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Nanotechnology has been commonly used in a variety of applications in recent

years. Nanomedicine has also gotten a lot of attention in the medical and treatment

fields. Ultrasonic technology is already being used in research as a powerful tool

for manufacturing nonmaterial and in the decoration of catalyst supports for energy

applications and material processing. For the development of nanoparticles and the

decoration of catalytic assisted powders with nanoparticles, low or high-frequency

Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the

nanotechnology from the past few years and bring tremendous success in various

diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated

with desired capabilities and targeted toward different targets. This review first highlights

the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next,

we explain various nanoparticles with ultrasonic technology for different diagnosing

and treatment of various diseases. Finally, we explain the challenges face by current

approaches for their translation in clinics.
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INTRODUCTION

The production of new compounds and applications has resulted from research into integrated
approaches. During the past few decades, ultrasonic-assisted processes have intrigued the
imagination of multidisciplinary scientists searching for more effective structures. A special
paper on “Ultrasonic Nanotechnology of Ultrasonic Sonochemistry has given an insight into
ultrasounds numerous applications. Ultrasound application has become the most imperative
technologies to produce different natural amalgams because it is environmentally sustainable,
hygienic, prolific, and resourceful. When hydrodynamic bubbles produced by high-octane waves
of ultrasound collapse, micro-reactors with temperature and high pressure are created. Efficiency
and product yield while speeding up chemical reactions in numerous processes. This question
has been extensively discussed to improve the physicochemical properties of nanomaterials when
generated by a sonochemical facilitated process. Siadatnasab at el. Reported that sonochemical
reaction of methanolic Cu (II) diethyldithiocarbamate with phosphomolybdic acid formed
a green precipitate of Cu3 nanohybrid, which was used for sonochemical degradation of
Rhodamine B (RhB) (1). Another research group developed a scalable synthesis of tunable
titanium nanotubes via sonoelectrochemical process (2). They used sonoelectrochemical process
to synthesize TiO2 nanotube arrays on implantable Ti 6–4 structure were generated and tested
using a sonoelectrochemical method as a drug delivery system for antibacterial applications (2).
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A sonochemical-assisted process was utilized for synthesis
and evaluation of nanostructured oil in water emulsions for
targeted delivery of protein drugs (3). Protein extracted from
a medicinal leech tissue was used to formulate nanoemulsion
and sonochemical process was employed to form isotropic and
kinetically stable nanoemulsion with least surfactant and optimal
solubility and stability for drug delivery of protein drugs. (3).
Allami et al. (4) discovered that waves of ultrasound produced
biodiesel with lower viscidness, higher oxygen content, and
thickness that improved fuel combustion. Ultrasound was used
to clean a granulated surface by removing inadequate areas for
dissolved substances (5). They utilized an ultrasound-assisted
method for photocatalytic dye degradation and adsorbent
regeneration to synthesize ZnO nanoparticles. The crystallization
process is assisted by hydrodynamic bubbles using ultrasonic
irradiation during the process. In this regard, Azarhoosh et al. (6)
have used ultrasonic irradiation to complete the representation
stage of a aluminophosphate-34 catalyst and evaluated the results
of the parameters involved during this process for the adaptation
of methanol with light olefins. Synthesis of ZnO nanoparticle
was also performed using a sonochemical process, doped with
numerous lanthanide cations (7). In a sono-photocatalytic
membrane reactor, the produced photocatalysts were able to
effectively oxidize the natural contaminant. Panahi et al. (8)
used ultrasound waves for the manufacture and synthesis of
benzimidazole of a porous zirconium/Aminophylline polymer
co-ordination. Increased catalytic synthesis of benzimidazoles
was achieved through the electron transfer mechanism below
the control of ultrasound waves. Ultrasound waves are one of
the most effective extraction methods currently available with
safe profile to biological tissues. High-intensity sound waves can
cause bioactive compounds to diffuse quickly into the solvent,
resulting in a faster extraction time. Bayrami et al. used this
technology to create biogenic ZnO nanoparticles for biomedical
applications using leaf extracts from medicinally important
plants like Nasturtium officinale L. and Vaccinium arctostaphylos
L. (9, 10). These bio-synthesized photocatalysts have provided a
gateway to several conservational refinement classifications due
to improved photocatalytic properties.

