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We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue

syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical

illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion

and endotheliopathy, and (b) intestinal injury in these illnesses with our previously

published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid

hormone function associated with redox imbalance in ME/CFS. Moreover, we describe

interlinkages between these pathophysiological mechanisms as well as “vicious cycles”

involving cytokines and inflammation that may contribute to explain the chronic nature

of these illnesses. This paper summarizes and expands on our previous publications

about the relevance of findings from critical illness for ME/CFS. New knowledge on

diagnostics, prognostics and treatment strategies could be gained through active

collaboration between critical illness and ME/CFS researchers, which could lead to

improved outcomes for both conditions.

Keywords: post-viral fatigue, hypoperfusion, endotheliopathy, gut permeability, endotoxemia, pituitary, non-

thyroidal illness syndrome, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness that affects
millions of people worldwide (an estimated 800,000 to 2.5 million in the USA) (1, 2). Impaired
function, post-exertional malaise, and unrefreshing sleep are core symptoms (1, 3, 4). At least one-
quarter of ME/CFS patients are house- or bedbound at some point in their lives (1); the illness can
be completely incapacitating (5). The etiology of the illness is unclear (6, 7) and peri-onset events
include infection-related episodes, stressful incidents, and exposure to environmental toxins (8).

Critical illness refers to the physiological response to virtually any severe injury or infection,
such as head injury, burns, cardiac surgery, SARS-CoV-2 infection and heat stroke (9). Researchers
make a distinction between the acute phase of critical illness—in the first hours or days following
severe trauma or infection; and the chronic or prolonged phase—in the case of patients who survive
the acute phase but for unknown reasons do not start recovering and continue to require intensive
care (10–13). Regardless of the initial injury or infection, these “chronic Intensive Care Unit (ICU)
patients” experience profound muscular weakness, cognitive impairment, pain, vulnerability to

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.818728
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.818728&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jonas.bergquist@kemi.uu.se
https://doi.org/10.3389/fmed.2022.818728
https://www.frontiersin.org/articles/10.3389/fmed.2022.818728/full


Stanculescu and Bergquist Drawing on Critical Illness to Explain ME/CFS

infection, etc. (9, 11, 14). The treatment of prolonged critical
illness is incomplete and remains an active area of research.
Moreover, cognitive and/or physical disability can last formonths
or even years after treatment in ICUs (i.e., post intensive care
syndrome, PICS) for as of yet unexplained reasons (15–17).

Drawing on findings from critical illness, we here propose
an initial explanation for how ME/CFS could originate and
perpetuate. Specifically, we combine emerging findings regarding
(a) hypoperfusion and endotheliopathy, and (b) intestinal injury
in these illnesses with our previously published hypothesis about
the role of (c) pituitary suppression, and (d) low thyroid hormone
function associated with redox imbalance in ME/CFS. Moreover,
we describe interlinkages between these pathophysiological
mechanisms as well as “vicious cycles” involving cytokines and
inflammation that may contribute to explain the chronic nature
of these illnesses. This explanation summarizes and expands
on our previous publications about the relevance of findings
from critical illness for ME/CFS (18–20) and builds on the
work by Nacul et al. (21). The general lack of large high-quality
ME/CFS studies (a reflection of the lack of funding in this field)
poses a challenge for the assessment of overlaps between the
two conditions.

PATHOPHYSIOLOGICAL MECHANISMS

In the following sections we describe four central
pathophysiological mechanisms in critical illness, including
their relationship to inflammation. We also provide initial
arguments for suggesting that similar mechanisms may underlie
ME/CFS. Readers are referred to our prior publications for
additional details about these mechanisms in critical illness
(including heat stroke) and possible lessons for understanding
ME/CFS (18–20).

Hypoperfusion and Endotheliopathy
It has long been suggested that inadequate oxygen circulation
is central to critical illness (22). Specifically, the redistribution
of blood away from the splanchnic area to critical tissues is
considered an adaptive androgenic response to physiological
stress (23, 24). However, the resulting ischemia / reperfusion
(I/R) can contribute to tissue injury driving sepsis and multi-
organ dysfunction (25, 26). The relative importance of reduced
blood flow, vasoconstriction (27), capillary flow disturbances
(28) and impaired cellular oxygen utilization (29, 30) in driving
critical illness continues to be debated.

