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Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system that

affects nearly 1 million adults in the United States. Magnetic Resonance Imaging (MRI)

plays a vital role in diagnosis and treatment monitoring in MS patients. In particular,

follow-up MRI with T2-FLAIR images of the brain, depicting white matter lesions, is

the mainstay for monitoring disease activity and making treatment decisions. In this

article, we present a computational approach that has been deployed and integrated

into a real-world routine clinical workflow, focusing on two tasks: (a) detecting new

disease activity in MS patients, and (b) determining the necessity for injecting Gadolinium

Based Contract Agents (GBCAs). This computer-aided detection (CAD) software has

been utilized for the former task on more than 19, 000 patients over the course of 10

years, while its added function of identifying patients who need GBCA injection, has

been operative for the past 3 years, with > 85% sensitivity. The benefits of this approach

are summarized in: (1) offering a reproducible and accurate clinical assessment of MS

lesion patients, (2) reducing the adverse effects of GBCAs (and the deposition of GBCAs

to the patient’s brain) by identifying the patients who may benefit from injection, and (3)

reducing healthcare costs, patients’ discomfort, and caregivers’ workload.
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1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic immune-mediated disease that affects the central nervous
system (CNS) with a complex pathophysiology. The prevalence of MS in the United States of
America is reported as approximately 1 million adults (1), with several more million patients
recorded worldwide.

MRI is an essential tool in the diagnosis and treatment monitoring of MS. Patients with
MS typically undergo annual follow up MRI scanning that commonly includes T1 post-contrast
images to assess for subclinical disease, i.e., formation of new focal demyelinating lesions in the
absence of clinical symptoms. Previous work has shown that in the absence of a new T2-weighted
Fluid-Attenuated-Inversion-Recovery (T2-FLAIR) lesion, contrast does not usually add additional
clinical information to the interpretation of the scan (2). A common challenge in the clinical
assessment of MS is relying on visual interpretation of images, particularly in the case of high lesion
burden, to determine if new lesions developed. Automated techniques could aid clinicians in their
visualization of new MS lesions improving efficiency and confidence in clinical decisions.
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Here, we present a computer-aided-detection (CAD)
approach that uses machine learning techniques to detect
changes in white matter brain lesions on MRI scans of
patients with MS. The presented system has been deployed
and fully integrated into the routine clinical workflow for 10
years. Although it was initially designed and used solely as a
neuroradiological aid in detectingMS lesion burden changes, this
CAD approach is also contributing to reducing the number of
gadolinium injections in the MS patient population. Specifically,
our CAD system focuses on two targets: (i) assessing MS lesion
burden changes from a given previous time-point; and (ii)
reducing the administration of GBCAs, based on the detection
of new/growing lesions. In a nutshell, the development of
our CAD system initiated in 2009 and following its offline
evaluation it is clinically translated and integrated in the routine
clinical workflow since 2012 focusing solely on its first target. In
2019, the same CAD system was further successfully evaluated
and integrated to the clinical workflow for the reduction of
GBCA administration.

2. LITERATURE REVIEW

According to related literature (3), computational methods for
the assessment of MS, can be divided into two categories: (1)
lesion detection, and (2) lesion-change detection. As shown
in Figure 1, the lesion detection approach detects both static
and dynamic MS lesions on a given single-time MRI volume.
These segmentation methods are usually supervised and rely
on distinguishing hyperintense lesions from normal appearing
white matter tissue in the brain. The lesion-change detection
is a longitudinal analysis of volumes taken at different time-
points, and a lesion quantification approach is required to see
the lesion changes quantitatively (5). A lesion-change occurs as a
result of “tissue transformation” or even “tissue deformation” (6).
“Tissue transformation” in the context of MS lesions refers to the
change in signal intensity within a MS lesion (after accounting
for acquisition differences), whereas “tissue deformation” refers
to surrounding tissue changes as a result of the lesion’s expansion
or contraction. Neurologists referring patients for a follow-up
MRI, want to know if new lesions have formed since the previous
timepoint. This information may prompt neurologists to modify
the treatment regimen, in order to avoid future recurrences.