ZnO nanoparticles waste was used as sonocatalysis for
acetaminophen elimination. The UVC structure degraded
acetaminophen to fewer toxic arbitrates (11). The sonocatalytic
behavior of ZnTi nano-layered double hydroxide was greatly
upgraded when a component of Zn2+ was replaced with
Cu2+ (12). A primary reason for this change was the reduced
band difference arising from the transition of charge to
Cu(II) from Ti(IV) when bridged with oxygen atoms. Another
study was carried through a radically mediated process to
use znO-loaded nano-cellulose as a tetracycline sonocatalyst
(13). The ultrasonically triggered nanocomposite contributed
to nearly complete tetracycline dilapidation in combination
with peroxymonosulfate. This review first highlights the
ultrasonic treatment and processing of Nanoparticles for
Pharmaceuticals. Next, we explain various nanoparticles with
ultrasonic technology for different diagnosing and treatment of
various diseases. Finally, we explain the challenges face by current
approaches for their translation in clinics.

ULTRASONIC TREATMENT OF
NANOPARTICLES FOR
PHARMACEUTICALS

Ultrasound is a pioneering technique used for synthesizing
sonochemical, breaking down the agglomeration, blend, and
activate particles. Ultrasound is a crucial technique for nanoscale
materials, particularly in nanotechnology, to be synthesized and
processed. Nano-sized particles are used in a wide variety of
scientific and industrial fields as nanotechnology has gained
such widespread scientific interest. This versatile and variable
material’s high potential has also been discovered by the
pharmaceutical industry. As a result, nanoparticles are used in
several different applications in the pharmaceutical industry.
Drug distribution by nanoparticles is a validated process for
supplying orally or injected active agents (14). When modern
methods open up entirely novel avenues of medical care, nano-
formulated medicines can be dosed and distributed even more
efficiently. This high-potential technology aids in the delivery of
medicines and temperature control to diseased cells. Side effects
of drugs don’t affect healthy cells because of direct drug delivery.
Cancer therapy is one field where nano-formulated drugs have
already shown promising results.

NANOMATERIALS PROCESSING

Nanomaterials have a diameter of under 100 nm and are known
as particles. Their processing needs to be increased. Agglomerates
should be dissolved nanoparticles process, and for bonding
forces to shape. Ultrasonic hydrodynamic is a popular process
for nanomaterial dispersion and decomposition. Nanomaterials
come in a variety of forms and provide opportunities for
medicinal research. The inner size of Carbon Nanotubes (CNTs)
allows more drug molecules to be condensed and functionalized
(14). DNA, active agents, and proteins targeting ligands, and
other molecules may be carried into cells by CNTs. CNTs
have established themselves as the archetypal nanomaterials,
with nanoscience and nanotechnology being one of the most
active fields.

SWCNT has a diameter of 1.0–1.4 nm and is much
smaller. Cells can absorb nanoparticles and nanotubes (15).
Functionalized Carbon Nanotubes (f-CNTs) improved solubility
and allowed tumor targeting (Figure 1). A sonochemical process
can be used to make high-purity single-walled carbon nanotubes
(SWCNTs) (16).

The vaccines may be used for the delivery of functional
Carbon Nanotubes (f-CNTs). The basic theory is to bind the
antigen to the carbon nanotubes while retaining their shape,
leading to a certain antibody reaction. Ceramic nanoparticles
have a porous surface region that is suitable for the transmission
of medicinal items.

Previous studies showed that ULTS of phospholipid-
polyethylene glycol (PL-PEGs) fragments of (SWNTs) with
the capacity to prevent cellular non-specific absorption.
Unfragmented PL-PEG facilitates cellular absorption selective
of targeted SWNTs in two different cell receptor groups. The
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FIGURE 1 | Sonochemical processing of SWCNTs. Shows that silica powder

in a solution of the ferrocene-xylene combination was sonicated for 20min

under atmospheric pressure. Sonication produces highly pure SWCNTs on the

surface of the silica powder.

FIGURE 2 | Ultrasonic dispersion of SWCNTs with PL-PEG.

integrity of PEG is crucial to help ligand-functional nanotubes’
cellular absorption because fragmentation is a potential side
effect of ultrasound for dispersing SWNTs (Figure 2) (17, 18).

