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Objective: To review the current knowledge on bone health in patients with hemophilia

A and the underlying pathogenetic mechanisms.

Data Sources: Original research articles, meta-analyses, and scientific reviews.

Data Synthesis: Already in childhood, patients with hemophilia A are prone to low bone

mineral density, leading to osteopenia and/or osteoporosis. Initially associated with the

life style of hemophilia, today we are faced with accumulating evidence that coagulation

factor VIII is involved directly or indirectly in bone physiology.

Conclusion: Understanding the role of factor VIII and the mechanisms of decreased

bone mineral density in hemophilia A is critically important, especially as non-factor

replacement therapies are available, and treatment decisions potentially impact

bone health.
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INTRODUCTION

Prognosis and life expectancy for patients with hemophilia A have dramatically improved over
the last decades. With prophylactic treatment, patients can prevent major bleeding events and
live an almost normal life. However, there is growing evidence that the lack of coagulation factor
VIII (FVIII) also impacts bone health, leading to decreased bone mineral density (BMD). Since
factor replacement therapies are able to improve the bone phenotype and given the increasing
use of non-replacement therapies in patients with severe hemophilia, the scientific community is
prompted to investigate whether FVIII plays important roles outside the coagulation system.

This review provides a summary of recent literature on bone modeling in hemophilia A and
sheds light on the underlying pathophysiological mechanisms. It thus raises questions that remain
to be answered in future studies.

THE COAGULATION SYSTEM

The coagulation system entails a highly regulated cascade that ultimately leads to hemostasis, which
is the blocking of bleeding. Primary hemostasis is characterized by the activation, aggregation
and adherence of platelets at the site of vascular injury exposing subendothelial collagen and
von Willebrand factor (vWF). However, since platelets and vWF are not enough to form a stable
thrombus at the site of vessel injury, secondary hemostasis steps in to form a clot at the site of injury.
This clot formation depends on several substances called clotting factors, which activate each other
in what is known as the clotting cascade (1).
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Several models of this clotting cascade have emerged in the
literature. The classical model from 1964 generally describes two
separate pathways, the intrinsic and the extrinsic one, which
converge in the final common pathway to ultimately form
fibrin (2). However, this model slowly evolved toward a cell-
based model (see Figure 1) (3), which allowed the integration
of several clinical observations that were not consistent with the
classical model of coagulation (4, 5). Whereas, the classical model
describes a rather unidirectional proteolytic cascade, the cell-
based model suggests that in vivo thrombus formation actually
occurs in three overlapping phases: initiation, amplification and
propagation (see Figure 1) (3, 4, 6).

HEMOPHILIA

Hemophilia is a X-chromosomal recessive bleeding disorder
caused by dysfunction of the intrinsic tenase complex, which
consists of coagulation factors VIIIa and IXa (see Figure 1).
Hemophilia caused by mutations in the F8 gene is referred
to as hemophilia A and the disease linked to defects of the
F9 gene is termed hemophilia B (8). Hemophilia A is the
more common form, affecting ∼1 out of 5.000 live male
births, whereas hemophilia B occurs in 1 out of 30.000.
The clinical presentation of hemophilia A and B are similar.
Severe cases with factor activity below one percent are

FIGURE 1 | Cell-based model of coagulation. On the surface of tissue factor (TF) -bearing cells, coagulation is initiated by TF, which leads to the generation of a small

amount of thrombin (THR) from prothrombin (FII) (initiation phase). Thrombin amplifies the initiation signal by activating platelets via protease-activated receptors (PAR)

and cofactors (FV, FVIII) on the platelet surface (amplification or priming phase). Large amounts of thrombin are then generated on the surface of activated platelets

(propagation phase). Solid lines indicate proteolytic conversion of an inactive zymogen to its active form, dotted lines indicate activation. Adapted from reference (7).

characterized by spontaneous bleeding, whereas in moderate
to mild cases bleeding occurs trauma-associated, albeit under
milder circumstances than normal (9). Hemophilia is treated
by infusion of the deficient factor either prophylactically or
on-demand, whereas also other novel therapeutic strategies
aim at rebalancing the coagulation system in the absence of
FVIII (10).