The current clinical routine to detect new white matter lesions
is based on the visual observation and longitudinal comparison
of T2-FLAIR MRI brain scans, by neuroradiologists, from
current and previous sessions. However, the typical acquisition
protocol for MS patients includes high-resolution 3-D MRI
scans, which render this manual reviewing process a tedious
and time-consuming task. The current clinical practise based
on visual observation can be inaccurate if there are large
angulation differences between the two studies or at times,
when particular 3-D protocols are not followed and 2-D scans
of large slice thickness are acquired instead. These constraints
suggest that the utilization of CAD tools could contribute
and software-based interventions to speeding up the whole
procedure, while at the same time improving the accuracy of

quantification. Taking into consideration the optimal patient
care, a semi-automatic “human-in-the-loop” approach (where
the neuroradiologist removes potential false positive detections
generated by the computational tool) may be the best solution.

There are multiple ways for MS lesion detection, and some
of them are (i) intensity-based approaches, which depend on
detecting the changes of intensity (7, 8), (ii) deformation-based
approaches, which analyse the deformation of brain tissue (9,
10), (iii) segmentation-based approaches, which segment white
matter hyper-intensities from the acquired scans (11, 12), and (iv)
subtraction-based approaches, which depend on subtracting two
longitudinal scans (7).

In the intensity-based approaches, a voxelwise comparison
is made between MRI scans of different time-points to detect
and segment new MS lesions (7, 8). In the deformation-based
approaches, the new lesions detected in a T2-FLAIR scan
are identified by analyzing the deformation fields between the
different MRI scans, obtained through non-rigid registration
(9, 10). The non-rigid registration method between the
two timepoints has shown to improve the detection of
the new T2-w MS lesions in longitudinal studies (10, 13).
These deformation fields can be generated through non-rigid
registration approaches, either based on optimization (14)
or newer learning-based approaches (15). Typically, both the
“tissue transformation” (via intensity change) and the “tissue
deformation” occur, and as such the mass effect of the particular
lesion needs to be taken into account for a precise assessment of
the lesion’s evolution status.

Furthermore, numerous strategies that combine intensity-
based and deformation-based approaches have been proposed.
Cabezas et al. (10) modified Ganiler et al. (7)’s subtraction
pipeline by merging subtraction and Deformation Field (DF)
operators to reduce the amount of false positive lesions found
by the subtraction pipeline. Registration is characterized as an
optimization issue that must be solved for each volume pair
of longitudinal scans using a similarity metric, while enforcing
smoothness requirements on the mapping in these approaches.
Because solving this optimization is generally computationally
costly (16–19), it is exceedingly slow in practise. Various GPU-
based accelerated methodologies have been presented to improve
the efficiency and speed up the optimization (20–22).

Currently, Convolutional Neural networks (CNNs) have
shown superior performance in brain imaging, particularly
for segmenting tissues, (23, 24), brain extraction (25–27),
brain tumors (27–33), and white matter lesions (34, 35).
During training, learning-based registration techniques
learn a parameterized registration function from a set of
images. Some proposed methods (36, 37) use a precomputed
DF as the ground truth (GT), while others depend solely
on image registration or segmentation masks, without
comparing the predicted DF to a precomputed DF (38, 39).
Balakrishnan et al. (15) developed a new CNN approach
that computes the deformation between two images
by training the network using a similarity metric and
a regularization term similar to traditional registration
methods, yielding results that are comparable to current
state-of-the-art approaches.
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FIGURE 1 | Example Illustration of Multiple Sclerosis lesions overlaid on a 2-D T2-FLAIR scan, together with manual delineations from independent experts taken from

(4).