CONJUGATES OF DRUG POLYMER

Drug-polymers conjugates are manufactured using diverse
chemicals on the efficient groups of the pharmaceutical and
polymer carrier. The two major types of conjugates are drug
conjugates and protein conjugates with adequate polymers (19).
The most active polymer of the theragnostic drug-polymer
conjugates is N-(2-hydroxypropyl) methacrylamide (HPMA)
(19, 20). Yuan et al. (21) recently created theragnostic copolymers
based upon poly (HPMA) loaded with Cu-64 and RGD as a
target ligand for the target of tumor ontogenesis (Figure 3).
The drug-polymer conjugate of prostate cancer xerographers
was tested by a positron emission tomography (PET) 3 h after
intravenous injecting, the tumor Cu-64 radioactivity in rats. The
pharmacokinetics of Cu-64 in tumor (21) increased by 1 time
with the drug-polymer conjugate.

Polymeric/Magnetic Nanoparticles
To produce polymer nanoparticles, monomer polymerization or
polyp dispersion were used (22–26).Magnetite (27) nanoparticles

of iron oxide are utilized as magnetic nanoparticles. Iron
oxide nanoparticles have been extensively used due to their
superparamagnetic properties and biocompatibility. The most
practical methods for producing iron oxide nanoparticles are
co-precipitation and thermal decomposition (27–31).

Due to their intrinsic theranostic properties, magnetic
nanoparticles play a role as a hyperthermia agent with high
transverse relaxation time (T2) for MRI and immunotherapeutic
platforms for immunological diseases (28, 32–34). Recent
evidence reported that autophagy pathway plays significant roles
in targeting and degrading polymeric nanoparticles via auto-
lysosomes (35). Polymeric nanoparticles are affected by cells via
endocytosis and transferred via lysosomes that are an endosome
pathway for degradation (Figure 3) (35, 36).

In breast cancer cells that overexpress folate receptors and
fibroblast cells with a low number of pteroylmonoglutamic Acid
receptors, the effect of quantum dots loaded nanoparticles on
pteroylmonoglutamic Acid receptor was investigated in this
study (37). Results showed that folate-decorated quantum dots
loaded synthetic amphiphile nanoparticles were better than
fibroblast cells. Synthetic amphiphile copolymers conjugated to
targeting ligands may be a successful theragnostic approach
for targeted diagnosis and treatment. PLA-TPGS nanoparticles
were produced to syndicate their benefits and allow long-term,
controlled imaging with a cancer cell. Biocompatibility and
cellular absorption were improved because of this novel strategy
by lowering their toxicity. The xenograft model was used to
examine the biodistribution of the quantum dots and iron oxides
loaded synthetic amphiphile nanoparticles among the different
structures. Ex vivo fluorescent images showed a 51.5% increase
in the kidney, 67.1% increase in fluorescent intensity in the
liver, and 152.8% increase in the tumor. The blood-brain barrier
surface adsorption of nanoparticles revealed that brain samples
had more fluorescent signals than other organs.

Inadequate biodistribution of the quantum dots and iron
oxides loaded synthetic amphiphile nanoparticles through the
selective semipermeable border of endothelial cells (Figure 4).
The advantages of multimodal imaging system, which results
in a probe that is extremely sensitive and has deep infiltration
for up to 6 h, confirming the diagnosis made by every
individual’s imaging. It was also proposed that using this
multimodal approach to encapsulate therapeutics and conjugate
ligands resulting in the progress of advanced multimodal
theragnostic nanomedicine. Medarova et al. (38) developed the
use of high resolution in vivo optical MRI, NIR and iron
oxides for simultaneous imagery and siRNA distribution in
tumors. N-succinimidyl-3 propionate was utilized to bind siRNA
finished dextran particles to bridge the surface area of iron
oxide nanoparticles and later the NIR dye Cy5.5 was also
coupled to the surface area. The siRNA dissemination and its
silencing capabilities were monitored with MRI and NIR optical
imaging for 48 h using dextran coated iron oxide nanoparticles
(Figure 5) (38).