Endothelial dysfunction appears to occur in parallel with
circulation disturbances during critical illness. Probable drivers
of distortions in the structure and function of endothelial

Abbreviations: BBB, Blood–brain barrier; ACTH, Adrenocorticotropic hormone;

GH, Growth hormone; GR, glucocorticoid receptors; HPA, hypothalamus-

pituitary-adrenal axis: “Adreno-cortical axis”; HPS, Hypothalamic-pituitary-

somatotropic axis: “Somatropic axis”; HPT, Hypothalamic-pituitary-thyroid:

“Thyrotropic axis”; ICU, Intensive Care Unit; I/R, Ischemia/reperfusion; ME/CFS,

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; NO, Nitrox oxide; NTIS,

Non-thyroidal illness syndrome; O&NS, oxidative and nitrosative stress; PACS,

Post-acute COVID-19 syndrome; PICS, Post-intensive care syndrome; TRH,

Thyrotropin-releasing hormone; TSH, Thyroid stimulating hormone.

lining (i.e., glycocalyx) are cytokines (31), inflammation,
exposure to oxidative stress (28, 32) and/or sympatho-adrenal
hyperactivation (33). Crucially, endothelial dysfunction during
critical illness has been associated with altered cerebral blood flow
(34, 35) and increased blood–brain barrier (BBB) permeability
resulting in long-term cognitive impairment (36, 37). A leaky
BBB could also contribute to increased intracranial pressure
(38, 39). Finally, researchers have found that endotheliopathy
and coagulation disorder bolster each other via inflammatory
pathways (40). Coagulation abnormalities vary in critical illness,
but coagulopathy is associated with unfavorable outcomes
in prolonged critical illness (i.e., length of ICU stay and
mortality) (41).

We propose that similar alterations of the vascular system
in response to a physical, infectious and / or emotional
stressor (i.e., physiological insult) may also contribute to explain
the emergence of ME/CFS. This is consistent with recent
hypotheses describing vasoconstriction in muscle and brain
as a principal element of ME/CFS (42–46), and findings of
cerebral hypoperfusion (47–49) and intracranial hypertension
(50) in ME/CFS patients. It is also consistent with studies that
have shown that endothelial function is impaired in ME/CFS
(51, 52), both in large vessels and in the microcirculation
(53, 54)—associated with redox imbalance (51). Finally, it is
consistent with a new hypothesis for ME/CFS which suggests
that endothelial senescence underpins ME/CFS by disrupting the
intestinal barriers and BBBs (55), as well as with suggestions that
leakage from dysfunctional blood vessels could explain many of
the symptoms in ME/CFS (56).

Intestinal Injury
Critical illness researchers have found profound intestinal
alterations within hours following a physiological insult: a
dramatic shift in the composition and virulence of intestinal
microbes (57–59), an erosion of the mucus barrier, an increase
in the permeability of the gut (i.e., “leaky gut”) (60–62), and a
disruption in gut motility (63). This intestinal injury is thought
to be largely a consequence of local I/R and redox imbalance
resulting from splanchnic hypoperfusion (58, 61, 64–67). Indeed,
studies in the field of exercise immunology have shown that even
relatively low levels of splanchnic hypoperfusion during exercise
result in intestinal injury (68).

Critically, this intestinal injury may lead to bacterial
translocation from the gut into circulation (i.e., endotoxemia)
and/or the formation of toxic gut-derived lymph (57, 60). This
in turn can induce pro-inflammatory cytokines and systemic
inflammation (69, 70). Moreover, changes in the intestinal
microbiome or the mucus barrier may also impact the immune
system directly (57). Thus, researchers have long considered the
gut “the motor of critical illness” driving sepsis and distant organ
dysfunction (71). Some have suggested that a self-perpetuating
vicious inflammatory cycle centered around intestinal injury can
hinder recovery from critical illness (61, 72).

We propose that the sequence during critical illness—from
splanchnic hypoperfusion to hypoxia, redox imbalance, altered
gut microbiome, intestinal injury, gut-related endotoxemia,
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pro-inflammatory cytokines and systemic inflammatory—
may also contribute to explain the emergence of ME/CFS
following a physiological insult. Our proposal is in alignment
with others’ findings that intestinal injury and resulting
inflammation are central to ME/CFS (73–81) and consistent
with findings linking the gut microbiome to inflammation
(82–85) and to fatigue symptoms in ME/CFS (86). If verified,
the existence of a vicious inflammatory cycle centered around
intestinal injury could contribute to explain the perpetuation of
ME/CFS. Post-exertional malaise—a key symptom of ME/CFS—
could be the manifestation of an accentuation in intestinal
injury following exertion. Moreover, the translocation of gut
microbes or toxin from the intestines to the brain (55) might
contribute to explain central nervous system inflammation
in ME/CFS (87–89). Finally, leaky gut is also associated with
auto-immunity (90, 91)—an important factor in ME/CFS
pathology (92–94).