3. MATERIALS AND METHODS

3.1. Data
The routine MRI acquisition protocol for MS patients in the
University of Pennsylvania Health System (UPHS) network
includes (i) 3-D T2-FLAIR (ii) high resolution isotropic or
near-isotropic T1 pre-contrast [3-D magnetization-prepared
180 degrees radio-frequency pulses and rapid gradient-echo
(MPRAGE)], as well as (iii) 2D T2-weighted images, and (iv)
30-direction Diffusion Tensor Imaging (DTI). Additionally, 3-D
T1 post-contrast images are optional and acquired only if new
lesions are detected from the CAD results. All MRI sequences
described here are acquired within the UPHS, at multiple satellite
sites. However, the vast majority of MS patients get their MRI
scans at the main site of the Hospital of the University of
Pennsylvania (HUP). The scanner magnetic field strength of the
equipment used to acquire these MRI scans was either 1.5 or 3
Tesla, with the HUP scanners being exclusively at 3 Tesla.

The CAD approach presented here uses only the 3-D T2-
FLAIR, which is the first acquired sequence in the UPHS
acquisition protocol for MS patients. In some rare cases, the prior
T2-FLAIR sequence is part of an outside study that has been
uploaded to PACS.

Since the acquisition parameters vary across sites, we briefly
cover them as majority of scans are performed at 3/1.5 Tesla,
with the sagittal 3D T2/FLAIR acquired using the following
parameters: TR/TE/TI = 5,000/395/1,800 ms, FOV 250 × 250 ×
160 mm, matrix of 256 × 256 × 160, near isotropic 1mm3 voxel
size. Outside studies with only available 2D T2-FLAIR scans with
slice thickness larger than or equal to 5mm are not considered
useful and as such our CAD system is not applied to them.
However, outside studies with 2D T2-FLAIR scans with <5mm
thickness are still used by resampling the higher resolution scans
to match the lower resolution images. Notably, the proportion

of patients with 2D T2-FLAIR scans from outside studies have
been rare.

3.2. CAD System Overview
The functionality of the CAD approach is described in the
following sections and visually summarized in Figure 2. The
overview of the CAD method can be explained as follows:
after acquiring the 3D T2-FLAIR scan at Timepoint-2, the
CAD system is executed. The registration of Timepoint-2 to
a Timepoint-1 3D T2-FLAIR scan occurs, followed by brain
extraction and bias field correction for both time points. Then
subtraction and false positive reduction methods are applied to
identify new lesions, as well as resolve false positives generated
by the CAD system. While the CAD system is running, for the
routine protocol, we acquire the T1 precontrast, 2D T2-weighted,
and DTI images. After the CAD system points out whether new
lesions are present, the decision to inject GBCAs is delivered to
the MRI technologists.

The hereby presented computational approach, integrated
and routinely used in clinical practice since April 2012, has
been applied to the assessment of MS lesion scans more than
19, 000 times and is currently assessing more than 200 MS
patients per month. Figure 3 provides a visual representation
of the CAD’s lifecycle to-date. The “3-D lab” (i.e., a UPHS
team of technologists, trained for executing specific software,
e.g., for post-processing cardiac CT, MR arteriograms, and
more) currently runs and monitors the CAD approach for every
scanned MS patient.

3.3. Pre-processing
Prior to any image processing specific to the CAD targets, a set of
pre-processing steps are considered essential toward defining the
search space to assess lesion burden changes.
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FIGURE 2 | Workflow followed for generating the lesion maps.

FIGURE 3 | Visual representation of the CAD’s lifecycle to-date.

All acquired MRI scans are stored in the SECTRA Picture
Archiving and Communications System (PACS)1, as DICOM

1https://medical.sectra.com/

file sequences. Once a scan is retrieved from the PACS, the
CAD system first converts the DICOM file sequences into the
Neuroimaging Informatics Technology Initiative (NIfTI) (40) file
format to facilitate subsequent image processing steps.
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FIGURE 4 | Illustrative examples of detecting false positives and new lesions. (A) An example of patient with two identified false positives (depicted in green) and a

new lesion (depicted in red). (B) Example of a different patient with a single identified false positive (green) and a single new lesion (red).

Since the CAD approach is intended for use across multiple
UPHS sites, some harmonization needs to be considered in the
imaging space to account for any heterogeneity in the acquisition
protocol, thereby ensuring consistent interpretation of the input
scans. The most typical harmonization considered here is on the
normalization of the scanning resolution, since the acquiredMRI
scans can range from good quality 1mm3 isotropic resolution
(or near-isotropic) to a scan of much higher slice thickness,
e.g., 5mm3. Specifically, when the resolution of the scans across
the two time-points differs, the higher resolution scans are
downsampled to match the lower resolution scans. The reason
to select the lower resolution target is to reduce interpolation
artifacts that would have been generated when going from lower
resolution to higher resolution. The software can work with
2D images, but the low out-of-plane resolution (slice thickness)
limits results accuracy.