Solid Lipid Nanoparticles
Nanoparticles of stable lipid are a secure and efficacious
substitute for intravascular supply (39). They have a strong
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FIGURE 3 | The degradation process of PLGA-based nanoparticles is depicted schematically. Reproduced with permission (35).

hydrophobic heart with medicine inside. Nanomedicine made
from biocompatible lipid substances solid at room temperature
is Stable lipid nanoparticles. The warm and cold amalgamations
are two significant approaches of preparation. Strong lipid
nanoparticles enter the blood cell easily because of their compact
size and lipotropic surface. The tightened endothelial cell blood-
brain barrier is crossed by strong lipid nanoparticles with a
range of <100 nm. The high efficiency of medication loads
keeps the medication steady in the strong lipid matrix and
makes the controlled release (40–42). As for the theranostic
platforms for selective co-delivery of diagnostic and therapeutic
agents, solid lipid nanoparticles like other nanomedicines are
utilized (42, 43). Lymphatic delivery of nanoparticles of solid
lipid has been developed as a technique to improve the
transfer of beneficial agents into the lymphatic environment,
which leads to improved oral bioavailability (44). Bae et al.
(45) reported the applications of paclitaxel and siRNA loaded
in solid lipid nanoparticles as theranostic anti-cancer agents
with beneficial outcomes. The solid lipid nanoparticles were
electrically complexed with the exterior surface of solid lipids and
were generated with a stable core nanostructure like quantum
dots and paclitaxel in the lipid shell, resembling low-density
lipoproteins (LDL).

Dendrimers
Dendrimers are a form of synthetic nanomedicine made up of
a spherical polymer with a lot of branches. Nanotheranostic
systems usually use dendrimers that are 10–100 nm in size (46).
Dendrimers can be made in two ways: beginning from the central
core and moving outwards (divergent synthesis) or starting
from the periphery and working inwards (top–down synthesis)
(convergent synthesis). They are made by adding branching units
to an amine center over and over again (ethylenediamine or
ammonia). Dendrimers are repeatedly rounded by a branching
sequence that leads to an early, perfect 3D geometric pattern.
Dendrimers were harmful as cell membranes were damaged
by their positive surface load. Dendrimers encapsulated drugs
are prone to escape fast before hitting the target location in
some cases (47, 48). The polymerization degrees are regulated by
the synthesis of dendrimers of various sizes, molecular weights,
and chemical compositions (49, 50). Theranostic dendrimers
have a circular structure that holds both therapeutic and
diagnostic agents with several cavities and divisions. The 5th
generation of dendrimers with higher hydrophobic value is
typically preferred in dendrimers (47–50). Poly (amidoamine)
dendrimers generation 5 is coated with a replicant adenovirus
serotype 5 carrying the sodium-iodide symporter and tested
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FIGURE 4 | Multi-modal imaging nanoparticles (A) Confocal photographs of PLA-TPGS nanoparticles with quantum dots and iron oxides processed in vitro with

MCF-7. (B) MCF 7-graphed tumor-bearing mouse portions of axial MRI photographs. (C) Pictures under fluorescent light of various organs. The arrow shows the

intensity of the confocol microscopy.

for transudative efficacy in a liver cancer xenograft model
using an I-123 scan. In vitro, adenovirus serotype showed
partial resistance to dendrimer-coating neutralization antibody
and increased transduction efficiency in coxsackie adenovirus
receptor-negative cells.

The main limitations impeding the clinical applications
of adenovirus-mediated gene therapy are excess expression
of coxsackie-adenovirus receptor (CAR), excess presence of
neutralizing antibodies, and adenovirus sequestration by the
liver (51, 52). Recent studies have exhibited the capacities of
dendrimers to overcome these limitations through coating of
the adenovirus to build adenoviral vectors (52–56). Different
studies have reported successful use of this approach in cancer
therapy. They used synthetic dendrimers to coat sodium iodide
symporter (NIS) as a theranostic gene to develop adenoviral
vectors for combination of systemic oncolytic virotherapy and
NIS-mediated radiotherapy (54, 55, 57, 58). Taratula et al.
(59) designed a new dendrimer-based theranostic system for
phthalocyanines (Pc) delivery to tumors for tumor-targeted
delivery of phthalocyanines Adding a hydrophobic linker to

the Pc molecule during the preparation stage makes physical
encapsulation of the hydrophobic compound into a generation 4
polypropylene imine (PPIG4) dendrimer much easier. To boost
biocompatibility and tumor-targeted delivery with up to 24 h of
photodynamic therapy, PEG and LHRH peptides were applied
to the surface of the Pc-PPIG4 complexes. The LHRH-targeted
theranostic dendrimer is capable of successful internalization
into cancer cells as well as tumor aggregation, according to in
vitro and in vivo imaging studies (59–67).