LOW BONE MINERAL DENSITY IN
HEMOPHILIACS

The development and wider availability of factor concentrates
have led to a dramatic increase in the life expectancy of patients
with hemophilia (11). Concomitantly, comorbidities associated
with hemophilia were recognized or becamemore pronounced as
a result of patient aging (12). While joint damage (arthropathy),
as a consequence of recurrent bleeding into joints (13), is
certainly the primary co-morbidity of hemophilia, research
conducted in the last 30 years has indicated that hemophiliacs
are at an increased risk for low bone mineral density (BMD)
(14). In a study of young adults (median age 41.5 years), as
many as 70% of patients with hemophilia exhibited decreased
BMD, with 43% displaying osteopenia and 27% osteoporosis (15).
Although the risk of hemophilia-related osteoporotic fractures
has not been well-established, there are a few studies showing a
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higher fracture incidence in hemophilic subjects compared to the
control population (16–19).

In patients with hemophilia, BMD was first evaluated by
Gallacher and colleagues after they observed a non-traumatic
lumbar compression fracture in a 31-year-old man and a fracture
of the femoral neck after an epileptic seizure in a 20-year-
old man, both of them having severe hemophilia A (20).
Subsequently, they evaluated another 19 adults with severe
hemophilia and compared their BMD in the lumbar spine and
the femoral neck with the BMD of age-matched controls. The
mean spine and femoral neck BMD was significantly lower
in those with hemophilia than in controls (0.13 and 0.19
g/cm2, respectively). Several studies followed and showed similar,
although less dramatic findings (19, 21–23).

However, two meta-analyses confirmed the link between
hemophilia and secondary osteoporosis (24, 25). Both analyzed
case-control studies that used dual energy x-ray absorptiometry
(DEXA) to investigate BMD of the lumbar spine in patients
with hemophilia as the primary outcome. The analysis by Iorio
et al. covered seven studies involving 101 cases and 307 age-
and gender-matched controls, including both pediatric and
adult hemophiliacs (24). Their analysis confirmed a significant
reduction in lumbar spine BMD in severe hemophilia patients as
compared to controls, both in adults and children (24). The study
by Paschou and co-workers looked at all the studies included
in the previous meta-analysis and added another six published
before 2012 (25). Their meta-analysis covered 415 patients and
585 age- and gender-matched controls and also reported BMD
of the lumbar spine to be significantly lower in cases than
in controls. Additionally, they delineated significantly reduced
BMD of the femoral neck and an insignificant reduction in total
hip BMD (25). Several more recent case-control studies also
reported reduced BMD at these two skeletal sites, but did not find
any significant differences in the lumbar spine (23, 26–31).

Taken together, the skeletal area most prone to loss of BMD,
the etiology, and the underlying pathogenetic mechanisms are
still subjects of debate. The data strongly support the finding
that hemophiliacs are at increased risk to develop secondary
osteoporosis as compared to the general population, with a
higher prevalence of low BMD already in children (24, 32–37).
However, the results of several studies also indicate that the use of
prophylactic factor treatment since early childhood may preserve
normal BMD in severe hemophilia (38, 39).

The central question posed by this evidence is whether the low
BMD in hemophilia is caused directly by the coagulation defect
or whether it develops secondary to either a comorbidity or the
life style that affected patients are forced to accept.

RISK FACTORS FOR LOW BONE MINERAL
DENSITY IN HEMOPHILIA

The main risk factors predisposing to reduced bone density
include smoking, alcoholism, vitamin D deficiency, and some
drugs such as exogenous glucocorticoid excess, anticoagulants of
warfarin, and heparin (40).

One of the main risk factors in hemophilia discussed as an
underlying cause of low BMD and as a factor facilitating the
prevention of osteoporosis is physical activity (41–43). The fear
of trauma and bleeding, as well as hemophilic arthropathy (HA)
typically associated with chronic pain and structural changes in
the joints, lead to inactivity and lack of weight-bearing exercise
(44). This may compromise the development of peak bone mass
already in childhood and consequently affects BMD in adult
life. While a lower level of physical activity seems a feasible
explanation, some studies have suggested that it alone does not
account for the decrease in BMD (45, 46).