Following this resolution normalization, all apparent non-
brain tissue has to be removed from the MRI scans to
facilitate optimal downstream analyses, by removing parts of
skull and to keep the region of interest focused to the brain.
Firstly, each patient’s Timepoint-2 T2-FLAIR MRI scan has to
be rigidly registered to the patient’s Timepoint-1 T2-FLAIR
anatomical space. Then, the step of brain extraction (also
known as skull-stripping) is performed, in order to reduce
false positives that may be generated during the downstream
analysis, by including portions that do not belong to the brain
tissue.

3.4. Intensity Processing
After identifying the complete search space comprising of the
brain tissue apparent in the acquired scans, certain intensity
processing needs to take place, to facilitate further analyses.
Firstly, the magnetic field strength inhomogeneties observed
in the acquired scans are corrected by applying the N4 bias
field correction (41), available through the ANTs Toolkit (42).
We then apply histogram matching to normalize intensities
between the “Timepoint-1” and “Timepoint-2” scans, prior to the
subtraction process. This step allows us to take into account any
contrast differences that are not related to the lesion appearances.
Subsequently, an intensity subtraction takes place between the
different time-point MRI scans (Timepoint-1 & Timepoint-2).
This subtraction operation identifies new lesions (i.e., through
their post-subtraction higher intensity appearance). Thirdly, and
importantly, a false positive reduction routine is applied to
compensate for false positive “artifacts” occurred due to potential
misregistrations. This routine leverages the temporal intensity
information between the T2-FLAIR scans of Timepoint-1 and
Timepoint-2. Specifically, it assesses the pixel intensity of the
lesion’s center of gravity, and if it is higher in Timepoint-1 the
identified lesion is considered as a false positive, but otherwise a
true positive. If this criterion is not met, the identified lesion is
considered as a false positive. However, in order to maintain high
sensitivity, false positive detections from the CAD are tolerated,
and are eventually discarded by human evaluation. An example
of a true lesion and a false positive detection is shown in Figure 4.
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FIGURE 5 | In order to create automated reports, we need anatomical atlas, which can be seen through the subfigures. (A) Over 130 anatomical regions of jacob

atlas identified and overlayed which allows the software to detect the exact location of new lesions in the brain. (B) Example of the automatically generated report,

indicating new found lesions. (C) Example of the automatically generated report, indicating lack of no newly identified lesions.
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FIGURE 6 | Illustrative examples of resulted images stored in the DICOM file format. (A,B) Represent the Timepoint-1 and Timepoint-2 scans of a given patient,

respectively. (C) Describes Timepoint-2 (B), with superimposed annotations for detected new lesions (depicted in red) and false positives (depicted in green). (D) Is a

larger version of Timepoint-2 (B) without annotations, for visualization purposes.

3.5. Atlas Mapping and Lesion
Quantification
After any new or changed lesions are detected, the lesion
space is affinely registered to the Jacob Atlas Map (43)
(Figure 5), to identify an approximate anatomical location
of the lesion. Additionally, the size of new lesions is also
returned in mm3. These measurements are included in a
draft radiology report available to the neuroradiologist for
editing, thereby improving patient care with quantification
information, and improving radiology workflow efficiency.
Figures 5B,C depict representative positive and negative report
examples, respectively.

Finally, the CAD system generates DICOM files from the
lesion map images, with the temporal pair of images adjacent
to assist radiologists re-verify the images manually, without the
need of opening up images from every Timepoint separately.
Figure 6 shows the scans of Timepoint-1 (Figure 6A) and
Timepoint-2 (Figure 6B) on the image and the predicted lesions
(Figure 6C) in the larger size to identify lesions in the subject.
These DICOM files are sent to the patient’s folder in PACS, so
they are available to the neuroradiologist that reads the case.

