unrelated regions (left bottom
of Figure 4C). A segmentation result of knee joint image
with specific pathological tissue is given in Figure 5. All the
baseline networks failed to segment it successfully and the
proposed method with the adversarial loss showed a robust
result (Figure 5F).

In addition, an ablation study about the loss function selection
is shown in Table 3. The proposed loss function is capable of
improving the segmentation performance.

Computation time for the whole segmentation pipeline for
one subject is measured as around 1 min on a consumer-
grade workstation (CPU: Intel Xeon E5 2.3 GHz; GPU:
GeForce GTX 1080 Ti).

DISCUSSION

In this study, we presented an end-to-end deep learning-
based workflow for knee bone and cartilage segmentation and
evaluated the workflow thoroughly on a published dataset,
the SKI10 (6). It was the first time that a total score greater
than 76 was achieved on the SKI10 validation dataset, which
was comparable to the inter-observer variability of two expert
readers (6).

The attempt of applying deep learning-based methods to the
knee bone and cartilage segmentation was not new and has
achieved a lot of state-of-the-art results (2, 21). Nevertheless,
most of the previous attempts added a post-processing step
[deformable model (2), conditional random field (CRF) (20) and
statistical shape model (SSM) (21)] to refine the outcome of
the deep learning methods on the area of false segmentation.
The main reason behind this is that the information of highly
patient-specific areas might not be derived from the training
dataset (21). To confirm the necessity of the post-processing, a
generic U-Net architecture with fine-tuned hyper-parameter (31)
was tested in this study as the baseline. State-of-the-art results
can be achieved using the simple nnU-Net architectures (see
Table 1). Nonetheless, due to the loss of Z-axis information and
contextual information, the performance of bone segmentation
of generic 2D nnU-Net and 3D nnU-Net full resolution
might perform poorly in the low-contrast region (Figure 3C),
bone- or cartilage-like region (Figure 4C), and region with
pathological case (Figures 5C,D). Table 1 has shown a good
bone segmentation result using the 3D nnU-Net low-resolution
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version but not in cartilage segmentation. This is
because the target volume of cartilage is relatively small,
which resulted in the loss of the cartilage information,
especially in the pathological area. In this sense, whether
resampling the image volume is necessary to improve
the segmentation performance should be considered
carefully based on the size of the target and the
memory of the GPU.

Moreover, Figures 5C–E have shown that all the nnU-
Net architectures fail to segment the bone with the specific
pathological feature, which demonstrates the necessity of post-
processing from previous studies. In this study, we introduced
the adversarial loss to serve as a shape regulation penalty to
improve bone segmentation. Although the adversarial loss (32)
has been proposed to improve the segmentation performance
previously, to the best of our knowledge, it was the first
time to serve as a shape consistency term to apply to knee
bone MRI image segmentation. Figure 5F has shown that
the introduction of adversarial loss results in state-of-the-
art results for bone segmentation despite the pathological
case. In addition, a possible alternative method to improve
the segmentation performance for the pathological case is to
increase the training set size, especially for the pathological
case.

This study has a number of limitations. First of all, due
to the limited memory of Nvidia 1080 Ti, the number of
feature channels of the first layer in nnU-Net experiments is
20 rather than 30 as stated in previous research (31). Further
experiments with a better GPU should be implemented to
investigate the performance influence of the number of feature
channels. An additional limitation is that there are still a lot
of ablation studies, which can be implemented to discuss the
segmentation performance based on different choices of hyper-
parameters. Nevertheless, we believe that the experiment results
are enough to share with the community to help the development
of fully automatic segmentation of the knee joint. Moreover,
the bone segmentation was segmented in a relatively lower
resolution in order to enlarge context information. Isensee
et al. (26) proposed a cascaded mode to further improve
the low-resolution segmentations. However, the training data
for these two networks should be different; otherwise, it will
easily result in an over-fitted network. As Isensee (33) stated
that the cascaded mode was not so much better than the
3d_lowres and 3d_full_res mode in most cases, we believe
that the results of 3d_lowres and 3d_full_res are sufficient
to be a baseline and we will add the comparison with a
cascaded mode in the future when a more annotated dataset is
available.

CONCLUSION

To conclude, we presented a robust pipeline to segment the
knee bone and cartilage. The result of the proposed method is
the first time achieved more than 76 in a well-known dataset,
the SKI10 validation, to the best of our knowledge. The lower-
resolution strategy and the introduction of adversarial loss
improve the shape consistency of the bone segmentation, while
a fine-tuned V-Net network was further boosted to achieve a
promising result for the cartilage segmentation. Future studies
will include segmentation for more knee joint structures such as
ligaments and menisci.
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