Additionally, it has often been argued that osteoporosis and
osteopenia in hemophiliacs can be simply explained by HA, the
repeated bleeding in the joints, per se (47, 48). If this was true, the
frequency and or severity of these comorbidities should not be
elevated in hemophiliacs who are on primary prophylaxis with
no or only minimal joint bleeds. Khawaji et al. suggested that
long-term factor replacement in severe hemophilia indeed tends
to preserve BMD (49), but others failed to replicate the data (50).

Other risk factors for low BMD, that are often present in the
hemophilia population, include low vitamin D levels, low body
mass index (BMI), and blood-borne virus infections (15). There
is a strong prevalence of hypovitaminosis D in hemophiliacs (51,
52). Vitamin D plays a pivotal role in bone mineralization, where
it promotes calcium absorption from the gut (53). However, most
of the studies found a correlation with BMD only in children
(33, 39, 54), but not in adults (28). Moreover, the meta-analysis
by Iorio and colleagues (24), as well as other subsequent studies,
found no correlation between low BMI, or hepatitis C/HIV
infections, and low BMD (28, 55).

Over the last few years, however, striking clinical and
experimental evidence has shown that FVIII deficiency leads to
decreased BMD independently of the aforementioned risk factors
(56). As such, mice genetically engineered to be deficient in
FVIII show a loss of BMD as compared with wild type controls,
despite the fact that they have the same activity level, no increased
hemarthroses and are not affected by other comorbidities (57–
59). These experimental data suggest that FVIII may play a role
outside the coagulation system, directly or indirectly affecting
bone metabolism.

BONE METABOLISM

Before drawing connections between the coagulation system and
bone mineral density, it appears important to provide an insight
into how bone metabolism functions in human beings.

Although bone has an inert appearance, it is a dynamic
tissue that is continuously resorbed by osteoclasts and formed
anew by osteoblasts (see Figure 2). These processes are
tightly coupled, so that under normal conditions new bone
formation cannot occur without antecedent bone resorption.
However, when these processes are out of balance, bone loss
occurs (Figure 2) (60).

Several peptides, cytokines and growth factors are produced
by osteoblasts, osteoclasts and osteocytes (main cell population
of the skeletally mature bone), which facilitate communication
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FIGURE 2 | Signaling mechanisms with balance of bone formation and resorption in bone metabolism. The balance between bone formation and bone resorption is

largely regulated by the Wnt/ β catenin pathway and the RANK/RANKL/OPG axis. Wnt protein binds to its co-receptors Frizzled and LRP5/6 on the surface of

osteoblasts, which leads to the stabilization and accumulation of β-catenin in the cytoplasm, before it translocates to the nucleus where it regulates target genes and

induces bone formation. This pathway can be inhibited by sclerostin and members of the Dkk protein family. RANKL binds to its receptor RANK, which is expressed

on pre-osteoclasts. This induces the activation of several transcription factors and in turn osteoclast differentiation and maturation. OPG, which is a soluble decoy

receptor and also secreted by osteoblasts, can bind to RANKL and thereby inhibits bone resorption. Under physiological conditions, OPG and RANKL are in

equilibrium and preserve bone homeostasis. Several proinflammatory cytokines and growth factors (white boxes) stimulate and upregulate RANKL expression and

mediate osteoclast maturation and activation. The metabolic state of the bone is reflected by its biochemical products, which also serve as bone turnover markers for

either bone formation or resorption. b-ALP, bone-specific alkaline phosphatase; CTX-1, carboxy-terminal cross-linking telopeptides of type I collagen; Dkk, Dickkopf;

IL, interleukin; LRP, low-density lipoprotein receptor-related protein; M-CSF, macrophage colony-stimulating factor; NTX-1, amino-terminal cross-linking telopeptides

of type I collagen; OC, osteocalcin; OPG, osteoprotegerin; PICP, procollagen type 1 carboxy-terminal propeptide; PINP, procollagen type 1 amino-terminal propeptide;

RANK, receptor activator of nuclear factor-kappa B; RANKL, receptor activator of nuclear factor-kappa B ligand; TGF-β, transforming growth factor β; TNF-α, tumor

necrosis factor α; TRACP-5b, tartrate-resistant acid phosphatase 5b; Wnt, wingless related integration site. Adapted from references (61, 62).

and balanced activity. The two pathways that are especially
important for bone physiology are the RANK/RANKL/OPG
axis and Wnt/β catenin signaling, with the former regulating
osteoclast formation and the latter osteoblast differentiation
(63).Osteocytes thereby mainly act as orchestrators since they
produce factors that influence the activity of both osteoblasts and
osteoclasts (64, 65).