3.6. Gadolinium Reduction Initiative
A new initiative was started in 2019, namely to use the CAD
results not only to assist neuroradiologists, but also to determine

in real-time which MS patients would benefit from T1 post-
contrast imaging. Since the discovery that gadolinium deposition
can be detected in the brain of patients that undergo serial MRI
studies with GBCAs, many people involved in the domain of
Radiology have started initiatives to decrease the numbers of
unnecessary contrast injection when performing MRI scans (44).
This is one example of application of the principle of precaution,
as the long term effects of this deposition in the brain, and
probably other organs of the body, are yet unknown and to
be determined. The ability of the presented CAD approach to
determine accurately and in real time the patients that would
benefit from the injection of GBCAs and those that would
not, has decreased the rate of injections substantially. This
not only has a positive impact on patients by decreasing their
exposure to unnecessary gadolinium, but also benefits the caring
healthcare institution.

The principle of this initiative is based on the routine use of the
CAD system and only in the case of newly detected white matter
lesions to intravenously inject GBCAs, enabling the acquisition of
post-contrast T1 imaging. Specifically, once the patient is placed
in the scanner, the MR technologist initiates the acquisition of
the 3D T2-FLAIR sequence. Once this acquisition is complete,
the MR technologist contacts the 3D lab technologist to runs
the CAD tool. While the CAD tool is being executed, the MR
technologist continues with the acquisition of the remaining non-
contrast sequences. Once the CAD 3D Lab technologist assesses
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TABLE 1 | GBCA reduction initiative: results from the 2 month feasibility study.

New brain lesion No new brain lesion Total

Gad given 14 3 17

Gad not given 4 120 124

Total 18 123 141

TABLE 2 | GBCA reduction initiative: results from the 3 month follow up validation

study.

New brain lesion No new brain lesion Total

Gad given 119 146 265

Gad not given 17 350 367

Total 136 496 632

the CAD results, informs the MR technologist if there is a need
for an intravenous injection (e.g., butterfly) and an acquisition
of a T1 post-contrast sequence, subject to a new lesion being
identified by the CAD system.

To assess the value and the potential clinical relevance of this
gadolinium reduction initiative, we conducted a initial 2-month
feasibility study involving 141 patients. During this feasibility
study, the CAD was already integrated in the clinical workflow
for the assessment of lesion burden changes, and hence the
feasibility study was directly conducted. After the successful
conclusion of this initial feasibility study, we conducted a follow
up validation study, including 632 MS patients over the course of
3 months. The purpose of the follow-up study was to confirm the
success of the approach in reducing the use of GBCAs, in a larger
patient population. The metrics of sensitivity and specificity
were calculated for patients who received GBCAs when new
brain lesions were found (Equation 1). Following the successful
conclusion of both studies, we started using the CAD system
as part of our clinical routine for reducing the unnecessary use
of GBCAs.

sensitivity =
GBCA given for new brain lesion

GBCA given for new brain lesion + GBCA not given for new brain lesion
(1)

Inclusion/exclusion of patients in our studies was based on
informed consent of participation. For any included patient,
the choice to inject GBCA was based on the detection of new
lesions as communicated from the CAD operator to the MR
technician. The monitored outcome was the performance of
correctly identifying patients in need of GBCAs with the use of
our CAD system. The sensitivity and specificity calculated here
assess the results of the feasibility study (Table 1), as well as the
follow up validation study (Table 2) of giving Gadolinium to MS
patients when new lesions are detected.

3.7. CAD’s Lifecycle To-Date
Almost 20, 000 patients have been assessed with the clinically
deployed CAD system to-date. However, the presented CAD
tool has undergone a code refactoring during its lifecycle,
to improve performance in terms of execution time and

sensitivity, resulting in a second version (Figure 3). Specifically,
the initial development and evaluation of the presented
CAD tool has successfully concluded in 2012, resulting
in its original deployed v.1.0. This version was integrated
to the routine clinical workflow for MS patients across
the UPHS network. Ever since, we have been monitoring
technological developments and methodological advancements
that could improve the performance of the deployed tool.
Taking into consideration its high throughput application
we have only performed some basic code refactoring in
2020, when we observed that the numbers of assessed scans
were lowered due to pandemic-related cancellations. The
number of patients assessed during the clinical use of v.1.0
(2012-07/2020) and v.2.0 (07/2020-Now) were 14, 900 and
4, 875, respectively.