Pituitary Suppression
Almost immediately after a physiological insult, endocrine axes
experience profound alterations considered a vital response to
severe stress or injury to allow for a shift in energy and resources
to essential organs and repair (95–97). Whereas, in critically
ill patients who begin to recover, endocrine axes essentially
normalize within 28 days of illness, in cases of prolonged critical
illness the pituitary’s pulsatile secretion of tropic hormones
(unexpectedly) remains suppressed.

Why and how this central suppression is maintained in
prolonged critical illness continues to be debated. Inflammatory
pathways likely play a role irrespective of the nature of the
original injury or infection. For example, cytokines increase the
abundance and affinity of glucocorticoid receptors (GR) at the
level of the hypothalamus / pituitary, thereby enhancing the
negative feedback loop of the hypothalamic-pituitary-adrenal
(HPA) axis, and consequently suppressing pituitary release
of adrenocorticotropic hormone (ACTH) (95, 98). Similarly,
cytokines up-regulate deiodinase enzymes in the hypothalamus
resulting in higher local levels of the active thyroid hormone (T3),
thereby enhancing the hypothalamic-pituitary-thyroid (HPT)
axis’ negative feedback loop and consequently suppressing
pituitary secretion of thyroid stimulating hormone (TSH)
irrespective of circulating thyroid hormone concentrations (99–
101). Cytokines may also suppress the release of TSH by the
pituitary directly (102, 103) contributing to a virtual complete
loss of pulsatile TSH secretion (96).

The loss of pulsatile pituitary secretions has important
implications for the autonomic nervous system, metabolism,
and the immune system. Without sufficient pulsatile stimulation
by ACTH, adrenal glands begin to atrophy (104, 105),
compromising patients’ ability to cope with external stressors
and permitting excessive inflammatory responses. Erratic rather
than pulsatile pituitary production of growth hormone (GH)
leads to an imbalance between catabolic and anabolic hormones,
resulting in loss of muscle and bone mass, muscle weakness,
and changes in glucose and fat metabolism (106–108). Finally,
suppression of the HPT axis is associated with tiredness and other
hypothyroid-like symptoms (109, 110).

We propose that the sequence during critical illness—from
increased release of pituitary hormones during the acute phase
to suppression of the pituitary gland’s pulsatile secretion in the
prolonged phase—could also contribute to explain the emergence
of ME/CFS following a physiological insult. This proposal is
consistent with descriptions of ME/CFS as a progression from
a hypermetabolic to hypometabolic state (21). It also aligns
with a recent hypothesis relating many of the symptoms in
severe ME/CFS to impaired pituitary function (111). Further
support for this proposal is provided by the many previous
ME/CFS studies that have documented dysfunctions in the
hypothalamic–pituitary–somatotropic (HPS) axis (112–114), the
HPT axis (115–120), and the HPA axis (121–136)—notably
associated with inflammation and oxidative & nitrosative stress
(O&NS) (137–140). Strikingly, models relating the persistence
of a suppressed HPA axis in ME/CFS to a change in central
GRs concentrations resemble the explanations provided for
pituitary suppression in critical illness (141–146). Moreover,
suppression of ACTH release would explain why in a small study
ME/CFS patients were found to have 50% smaller adrenals than
controls (147), resembling adrenal atrophy in prolonged critical
illness. However, the relationship between the pituitary’s pulsatile
secretions, physiological alterations and severity of illness—
which proved revelatory in understanding prolonged critical
illness—remains unexplored in ME/CFS.

Low Thyroid Hormone Function
Peripheral mechanisms involving cytokines lead to the rapid
depression of thyroid hormone activity following a severe
physiological insult (148–152). This is termed “non-thyroidal
illness syndrome” (NTIS), “euthyroid sick syndrome” or “low
T3 syndrome” and is thought to be an adaptive response
to conserve energy resources during critical illness (152–154).
The mechanisms involved include alterations in the half-life
of thyroid hormone in circulation (155–157); modifications in
the uptake of thyroid hormone by cells (158, 159); down- and
up-regulation of deiodinase enzymes that convert the thyroid
hormone into active and inactive forms respectively (156, 160);
and alterations in sensitivity of cells to thyroid hormones (161–
163). These alterations can lead to important tissue-specific
depression in thyroid hormone function (164, 165) which is,
however, oftenmissed altogether in clinical settings (166) because
most of the alterations do not translate into changes in the blood
concentrations of thyroid hormones (164, 167, 168). Indeed, the
decrease in the ratio of the active form of thyroid hormone
(T3) relative to the inactivated thyroid hormone (rT3) (150, 152,
169)—considered the most sensitive marker of NTIS—may be
just the “tip of the iceberg” of the depressed thyroid hormone
function in target tissues (120, 170).