The receptor activator of nuclear factor kappa-B (RANK) is a
member of the tumor necrosis factor (TNF) receptor family and
is expressed on the cell surface of osteoclast precursors. RANK
ligand (RANKL) is a transmembrane ligand mainly expressed
on osteoblasts/stromal cells in the bone environment (Figure 2).
Upon binding of RANKL to its receptor RANK osteoclast

proliferation and differentiation are activated. Osteoprotegrin
(OPG), another member of the TNF receptor superfamily,
competes for binding of RANKL to RANK and thus serves
as a decoy receptor for RANKL (Figure 2) (66). By means
of this mechanism, RANKL inhibits, whereas OPG promotes,
osteoclast apoptosis and any change in this balance leads to
pathophysiological conditions (67).

In recent years, also Wnt/β catenin signaling has gained
considerable attention with regard to bone metabolism. When
the canonical Wnt ligands are present, they bind to the
frizzled receptors and one of the co-receptors, either low-
density lipoprotein receptor-related protein 5 (LRP5) or 6
(LRP6) (Figure 2) (68, 69). This induces the stabilization
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and accumulation of cytosolic β catenin, which subsequently
translocates to the nucleus where it initiates the transcription
of Wnt target genes (70). Sclerostin, as well as members
of the Dickkopf (Dkk) protein family, decreases osteoblastic
bone formation by acting as antagonists of the Wnt/β catenin
pathway by binding to LRP5 and LRP6 on the cell membrane
of osteoblasts (Figure 2) (71–74). The function of the entire
signaling pathway is very complex, which is reflected by the
fact that genetic mutations of single protein members at
different stages of osteoblast differentiation lead to different
phenotypes (63).

In addition to the aforementioned pathways, cytokines are
also known to play key roles in bone metabolism (Figure 2)
(75). To name only a few, tumor necrosis factor (TNF) α,
for example, has paradoxical effects on bone metabolism, as
it activates differentiation of both osteoclasts and osteoblasts
and plays roles in various disease states. Interleukin (IL) −1α,
IL-1β, IL-6 and macrophage colony-stimulating factor (M-
CSF) positively regulate bone resorption by osteoclasts, whereas
IL-10 inhibits osteoclastogenesis by means of several distinct
mechanisms (76, 77).

For assessment of the state of bone metabolism, several
biomarkers that are associated with specific bone processes and
overall skeletal health have gained attention. These bone turnover
markers (BTM) include biochemical products that represent
either bone formation or bone resorption (Figure 2) (60, 78, 79).

BONE TURNOVER MARKERS IN PATIENTS
WITH HEMOPHILIA

A few clinical studies have assessed BTMs in hemophiliacs to
gain insights into why mineral bone density is diminished and
whether the osteoblastic activity is decreased or osteoclastic
activity is increased (see Figure 2). The obtained data are
controversial: In a study of children with hemophilia A, low levels
of osteocalcin, a serum marker of bone formation (Figure 2),
were measured but no difference in bone resorption was detected
as compared to healthy controls (80). In contrast, the analysis of
BTMs in two other studies in children with severe hemophilia
A indicated decreased osteoblastic activity as well as increased
osteoclast-mediated resorption (81, 82). This stands again in
contrast to the results of a study in adults with hemophilia,
in which increased levels of NTX-1, CTX-1, and TRACP-5b
pointed to up-regulated osteoclastic activity (Figure 2) that was
not accompanied by a compensatory increase in osteoblastic
activity (83). Three other studies also reported elevated CTX-
1 levels in the serum of hemophilia A patients (79, 84, 85).
However, another study detected only significantly elevated b-
ALP concentrations in male hemophilia patients with low BMD,
whereas osteocalcin, NTX-1, CTX-1, and TRACP-5b did not
change significantly as compared to patients with normal BMD
(78). These inconsistent data are difficult to confirm and may
be explained by the complexity of the disease, since other,
already mentioned risk factors for low BMD may be present
but unequally distributed in the study populations. Therefore,
several investigators have analyzed BTM in a hemophilic mouse