Liposomes
Liposomes are composed of amphiphilic phospholipids and
cholesterol (68). Liposomes are spherical particles with a
diameter ranging from 400 to <400 nanometers (62, 69).
Liposomes are effective vectors for drug/diagnostic delivery
due to their size, hydrophobic and hydrophilic nature,
biodegradability, biocompatibility, and immunogenicity.
Mechanical dispersion, solvent dispersion, and detergent
removal are the three most popular liposome preparation
processes. Liposomes have several drawbacks, including poor
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FIGURE 5 | It reveals that in vivo MRI was conducted before and after 24 h the administration of nanoparticles (9L-GFP) (9L-RFP) on rats with tumors. (A) After the

tumor was injected, T2 relaxation reduced dramatically. It should be noted that the T2 muscle tissue relaxation times have not improved. (B) Ex vivo excised tumor

high-resolution RMIs (78m isotropic). Differentiated signal loss (arrows) indicating the concentration of the probe is quickly recognized in tumors that resulted from

muzzle-injected controls. (C) The optical in vivo NIR imagery of the same rat showed a tumor-based high-intensity NIR signal. This meant that the tissue had been

penetrated by the nanoparticle sample. (D) Ex vivo NIR optic imaging showed a large increase in fluorescence in the polyps substantially more than muscle tissue (P =

0.0058). Reproduced with permission from Medarova et al. (38) and Muthu and Singh (39).

drug loading efficiency, batch-to-batch manufacturing volatility,
and poor stability (70–72). Beneficial agents may be encapsulated
in the middle or integrated into the lipophilic bilayer shell while
nanosized diagnostic agents such as iron oxide nanoparticles,
quantum dots, and gold nanoparticles may be incorporated in
the lipophilic bilayer shell (71, 73–77). Advanced theranostic

liposomes are conjugated with molecular biomarkers for a
targeted outcome. To resolve immune system opsonization
and fast elimination from circulation, stealth liposomes, or
PEG-coated liposomes, were established with stability and a
longer half-life in blood (74, 75, 78). PEGylated liposomes,
standard nude liposomes (without TPGS coating), and TPGS
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coated liposomes were tested in vitro on cell lines to see whether
they could guard against brain tumors and were found to be
more effective than those coated with PEGylated liposomes
(79). Muthu et al. (80) rendered TPGS-coated theranostic
liposomes with and without docetaxel and quantum dots
targeting moieties. Targeted theranostic liposomes exhibited
higher cellular absorption and cytotoxicity than non-targeted
liposomes (Figure 6).

Micelles
Micelles are hydrophobic, hydrophilic structures with a self-
assembling hydrophilic core for parenteral management of
products that are badly water-soluble (81–83). The main
synthesis method for micelles in nanoscale is dispersion of
surfactants in water which then generates a two-component
micelles with a hydrophilic shell and a hydrophobic core (84–86).
Polymeric micelles are self-assembled and aggregated nanoscale
assemblies with diameter of ≤100 nm consisting of amphiphilic
copolymers enclosed with an aqueous phase. The hydrophobic
and neutral parts of copolymers are bound together due to an
attractive force between them, the process which facilitates the
micellization. The micellization process depends on the micelle
concentration in a manner that when the micelle concentration
reaches a threshold level called critical micelle concentration
(CMC), the micellization process starts (87, 88). The stability of
the micelles is determined by the strong cohesive force between
the drug and the center of the polymer and the crosslinking of
the core or shell. The mechanism of direct dissolution and the
organic solvent system is usually used to produce them (89). The
hydrophobic core of micelles, which can be given intravenously
in and the outer hydrophilic layer using a targeting agent can be
filled with diagnostic agents (90–93). Theranostic micelles with
<50 nm of renal escape diameter improve the permeability of the
endothelial cell and theranostic reticulate system provide solid
tumors (94, 95). The paclitaxel-charged micellar formulations of
Genexol-PMTM are approved to be an effective standard for the
provision of cancer drugs (96–99).