While NTIS may be beneficial in the acute phase of critical
illness, it is increasingly seen as maladaptive and hampering
the recovery of patients in the case of prolonged critical illness
(96, 101, 152, 169, 171–173). Low thyroid hormone function
may hamper the function of organs (170) and the activity of
immune cells, including natural killer cells (174–185). Immune
dysfunctions might in turn explain other pathologies, such as
viral reactivation observed in ICU patients (186–188). Some
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critical illness researchers have proposed a model that describes
how NTIS is maintained by reciprocal relationships between
inflammation (notably pro-inflammatory cytokines), O&NS and
reduced thyroid hormone function, forming a “vicious cycle”
(101, 173). This model can help to explain the perplexing failure
to recover of some critically ill patients in ICUs that survive their
initial severe illness or injury.

We propose that low thyroid hormone function could also
contribute to explain the emergence of ME/CFS following
a physiological insult. An immune-mediated loss of thyroid
hormone function in ME/CFS has long been suspected (117). A
recent study showed that the thyroid panel of ME/CFS patients
resembles that of critical illness patients, including significantly
lower ratio of T3 to rT3 hormones (120). Moreover, the other
elements for a “vicious cycle” which researchers have suggested
perpetuate a hypometabolic and inflammatory state in critical
illness are also present in ME/CFS, including inflammation (140,
189), increased O&NS (190–192) and altered cytokine profiles
(193, 194).

DISCUSSION

Hypoperfusion and endotheliopathy, intestinal injury, pituitary
suppression, and low thyroid hormone function are each central
to prolonged critical illness regardless of the nature of the initial
severe injury or infection (101, 173, 195, 196). We propose that,
similarly, these mechanisms and their reciprocal relationships
with inflammation could underlie ME/CFS regardless of the
nature of the peri-onset event (i.e., infection, stressful incident,
exposure to environmental toxins or other) (Table 1). Moreover,
the severity of ME/CFS may be a function of the strength of
these mechanisms.

However, each of these pathological mechanisms has largely
been studied in isolation and rarely have the linkages between
them been explored. Yet, the aggregate of these mechanisms
is likely necessary to fully explain the perpetuation of critical
illness—and to inform the understanding of ME/CFS (Figure 1).
Additional areas for inquiry thus include the following:

Linkages Between Intestinal Injury and
Pituitary Suppression
Intestinal injury during critical illness results in decreased
secretion of gastrointestinal hormones including ghrelin (63,
197). Decreased stimulation of the pituitary and hypothalamus
by ghrelin during prolonged critical illness in turn results in
lower secretion of GH by the pituitary (199). Researchers have
found that the administration of an artificial ghrelin in chronic
ICU patients reactivated the pulsatile secretion of GH by the
pituitary and—when done in combination with thyrotropin-
releasing hormones (TRH)—had beneficial metabolic effects
(96, 108, 198). Similarly, the administration of ghrelin to
the I/R rats “inhibited pro-inflammatory cytokine release,
reduced neutrophil infiltration, ameliorated intestinal barrier
dysfunction, attenuated organ injury, and improved survival”
(200). The sequence between intestinal injury, ghrelin secretion
and GH release by the pituitary could be particularly relevant for

solvingME/CFS given that “several of the main typical symptoms
in severeME/CFS, such as fatigue, myalgia, contractility, delaying
muscle recovery and function, exertional malaise, neurocognitive
dysfunction, and physical disability may be related to severe GH
deficiency” (111).

Linkages Between Pituitary Suppression
and Low Thyroid Hormone Function
There are several pathways linking the activity of the pituitary
with that of thyroid hormones. Firstly, GH secreted by the
pituitary co-regulates the activity of the deiodinase enzyme
(D3) responsible for the conversion of thyroid hormones into
inactive forms (i.e., rT3 and inactivate forms of T2) (106, 201).
Researchers showed that normalization of the GH secretion in
prolonged critically ill patients is necessary to inhibit the increase
in plasma rT3 concentrations (96, 108, 198). In other words,
dampened GH release by the pituitary during prolonged critical
illness enables low thyroid hormone function. Secondly, the lack
of stimulation of the adrenals by ACTH could (by causing an
atrophy of adrenals) create the condition necessary for persistent
inflammation which depresses the activity of thyroid hormones
during critical illness (148–152). In other words, dampened
ACTH release by the pituitary during prolonged critical illness
might permit the vicious inflammatory cycles described above.
Thirdly, there is evidence that thyroid hormone conversely also
stimulates ACTH secretion (202, 203). In summary, the bi-
directional relationships between the endocrine axes and thyroid
hormone function (in addition to reciprocal relationships with
inflammation) could contribute to explain the persistence of
chronic ICU and ME/CFS.