model. FVIII knockout mice are already well-established and
show the same bone phenotype as humans, as they fail to achieve
peak bone mass (57–59). Animals at 20 weeks of age did not
show any significant difference in the biochemical markers of
bone formation or osteoclastogenesis (57). However, another
research group detected diminished bone formation in male
FVIII knockout mice at 6 months of age, indicated by increased
PINP values (86), as also found in a clinical study of 35 male
patients with severe hemophilia A and B (87). Cell culture
experiments also point to either a qualitative or a quantitative
defect in bone formation, since cells isolated from the marrow of
FVIII-deficient mice and cultured to induce osteoblasts showed
defects in growth, differentiation, and mineralization (88, 89).

THE ROLE OF FVIII IN BONE HEALTH

Although the assessment of BTM does not clearly delineate
whether decreased bone formation or increased bone resorption
is the main cause of the observed reduction in BMD in
patients with hemophilia, it is obvious that it is intrinsic to
FVIII deficiency. This is underscored by the finding that FVIII
replacement is able to reverse the bone phenotype (45, 79,
84, 90). This of course raises the question as to the role
of FVIII in bone health (see Figure 3). Does it play a role
outside the coagulation system, probably by interfering with the
RANK/RANKL/OPG axis or theWnt/β catenin pathway, or does
it affect bone health downstream of FVIII, and is the occurrence
of inflammation, the defect in hemostasis, or some other more
global phenomenon causative?

RANK/RANKL/OPG
The role of the RANK/RANKL/OPG signaling pathway in the
development of low BMD in patients with hemophilia has
interested several research groups. Again, the data are very
controversial. In a mouse study, no statistical difference in
RANKL or OPG serum levels or the RANKL/OPG ratio between
the FVIII KO mice as compared with WT controls at 20 weeks
of age was found (57). The same result was obtained in a study
of boys (mean age 10.11 ± 6.1 years) (91), and two studies with
adults suffering from hemophilia A (79, 83). However, another
study in young men (average age 12 years) found increased
RANKL and decreased OPG levels (92). Similarly, a study of
male adults (mean age 45.9 ± 15.3 years) with hemophilia,
found higher serum levels or RANKL and RANKL/OPG ratio
than in controls, but patients with low BMD had higher
OPG concentrations than did those with normal BMD (73).
Interestingly, one study analyzed the RANKL and OPG levels not
only in the serum of patients with hemophilia, but also in the
synovial tissue of hemophilic joints (66) and found that the serum
levels of RANKL and OPG were lower than in healthy controls,
whereas at the tissue level increased expression of RANK and
RANKL and decreased expression of OPG were detected (66).
This raises the question as to how accurately alterations in serum
markers of the RANK/RANKL/OPG system reflect local changes
in bone turnover.
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FIGURE 3 | The role of coagulation FVIII in bone health. Current knowledge tells us that several modes of action for FVIII impacting bone mineral density are feasible:

either FVIII plays a role outside the coagulation system and directly interacts with main players of bone physiology, including the RANK/RANKL/OPG axis and/or the

Wnt/β-catenin pathway, as well as pro-inflammatory cytokines, or the effect happens downstream of FVIII and e.g., the missing interaction with vWF or decreased

thrombin production is causative. References for original publications and further reading are written in brackets.

Wnt/β Catenin Pathway
Only few data are available on theWnt/β catenin pathway and its
inhibitors in hemophilia patients. Two studies in children found
a significant elevation of serum sclerostin in the hemophilic
group as compared to the age-matched control group (91,
93). The authors speculated that this elevation may identify
hemophilic patients at high risk for developing a bone phenotype
(93). Importantly, no additional significant differences in OPG,
RANKL or Dkk-1 levels were observed (91). This stands in
contrast to data from adult patients with hemophilia, in which
lower serum sclerostin and Dkk-1 levels were found. Here, the
levels of sclerostin even correlated with the severity of the disease,
with patients with severe hemophilia having lower sclerostin
concentrations than those with mild or moderate disease (73).
However, this increased osteoblastic activity was accompanied by
increased osteoclastic activity, which was indicated by elevated
levels of RANKL (73).