The algorithmic differences between the CAD tool’s v.1.0
and v.2.0 relate to the steps of rigid registration and brain
extraction. Further modifications have also been considered
that are unrelated to any methodological components and are
associated with the optimization of graphical elements of the tool
according to feedback from the technologists in the “3D-lab”. For
the rigid registration step, we specifically substituted the FSL’s
FLIRT (45) algorithm that was used in v.1, with “Greedy” (https://
github.com/pyushkevich/greedy) (46) to optimize for the total
execution time. “Greedy” is a CPU-based C++ implementation
of the greedy diffeomorphic registration algorithm (47) and was
designed and developed for rapid registration of radiologic scans.
“Greedy” shares the Symmetric Normalization (SyN) of the ANTs
registration approach (42). Greedy, on the other hand, is non-
symmetric, which makes it quicker (in applications like multi-
atlas segmentation, where symmetric property is not required).
For the brain extraction step, the initial version of the CAD
system (v.1.0) used the “Brain Extraction Tool” (BET) (48).
During the CAD’s refactoring to its second version, in 2020, BET
was substituted by an in-house deep learning based method (26)
developed explicitly for brain MRI scans including pathologies,
with the intention of improving the execution time, as well as the
brain extraction quality.

4. RESULTS

Figure 7 depicts the number of clinical cases assessed by the CAD
software, since its integration into the routine clinical workflow.
The increase over the years reflects both the growth of the patient
population at the UPHS MS clinic and the greater application
of the CAD software across the UPHS network, i.e., at satellite
locations. We should note the drop in the patients evaluated in
2020 due to the COVID-19 pandemic, when patients cancelled
or postponed their followup MRI examinations.

For the assessment of lesion burden changes, we have not
conducted an explicit quantitative performance evaluation of the
two versions of the software. However, the “3D-lab” technologists
have internally reported the sensitivity of the initial version
in detecting new lesions as 88%, whereas the sensitivity of
v.2.0 being greater than 95%, following the aforementioned
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FIGURE 7 | Annual use of the software displayed per year for the number of

patients assisted.

TABLE 3 | GBCA reduction initiative: quantitative performance evaluation from the

feasibility and the follow up validation studies.

Metric Feasibility study Follow-up study

Sensitivity 0.78 0.88

Specificity 0.98 0.71

Precision 0.82 0.45

Recall 0.78 0.88

Positive predictive value 0.82 0.45

Negative predictive value 0.97 0.95

False positive rate 0.02 0.30

False negative rate 0.22 0.13

Accuracy 0.95 0.75

F1 score 0.80 0.59

algorithmic modifications. In terms of execution time, the “3-
D lab” technologists require minimal manual intervention to
execute the tool (approximately 1 min), and the total time that
the approach takes to perform a single patient assessment, on an
4-core CPU (Intel Xeon W-2123 3.60 GHz), has been reported
as 11 min for v.1.0 and 5.5 min for v.2.0, on average. The false
positives are relatively easy to discard by humans because they
tend to occur outside of the white matter of the brain, and in
specific areas of the images that are inherently noisy.

For the initial testing phase of gadolinium reduction initiative,
we conducted a 2 month feasibility study during which a
total of 141 patients participated. Following Table 1, we note
an 88% reduction in the overall use of GBCAs. We further
note a 98% reduction of GBCAs use, when considering only
patients with new lesions. Following a performance evaluation,
we maintained a high specificity (shown in Table 3), while
keeping high sensitivity of 78%. This feasibility study showed
promising results, and the new protocol, with contrast imaging
conditioned upon finding new disease activity on CAD results,
became the current standard.