Linkages Between Low Thyroid Hormone
Function and Endothelial Function
Upon binding to specific receptors on endothelial cells, thyroid
hormones (T3 and T4) activate the endothelial nitric oxide
synthase (eNOS) responsible for nitric oxide (NO) production
(204), which in turn impacts vasodilation and inflammation
(205–207). A further line of inquiry may thus be the role
of thyroid hormone function in endotheliopathy in ME/CFS,
including as it relates to the new finding that plasma
from ME/CFS patients inhibits eNOS and NO production in
endothelial cells (208). Relatedly, critical illness researchers
have found that serum from patients with NTIS inhibits the
uptake of thyroid hormone (209, 210); the mechanisms remain
unresolved (165).

Linkages to Mitochondrial Function
The impaired perfusion, redox imbalance, lower thyroid
hormone function and inflammation appear to collectively affect
mitochondrial activity in critical illness (via inhibition, damage,
and/or decreased turnover of new mitochondrial protein) (30,
211–213). Mitochondrial activity may be similarly affected in
ME/CFS (190). Some have suggested that this down-regulation of
mitochondrial activity (and oxygen utilization) in critical illness
may be an adaptive form of “hibernation” to protect cells from
death pathways (30, 213). This suggestion echoes the hypothesis
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TABLE 1 | Central pathophysiological mechanisms in prolonged critical illness, probable drivers and implications, and initial evidence suggesting similar mechanisms in

ME/CFS.

Pathophysiological mechanisms In prolonged critical illness (Probable drivers and

implications)

In ME/CFS (Initial evidence)

Hypoperfusion Drivers:

• Redistribution of blood away from the splanchnic area

to critical tissues (23, 24)

• Reduced blood flow, vasoconstriction (27)

• Capillary flow disturbances (28)

• Additional: impaired cellular oxygen utilization (29, 30)

Implications:

• Ischemia / reperfusion (I/R)

• Tissue injury driving sepsis and multi-organ

dysfunction (25, 26)

Initial evidence

• Vasoconstriction in muscle and brain (42–45)

• Cerebral hypoperfusion (47–49)

• Intracranial hypertension (50)

Endotheliopathy Drivers:

• Cytokines (31), Inflammation, exposure to oxidative

stress (28, 32)

• Sympatho-adrenal hyperactivation (33)

Implications:

• Altered cerebral blood flow (34, 35)

• Increased blood–brain barrier (BBB) permeability

(36, 37)

• Increased intracranial pressure (38, 39).

• (variable) Coagulation disorder (40)

Initial evidence

• Impaired endothelial function (51, 52), in large vessels

and microcirculation (53, 54)—associated with redox

imbalance (51)

• Endothelial senescence disrupting the intestinal barriers

and BBBs (55)

• Redox imbalance

Intestinal injury Drivers:

• Local I/R and redox imbalance resulting from

splanchnic hypoperfusion (58, 61, 64–67)

• Disruption in gut motility (63)

• Shift in the composition and virulence of intestinal

microbes (57–59)

Implications:

• Erosion of the mucus barrier, increase in the

permeability of the gut (i.e., “leaky gut”) (60–62)

• Bacterial translocation from the gut into circulation

(i.e., endotoxemia) and/or the formation of toxic

gut-derived lymph (57, 60)

• Pro-inflammatory cytokines and systemic inflammation

(69, 70)

• Direct impacts on the immune system (57)

• Vicious inflammatory cycle centered around intestinal

injury (61, 72)

• Decreased secretion of gastrointestinal hormones

including ghrelin (63, 197) impacting pituitary activity

Initial evidence

• Intestinal injury and resulting inflammation (73–81)

• Altered gut microbiome linked to inflammation (82–85).