Cytokines
As already mentioned, arthropathy as a result of recurrent
joint bleeding is the primary co-morbidity of hemophilia
(13, 94, 95). There is growing evidence to show that intra-
articular inflammation and angiogenesis are pivotal processes in
the pathogenic cascade of HA (96). Thereby joint bleeding
favors iron release from hemoglobin, thus indicating a
chronic inflammatory reaction mediated by cytokines and
pro-angiogenic factors, which in turn enhance articular cartilage
and subchondral bone destruction (97–100). In skeletally mature
FVIII-deficient mice, induced knee joint hemorrhage caused a

25–30% decrease in trabecular bone density already 2 weeks after
injury (90). Additionally, HA has been associated with reduced
BMD in several studies usingmultivariable analysis (83, 101). It is
already well-known that chronic inflammatory diseases can lead
to bone loss, as known from psoriasis, ankylosing spondylitis,
systemic lupus erythematosus, multiple sclerosis, inflammatory
bowel disease, rheumatoid arthritis (RA), and other disorders
(102–105). HA shows similarities to the inflammatory state
of RA, but also to the degenerative character of osteoarthritis
(OA) (66, 106). However, in comparison to RA and OA, the
synovium of patients with hemophilia showed comparable (99),
or even the highest concentration of IL-1, IL-6 and TNF-α
measured (107). Increased levels of the pro-inflammatory
cytokines IL-1β, IL-6, keratinocyte-derived chemokine (KC) and
monocyte chemotactic protein-1 (MCP-1) were also detected
in synovial fluid of hemophilia A mice with experimentally
induced joint hemorrhage (108). Several studies support the
connection between those inflammatory cytokines and osteoclast
activity (75, 105, 109–112). However, two experimental studies
in hemophilic mice reported by Liel et al. showed that FVIII
deficiency led to decreased BMD independently of HA (59, 113).
Interestingly, these mice had decreased serum levels of IL-1α
and IFN-β as compared to wildtype controls (79, 113). Similar
results were obtained in 79 patients with severe hemophilia A,
where significantly lower serum levels of TNF-α, IL-10 and IL-12
were found in comparison to age-matched healthy controls (84),
thus giving rise to the possibility that FVIII deficiency leads
to decreased bone-associated cytokine production. However,
it might be important to note that the study participants all
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received FVIII substitutions, either on-demand or prophylactic
(84). When the immunological profile of untreated patients with
hemophilia A was assessed in comparison with the profile of
healthy controls, higher levels of IL-4, IL-6, IL-8, IL-10, IL-12
and IL-17 were detected (114). However, these inconsistencies
may also indicate that serum levels of cytokines do not accurately
reflect what is happening in the local bone environment or
that there exist natural antagonists, which may interfere with
data interpretation. As such, when the levels of inflammatory
cytokines were measured in the synovial fluid of hemophilic
mice, IL-1β, IL-6 and TNF-α were significantly increased but
were below the detection limit in the serum from whole blood
samples (115).

Altogether, the collected data are difficult to interpret and
further studies are urgently needed to clarify whether altered
cytokine profiles and/or inflammation are an epiphenomenon of
FVIII deficiency or cause and effect for low BMD.

Missing Interaction With vWF
To be protected from proteolytic degradation, FVIII is bound
to vWF in circulation (Figure 1) (116). At sites of vascular
damage, adhesion of vWF not only initiates plug formation,
but also brings FVIII in proximity to promote the generation
of thrombin and fibrin (117, 118). In vitro studies further
demonstrated that vWF in complex with FVIII is able to inhibit
RANKL-induced bone resorption and enhances the inhibitory
effect of OPG (96). The FVIII-vWF complex was able to bind to
RANKL, whereas each factor alone was not. Thus, the authors
suggested that the low BMD in hemophilia is due to increased
osteoclastogenesis caused by deficient FVIII-vWF complex (96).
However, Taves et al. demonstrated that FVIII- and FIX-deficient
mice, but not vWF-deficient mice, developmentally show an
osteoporotic phenotype, indicating that the FVIII-vWF complex
is not necessary for normal bone physiology in vivo (119).
Furthermore, a clinical association between low BMD and von
Willebrand disease, which would be caused by a defect or
deficiency of vWF, has so far not been reported.