Gold Nanoparticles
Gold nanoparticles with gold nuclei are another versatile medium
with desirable values for theranostic systems (100–103). They
are made of 1.5% to 10 nm core sizes, offering a powerful drug
and ligand conjugation with an expanded surface area 114.
Hydrogen tetrachlorocuprate is a common method of preparing
gold nanoparticles in the chemical treatment process. Gold
nanoparticles can be combined as advanced theranostics with
drugs and ligands to precisely identify the target receptor for
successfully targeting (104, 105). Therapeutic loading is carried
by non-covalent interaction or covalent chemical conjugation.
The inherent characteristics of gold nanoparticles are diagnosis
characteristics (104–107). Heo et al. (108) defined surface-
functionalized Gold nanoparticles of PEG as the theranostic
platform associated with beta-cyclodextrin (beta-CD). The
inclusion complex Paclitaxel and beta-CD is bound to gold
nanoparticles. Gold nanoparticles are more related to cancer cells
such as HELA, A549, and MG63 than NIH3T3.

Carbon Nanomaterials
Carbon nanomaterials or nano carbons were analyzed for
theranostic purposes because of their peculiar chemical
and physical qualities (109). Carbon nanomaterials such as
carbon nanotubes (CNT), zero-dimensional (0D), sp2-carbon
nanomaterials (sp2-carbon nanomaterials), 2D graphene, and
carbon point with the size of nano-clusters smaller than 10 nm
(109, 110). Due to its large area, its ability of diagnostic agents,
and its aptitude for surface modifications (111–113), CNTs were
considered suitable for theranostic applications. CNTs have
a cylindrical form due to their various graphene sheet layers.
Two kinds of carbon nanotubes are SWCNTs or MWCNNTs.
CNTs are common methods for ball-milling, laser therapy,
and chemical vapor deposition method (111, 114–118). In
recent years, multifunctional CNT-based systems for theranostic
applications have resulted from many synthetic methods
for CNT functionalization. The theranostic applications for
photoluminescent in vivo tumor imaging in the 1.0–1.4m
injected intravenously injected SWCNTs and NIR absorbers and
heaters at 808 nm for lower doses for photothermal removal were
seen by Robinson et al. (119).

TheranosticMWCNTs were first developed by Das et al. (120),
via mixing acid oxidized MWCNTs with four distinct functional
drive elements according to cellular uptake studies.

ULTRASONIC NANOPARTICLES
TRANSLATION CHALLENGES IN CLINICS

Biological Challenges
Theranostic nanomedicine has plenty of research into disease
diagnosis and treatment to improve human health. Nano
theranostics remains a new paradigm for disease detection
and care in hospitals. One of the toughest things to bring
theranostic nanomedicine to clinics is nano-bio engagement.
In interactions with biological materials, nanomedicine can
cause problems such as inflammation and other diseases
due to its potential toxicity depending on the potential and
solubility of different parameters (121–123). A pseudo-allergy
linked to complementary activation is an immediate adverse
immune response from several nanoplatforms (124, 125). Study
about pathophysiology and disease heterogeneity is imperative
to the physicochemical characteristics of nanomedicines.
Besides, as theranostic nanomedicine is individually distinct,
it would be very difficult to have therapeutic clearance for a
single-size solution (126). Nanoparticles with high therapeutic
properties can not necessarily be good screening instruments,
Consequently, the safety profile of human nano theranostics
remains a major concern, which needs long-term surveillance of
all early and advanced stages of clinical trials (127).

Challenges of Commercialization
The challenge in designing a synthesis technique is also
a key concern with the clinical translation of theranostic
nanomedicines. Poor reproductivity and low efficient large-
scale synthesis, and variable physico-chemical characteristics are
common challenges toward clinical applications of nanoparticles.
Nanoplatforms with complex manufacturing methods are barely
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FIGURE 6 | TPGS liposomes were used to transport theranostic drugs in vitro. (1) (A) A single quantum dots-loaded TPGS coated liposome in a 100 nm scale, and

(B) multiple quantum dots-loaded TPGS coated liposomes after storage in a 500 nm scale. (2) (A,B) Confocal laser scanning microscopy images of MCF-7 cells

treated with non-targeted TPGS-based multi-functional liposomes (left column) and targeted TPGS-based multi-functional liposomes (right column) for 2 h (right

column). Quantum dots showing red fluorescence from cytoplasmic liposomes, (B) channels displaying blue fluorescence from dye-stained nuclei, and (C) quantum

dots displaying blue fluorescence from dye-stained nuclei, and (C) Quantum dots and blue dye merged channels.

incorporated into clinical practice due to disadvantages caused
by drug companies (126, 127). Another big issue that needs to
be addressed is the broad gap between the research community
and regulatory authorities. Many government regulations are
used to restrict the commercialization of nanomedicine based on
regulatory considerations relevant to quality and manufacturing
standards. There is an important effect on a prompt, effective
translation of theranostics into the industry (128, 129). However,
these criteria may not be satisfactory and need to be updated
to validate the performance effectiveness of other human-
using nanotheranostics.