• Lack of beneficial gut bacteria linked to fatigue

symptoms (86)

• Endothelial senescence disrupting the intestinal barriers

(55)

• Auto-immunity (92–94)

Suppression of pulsatile pituitary

function

Drivers

• Cytokines acting on abundance and affinity of

glucocorticoid receptors (GR) at central level (95, 98)

• Cytokines affecting deiodinase enzymes in the

hypothalamus (99–101)

• Direct action of cytokines on TSH release by the

pituitary directly (102, 103)

Implications

• Loss of ACTH pulsatility: atrophy of adrenal glands

(104, 105) compromising patients’ ability to cope with

external stressors and permitting excessive

inflammatory responses

• Loss of GH pulsatility: imbalance between catabolic

and anabolic hormones, resulting in loss of muscle

and bone mass, muscle weakness, and changes in

glucose and fat metabolism (106–108). Alterations in

deiodinase enzyme (D3) activity enabling low thyroid

hormone function (96, 108, 198)

• Loss of TSH pulsatility (109, 110)

Initial evidence

• Progression from a hypermetabolic to hypometabolic

state (21)

• Impaired pituitary function (hypothesis) (111)

• Dysfunctions in HPS axis (112–114), HPT axis (115–

120) and HPA axis (121–136) – associated with

inflammation O&NS (137–140)

• Changes in central GRs concentrations (models) (141–

146)

• Smaller adrenals (147)

(Continued)
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TABLE 1 | Continued

Pathophysiological mechanisms In prolonged critical illness (Probable drivers and

implications)

In ME/CFS (Initial evidence)

Low thyroid hormone function Drivers

• Alterations in the half-life of thyroid hormone in

circulation (155–157)

• Modifications in the uptake of thyroid hormone by cells

(158, 159)

• Down- and up-regulation of deiodinase enzymes that

convert the thyroid hormone into active and inactive

forms, respectively (156, 160)

• Alternations in sensitivity of cells to thyroid hormones

(161–163)

Implications

• Tissue-specific depression in thyroid hormone function

(164–166)

• Hampered function of organs (170)

• Altered activity of immune cells, including natural killer

cells (174–185)

• Viral reactivation (186–188)

• Vicious inflammatory cycle (101, 173)

Initial evidence

• Immune-mediated loss of thyroid hormone function in

ME/CFS (suspected) (117)

• Significantly lower ratio of T3 to rT3 hormones (120)

FIGURE 1 | Central pathophysiological mechanisms in critical illness including selected consequences and inter-linkages. Hypoperfusion and endotheliopathy,

intestinal injury, pituitary suppression, and low thyroid hormone function are each central to prolonged critical illness regardless of the nature of the initial severe injury

or infection. These pathophysiological mechanisms are in reciprocal relationships with inflammation; specifically, researchers have proposed vicious cycles involving

intestinal injury and low thyroid hormone function. Moreover, linkages have been described between these pathophysiological mechanisms, including (i) hypoperfusion

and intestinal injury (i.e., leaky gut resulting from ischemia/reperfusion, hypoxia and redox imbalance); (ii) intestinal injury and pituitary suppression (i.e., suppressed

growth hormone release resulting from reduced ghrelin secretion by the intestines); (iii) pituitary suppression and low thyroid hormone function (i.e., increased

inactivated thyroid hormone resulting from the upregulation of D3 deiodinase as a consequence of lower growth hormone); and (iv) low thyroid hormone function and

pituitary suppression (i.e., decreased ACTH secretion resulting from lower levels of activated thyroid hormone). We propose that these mechanisms and the linkages

between them—alongside reciprocal relationships with inflammation—could also underlie ME/CFS.

that ME/CFS is a form of “dauer” or “cell danger response” (214–
216). Lower mitochondrial activity in turn affects the immune
system and the gut endothelial “such that the host’s immune
response and physical barriers to infection are simultaneously
compromised” (29).

Relevance of Critical Illness Treatment
Trials for ME/CFS
Although prolonged critical illness remains unresolved, early
treatment trials—such as the reactivation of the pituitary, or
interruption of the vicious inflammatory cycles centered around
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either gut injury or low thyroid hormone function—may provide
therapeutic avenues for ME/CFS (19). Longitudinal studies of
(spontaneous) recovery from critical illness may also give clues
about prerequisites for recovery fromME/CFS. Researchers have,
for example, found that “supranormal TSH precedes onset of
recovery” from prolonged critical illness (96) and that metabolic
rate rises > 50% above normal in the recovery phase (213).

Commonality With Other Illnesses
Researchers have suggested commonality in the illnesses induced
by physical, infectious, and / or emotional stressors (132, 217).
These include heat stroke, fibromyalgia, ME/CFS, prolonged
critical illness, PICS, cancer-related fatigue, post-viral fatigue,
post-acute COVID-19 syndrome (PACS) and long-COVID.
Specifically, it is necessary to explore whether the pathological
mechanisms described above also underlie long COVID—a
disease which resembles ME/CFS (218–228) and can arise even
after mild COVID-19 cases.