Decreased Thrombin Production
Deficiency of FVIII as well as FIX results in the inhibition
of FX activation and thus in failed thrombin production
(Figure 1) (120). As already mentioned above, animal studies
with FVIII and FIX knockout mice point toward a similar bone
phenotype (119, 121, 122), indicating that thrombin generation
and signaling are important for bone health. Indeed, it was shown
that thrombin plays a role in bone remodeling as it is able to
cleave osteopontin, which is important for anchoring osteoclasts
to the mineralizedmatrix (123). Furthermore, thrombin has been
found to inhibit osteoclast differentiation and to down-regulate
the expression of RANK in isolated pre-osteoclast cultures (124).
Additionally, thrombin stimulates osteoblast proliferation and
inhibits osteoblast differentiation and apoptosis (125–127). Some
of the described effects are believed to be mediated by the
expression of growth factors and cytokines (128). This might
explain the low serum cytokine levels in hemophilia A patients,
as described above (113). Many but not all cellular responses to

thrombin are mediated by the three thrombin receptors PAR-
1, PAR-3, and PAR-4 (128–130). Importantly, PAR-1 has gained
most attention in this context, since it is expressed in osteoblasts
(but not osteoclasts), whereas PAR-3 is not expressed in murine
osteoblasts and PAR-4 has only been reported in osteoblast-like
calvarial cells (129, 131). Aronovitch and colleagues hypothesized
that an absence of FVIII leads to deficient thrombin production,
which results in ineffective thrombin-mediated signaling by PAR-
1 receptors and abnormal bone physiology (58). In support of
their hypothesis they showed bone phenotypes in PAR-1 similar
to those in FVIII-deficient mice (58). Contrarily, Tudpor and
colleagues found increased BMD in PAR-1 KO mice, which
was accompanied by a decreased RANKL/OPG ratio (132). The
assumption that PAR-1 alone cannot be responsible for low BMD
in hemophilia is also substantiated by the finding that thrombin
inhibited osteoclast differentiation in different organs in PAR-1
KO mice (124). Additionally, a >85% prothrombin KO in 3-
week-old wild-type mice did not significantly impact bone health
(133). These data suggest that either thrombin deficiency is not
decisively responsible for low BMD in hemophilia, or the impact
occurs already very early in bone development.

CONCLUSION AND FUTURE DIRECTIONS

Patients with hemophilia are prone to develop low BMD.
Whether this bone phenotype is intrinsic to FVIII deficiency
or secondary to it, is the subject of debate. Several research
groups have speculated that FVIII plays a role outside
the coagulation system, likely by directly interfering with
the RANK/RANKL/OPG axis and/or the Wnt/β pathway,
or indirectly via modulating cytokines and/or other factors
(Figure 3). Since also FIX deficiency results in a similar bone
phenotype (22, 51), it is also plausible that the effect takes
place further downstream in the coagulation cascade. However,
research so far indicates that there is not one and only one
adjustment screw and the cause for low BMD is instead
multifactorial. Things are even more complicated by the fact
that there exist several interconnections between the individual
pathways and bone physiology is rather complex in nature. Thus,
the underlying pathogenic mechanism may be multifactorial
with reduced bone formation occurring due to disordered bone
metabolism secondary to factor deficiency and increased bone
resorption occurring due to joint bleeding, lack of adequate
weight-bearing exercise and inflammation with the relative
contribution of each mechanism changing over a patient’s
lifetime (134).