Further evaluation of the gadolinium reduction initiative
described a 3 months analysis for 632 additional MS patients, as
a follow up validation. In this analysis, we note a reduction of
58% of GBCAs’ use, which is lower when compared to the 88%
reduction observed in the feasibility study.We further note a 71%
reduction of GBCAs use on only patients with existing lesions.
This study yielded an increase in sensitivity to 88% (from 78%
of the feasibility study), while a reduction occurred in specificity
from 98% of the feasibility study to 71%.

These metrics are being passively tracked by the “3-D lab”, and
the current estimate is about 85% reduction in GBCAs use, as the
protocol continues to be utilized across nearly all UPHS sites.

5. DISCUSSION AND FUTURE WORK

In this study we have presented a CAD based method deployed
and integrated to the routine clinical workflow for (i) assisting
neuroradiologists assess MS lesion burden changes, and (ii)
reducing the need for use of GBCAs. We demonstrate the
successful evaluation of this computational approach in both
the initial evaluation studies and during its routine clinical use,
following its complete integration to the clinical workflow since
2012. The findings of this study support our claims that CAD
based systems built around clinical settings forMS can contribute
in improving patient care and assist radiologists in making better
informed decisions.

Temporal changes in patients with existing diagnosed
MS lesions were identified better through the presented
computational approach using a 3-D T2-FLAIR MRI
sequence, than the routine clinical interpretation based on
visual observation. The computational approach assisted in
improving the sensitivity and false-positive ratio in identifying
patients with new (or growing) lesions compared to manual
interpretation. Cases can be run in real time (during the patient
scanning session, and in < 10 min) within the clinical workflow
due to the processing time being so short. The approach has been
tuned toward producing the highest possible sensitivity of 90%
on a patient basis, where GBCAs are given only when necessary,
but still with a low rate of false positive of 30%, allowing for
efficient temporal change assessment (Table 3).

Non-enhancing new lesions are also of great interest from a
clinical standpoint. In fact, as the number of treatment options
for MS patients grows, neurologists caring for them are more
interested than ever in knowing if new lesions have emerged
from previous scans, regardless of their enhancing status. The
presented computational approach is not intended to detect
lesions that are enhancing. However, we do not believe that these
are clinically significant, and the detection of enhancing lesions
“manually” (i.e., by visual observation) is relatively simple.

The presented computational approach helps answer the
essential clinical question that neurologists are asking when
ordering a follow up MRI scan: “Are there new white matter
lesions from the prior scan?”. This is still one of the most relevant
metric for assessing the performance of a therapeutic regimen.
The high sensitivity (90%) of this approach in detecting new focal
MS lesions allows neurologists to determine if a patient’s current
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Disease Modifying Therapy (DMT) is appropriately controlling
their disease (i.e., no new MS lesions) and may be continued,
or if it is not controlling their disease (i.e., new lesions are
detected) and a change in DMT may need to be considered.
This is more relevant nowadays that the number of available
therapeutic options has increased in the past several years,
including higher efficacy drugs that also carry the potential for
more adverse effects.

Although the presented approach has a clear benefit to clinical
practice, it also has its limitations. One of them is that the
different time-point MRI scans have to be acquired at the same
institution, or more specifically to have a record stored under the
institutional PACS. This is required for the approach to produce
appropriate results shared with the attending clinician through
the platform used typically for the assessment of MS patients. Use
of multi-institutional data with medical record number varying

across patients and scanning sessions has not been utilized yet, as
it was out of scope of this 10-year analyses. Another limitation is
the assessment of the rarely observed spinal cord lesions that are
not taken into consideration. Any new lesions formed around the
spinal cord are currently not considered/processed, and can be
potentially missed through the computational approach, since we
have primarily focused only on the brain. Limitations also occur
when a lower resolution space is used as the reference space to
avoid the interpolation artifacts that are generated going from a
lower resolution space to a higher resolution space.

The presented approach could also be further utilized in a
clinical research setting, such as drug trials, when the ability of the
approach to detect temporal changes consistently and reliably,
with high sensitivity 90%, is critical. Although the approach
presented here does not calculate either the exact volume of
each lesion, or the total change in lesion load, this quantification

capability belongs to the immediate future work incorporating
multi-institutional pilot projects.
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