CONCLUSION

Decades of research in the field of critical illness medicine
have demonstrated that in response to the stress of severe
infection or injury, the vascular system, intestines, endocrine axes
and thyroid hormone function experience profound alterations.
Self-reinforcing interlinkages between these pathophysiological
mechanisms as well as “vicious cycles” involving cytokines
and inflammation may perpetuate illness irrespective of the
initial severe infection or injury. Without excluding possible

predisposing genetic or environmental factors, we propose that
the pathological mechanisms—and the interlinkages between
them—that prevent recovery of some critically ill patients
may also underlie ME/CFS. This initial proposal is in line
with and complements several existing hypotheses of ME/CFS
pathogenesis. If this hypothesis is validated, past treatment
trials for critical illness may provide avenues for a cure for
ME/CFS. Certainly, given the similarities described above, active
collaboration between critical illness and ME/CFS researchers
could lead to improved understanding of not only both
conditions, but also PICS, long-COVID, PACS, and fibromyalgia.
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al. Cytomegalovirus and Epstein–Barr virus reactivation in the

intensive care unit. Med Klin Intensivmed Notfallmed. (2017)

112:239–45. doi: 10.1007/s00063-016-0198-0

188. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et

al. Reactivation of multiple viruses in patients with sepsis. PLoS ONE. (2014)

9:e98819. doi: 10.1371/journal.pone.0098819

189. Pall M. The NO/ONOO-cycle mechanism as the cause of chronic fatigue

syndrome/myalgia encephalomyelitis. In: Svoboda E, Zelenjcik K, editors.

Chronic Fatigue Syndrome: Symptoms, Causes and Prevention. Hauppauge,

NY: Nova Publishers (2009). p. 27–56

190. Morris G, Maes M. Mitochondrial dysfunctions in myalgic

encephalomyelitis/chronic fatigue syndrome explained by activated

immuno-inflammatory, oxidative and nitrosative stress pathways. Metab

Brain Dis. (2014) 29:19–36. doi: 10.1007/s11011-013-9435-x

191. Armstrong CW, McGregor NR, Lewis DP, Butt HL, Gooley PR. Metabolic

profiling reveals anomalous energy metabolism and oxidative stress

pathways in chronic fatigue syndrome patients. Metabolomics. (2015)

11:1626–39. doi: 10.1007/s11306-015-0816-5

192. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke

JP, et al. Increased ventricular lactate in chronic fatigue syndrome. III

Relationships to cortical glutathione and clinical symptoms implicate

oxidative stress in disorder pathophysiology. NMR Biomed. (2012) 25:1073–

87. doi: 10.1002/nbm.2772

193. Montoya JG, Holmes TH, Anderson JN, Maecker HT, Rosenberg-

Hasson Y, Valencia IJ, et al. Cytokine signature associated with

disease severity in chronic fatigue syndrome patients. Proc Natl

Acad Sci USA. (2017) 114:E7150–8. doi: 10.1073/pnas.17105

19114

194. Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, et

al. Distinct plasma immune signatures in ME/CFS are present early in the

course of illness. Sci Adv. (2015) 1:e1400121. doi: 10.1126/sciadv.1400121

195. Langouche L, Van den Berghe G. Hypothalamic-pituitary hormones during

critical illness: a dynamic neuroendocrine response. Handb Clin Neurol.

(2014) 124:115–26. doi: 10.1016/B978-0-444-59602-4.00008-3

196. Boonen E, Van den Berghe G. Endocrine responses to critical illness:

novel insights and therapeutic implications. J Clin Endocrinol Metab. (2014)

99:1569–82. doi: 10.1210/jc.2013-4115

197. Deane A, Chapman MJ, Fraser RJ, Horowitz M. Bench-to-bedside review:

the gut as an endocrine organ in the critically ill. Crit Care. (2010)

14:228. doi: 10.1186/cc9039

198. Van den Berghe G, de Zegher F, Baxter RC, Veldhuis JD, Wouters P,

Schetz M, et al. Neuroendocrinology of prolonged critical illness: effects

of exogenous thyrotropin-releasing hormone and its combination with

growth hormone secretagogues. J Clin Endocrinol Metab. (1998) 83:309–

19. doi: 10.1210/jc.83.2.309

199. Mesotten D, Van den Berghe G. Changes within the growth

hormone/insulin-like growth factor I/IGF binding protein axis during

critical illness. Endocrinol Metab Clin North Am. (2006) 35:793–805,

ix–x. doi: 10.1016/j.ecl.2006.09.010

200. Wu R, Dong W, Ji Y, Zhou M, Marini CP, Ravikumar TS, et al.

Orexigenic hormone ghrelin attenuates local and remote organ

injury after intestinal ischemia-reperfusion. PLoS ONE. (2008)