Clinical Considerations and Perspectives
The first nanocarrier for drug delivery, approved by the US
FDAwas Doxil (PEGylated liposomal doxorubicin) and designed
for delivery of chemotherapeutic agent doxorubicin (130).
The nanoparticles facilitated Doxil, exhibit several advantages
over free doxorubicin including selectivity, specificity, and

reduced cardiotoxicity (131). The successful clinical outcomes
of Doxil in cancer therapy has led to the development
of many other nanoscale carriers. Although nanotechnology-
assisted theranostic systems are promising inventions in
medicine, concerns on the safety of these nanosystems due to
unknown characteristics of nanoscale materials have impeded the
clinical applications of these systems. To address the concerns

on the safety and understand the safety profile conducting
animal studies, laboratory experiments and clinical trials is

necessary. Stability of nanosystems is other important aspect
of nanosystems for successful translation into clinical practice.
Exposure to human subjects is inevitable to address these issues.

Experiments in human subjects are complementary to in vitro
and in vivo animal studies (132, 133). Failure in human studies

can be too expensive and sometimes irrecoverable. Therefore, it
is necessary to adopt a novel standardized nano-safety platform
to develop reliable systems and avoid potential candidates with
adverse outcomes (134).
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Considering these risks and the unique characteristics of
nanosystems, FDA necessitates conducting preclinical studies
involving animals, human cells, or tissues prior to any study on
human subjects as clinical trials for any nanoscale medications.
Following the evaluation of FDA on the outcomes of the
preclinical studies, they allow for Phase I clinical trials which
is a dose-response trial with a small group of subjects (sample
size: 25–100) to determine the maximum tolerable dose for the
target product. These studies are followed by Phase II trials with
greater sample size including 100–500 subjects, which evaluate
the safety and efficacy of the developed nanomedicine. FDA
allows conducting Phase III trials (sample size of 500–3,000
subjects) for those drugs that passed the Phase II clinical trials,
and it is determined whether the application will be approved or
not based on the findings of the Phase II (133).

To overcome the biological challenges to nanotheranostics,
a great deal of research needs to be done about how the
interaction between patient biology and nanomedicine is to be
understood. In preclinical trials, animal models can be used
to assess the appropriateness of theranostic nanomedicine in
the treatment and imagery of patient populations of human
beings (135). To evaluate future patient risk, nanotoxicology
profiles need to be adopted and followed during the early stages
of clinical development (124–129, 135–137). Recent advances
in nanotheranostics have utilized improved permeability and
retention as well as other characteristics of nanoparticles
such as surface functionalization, selectivity and sensitivity,
and biodegradability.

This would have enormous potential for theranostic
applications in developing bio-mimetic nanoparticles, which
exploit the normal functioning of the source. The effect of
theranostics can be further improved by the use of smart
stimuli-based nanoparticles to release therapeutic loads on the
site. This method of provision and real-time analysis would help
the clinician to adjust a care plan for heterogeneous and adaptive
diseases. A mindful awareness needs to spread for the technical
problems facing the industry in marketing systems. Good
collaboration is required between laboratory and pharmaceutical
groups. For large-scale theranostic nanoparticles synthesis

and improvements on good manufacturing, practice must be
made. Process optimization applications like Aspen is useful
in an industrial setting to define key parameters to maximize
performance in the early stages of manufacture and cope with
batch-to-batch variations. This could be in a supervised and
efficient way (138).

Production success depends on the readiness of the
employees for product specifications and barriers. Theranostic
nanomedicines can affect human health, but by incorporating the
above lessons in the early stages of manufacturing, manufacturers
can produce efficient products.

CONCLUSION

While ultrasound nanomedicine has dramatically progressed and
is continuing to make substantial progress, the field must evolve
before human medicine can transform. Nanotheranostics are
supplementary to nanomedicine that could be used in medical
centers to monitor disease. Nanotheranostics is promising for
a deeper understanding of the therapeutic and diagnostic
interwoven substances that are necessary to maximize their
clinical application potential. Besides, both commercialization
and regulatory stages need to be followed by the most promising
approaches for bringing ultrasonic nanomedicine from research
laboratory studies into clinics.
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