Unfortunately, there is still a large knowledge gap that is
mainly due to discrepancies in data that are difficult to interpret.
As genetics plays a critical role in bone mass and turnover,
differences in mouse strains used in the animal models may
contribute to different outcomes. Also, other variables such as
microbiota differences between animal vendors and institutional
housing facilities can have significant effects in mouse studies
(135). Additionally, partial synthesis of defective FVIII proteins
in comparison to a total KO, irrespective of functionality, may
advocate an inflammatory state that additionally, or erroneously,
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stimulates bone resorption. It becomes even more difficult to
determine causal roles for FVIII or other coagulation factors in
clinical studies since they can be affected by a complex interplay
of confounding factors, such as viral infections, medication,
hypovitaminosis D, smoking, alcoholism, and many more.
Furthermore, pathophysiological changes in other organs or
cells, such as cardiovascular cells, kidneys, and macrophages, can
impact bone biology (136–138). More clinical and experimental
studies are thus urgently needed. However, both require more
comprehensive indices, especially those generated by proteomic
and genomic assays. One of the main challenges with comparison
and interpretation of clinical studies is the lack of uniformity
of definitions of events or end points (139). The Joint Health
Markers MOTIVATE sub-study thus aims to evaluate the impact
of different treatment approaches on levels of established bone
health markers and to identify and validate new markers of
early-onset bone damage (140).

Clinical studies should more often also address patients with
factor inhibitors, since the literature shows that these have hardly
been considered. Some of the immune tolerance induction (ITI)
protocols use one or more immunosuppressive agents for the
eradication of inhibitors associated with the side-effect of reduced
BMD, thus further pushing patients toward osteoporosis (40). It
will also be interesting to see if patients treated with emicizumab,
a recombinant, humanized, bispecific monoclonal antibody that
restores the function of FVIII by bridging activated FIX and FX,
develop a bone phenotype or not. Data from the HAVEN3 study
so far indicate only that there is at least no worsening in any of the
bone markers after switching to emicizumab prophylaxis (141),
but additional data on the long-term effect are awaited.

More clinical and experimental studies are urgently needed
because an understanding of the functional role of coagulation
factors in bone health is critical to prevent and efficiently treat
low BMD in patients with hemophilia in future. Now, where
hemophilia treatment has improved dramatically over the past
years, with safe factor replacement being widely available, the
focus must turn to addressing such age-related co-morbidities
and long-term complications. The mechanism of bone loss in
hemophilia is thus important, because the mode of therapy
may need to be tailored accordingly. For example, when the
defect is due to defects in bone formation, patients may benefit
from anabolic drugs, such as teriparatide, or therapies under
development, such as neutralizing antibodies against Dkk-1
or sclerostin (142, 143). By contrast, if the bone phenotype
primarily arises from defects in bone resorption, patients may
respond better to antiresorptive agents, such as bisphosphonates
or denosumab, a human monoclonal antibody to RANKL (144).
The only clinical trial for the treatment of low BMD in patients
with hemophilia evaluated the effect of a 12-month-longmonthly
oral administration of 150mg ibandronate, a bisphosphonate, in

ten adults (mean age 43.5 years) (145). Ibandronate was well-
tolerated and led to a 4.7% increase in BMD in the lumbar spine,
but not to significant changes in the femoral neck or total hip
(145). Nevertheless, research so far strongly indicates that the
bone phenotype develops already early in the life of hemophilia
patients and most of the mentioned therapeutic agents should,
due to their partly severe side-effects, be avoided or not frequently
used in children (65, 146).

In summary, further studies are urgently needed to determine
the functional role of FVIII in bone metabolism and to
provide guidance for the development of effective and safe
treatment strategies in order to prevent low BMD in patients
with hemophilia.

DATA SOURCE AND SEARCH

A literature search strategy was developed by consulting the
PubMed platform of the National Center for Biotechnology
Information (NCBI). The literature search performed included
peer reviewed papers, published in English language, updated
to December 2020. The search strategy used a combination of
controlled key words (e.g., “coagulation,” “hemophilia,” “factor
VIII,” “bone mineral density,” “osteopenia,” “osteoporosis,” and
“bone metabolism”). Ninety-five references were screened for
their relevance and quality. Of these, a total of 57 papers were
considered and complemented by reading review articles, meta-
analyses and additional literature from the respective reference
sections. Based on the high number of manuscripts manually
added, this review has to be considered as a scoping review with
selection bias (see Supplementary Figure 1) (147).
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