3:e2026. doi: 10.1371/journal.pone.0002026

201. Debaveye Y, Ellger B, Mebis L, Darras VM, Van den Berghe G. Regulation

of tissue iodothyronine deiodinase activity in a model of prolonged critical

illness. Thyroid. (2008) 18:551–60. doi: 10.1089/thy.2007.0287

202. Lizcano F, Rodríguez JS. Thyroid hormone therapy modulates

hypothalamo-pituitary-adrenal axis. Endocr J. (2011) 58:137–

42. doi: 10.1507/endocrj.K10E-369

203. Sánchez-Franco F, Fernández L, Fernández G, Cacicedo L. Thyroid

hormone action on ACTH secretion. Horm Metab Res. (1989) 21:550–

2. doi: 10.1055/s-2007-1009285

204. Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, et al. Rapid

nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA. (2006)

103:14104–9. doi: 10.1073/pnas.0601600103

205. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide

in inflammatory diseases. Inflammopharmacology. (2007)

15:252–9. doi: 10.1007/s10787-007-0013-x

206. Handa O, Stephen J, Cepinskas G. Role of endothelial nitric oxide synthase-

derived nitric oxide in activation and dysfunction of cerebrovascular

endothelial cells during early onsets of sepsis.Am J Physiol Heart Circ Physiol.

(2008) 295:H1712–9. doi: 10.1152/ajpheart.00476.2008

207. Gluvic ZM, Obradovic MM, Sudar-Milovanovic EM, Zafirovic

SS, Radak DJ, Essack MM, et al. Regulation of nitric oxide

production in hypothyroidism. Biomed Pharmacother. (2020)

124:109881. doi: 10.1016/j.biopha.2020.109881

208. Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda

N, Westermeier F. Decreased NO production in endothelial cells

exposed to plasma from ME/CFS patients. Vascul Pharmacol. (2022)

148:106953. doi: 10.1016/j.vph.2022.106953

209. Lim CF, Docter R, Visser TJ, Krenning EP, Bernard B, van Toor H,

et al. Inhibition of thyroxine transport into cultured rat hepatocytes

by serum of nonuremic critically ill patients: effects of bilirubin and

nonesterified fatty acids. J Clin Endocrinol Metab. (1993) 76:1165–

72. doi: 10.1210/jcem.76.5.8496307

210. Vos RA, De Jong M, Bernard BF, Docter R, Krenning EP, Hennemann G.

Impaired thyroxine and 3,5,3’-triiodothyronine handling by rat hepatocytes

in the presence of serum of patients with nonthyroidal illness. J Clin

Endocrinol Metab. (1995) 80:2364–70. doi: 10.1210/jcem.80.8.7629231

211. Preiser JC, Ichai C, Orban JC, Groeneveld AB. Metabolic

response to the stress of critical illness. Br J Anaesth. (2014)

113:945–54. doi: 10.1093/bja/aeu187

212. McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach

KR, et al. The metabolic basis of immune dysfunction following sepsis and

trauma. Front Immunol. (2020) 11:1043. doi: 10.3389/fimmu.2020.01043

Frontiers in Medicine | www.frontiersin.org 12 March 2022 | Volume 9 | Article 818728

https://doi.org/10.1677/joe.1.06137
https://doi.org/10.1177/153537020623100301
https://doi.org/10.1007/s00068-005-2068-y
https://doi.org/10.1677/JOE-08-0488
https://doi.org/10.1111/j.1365-2796.2010.02218.x
https://doi.org/10.1016/j.imlet.2017.02.010
https://doi.org/10.3389/fimmu.2017.01573
https://doi.org/10.1210/en.2018-00053
https://doi.org/10.1089/thy.2010.0429
https://doi.org/10.3389/fcell.2020.614030
https://doi.org/10.1186/s13054-017-1803-1
https://doi.org/10.1007/s00063-016-0198-0
https://doi.org/10.1371/journal.pone.0098819
https://doi.org/10.1007/s11011-013-9435-x
https://doi.org/10.1007/s11306-015-0816-5
https://doi.org/10.1002/nbm.2772
https://doi.org/10.1073/pnas.1710519114
https://doi.org/10.1126/sciadv.1400121
https://doi.org/10.1016/B978-0-444-59602-4.00008-3
https://doi.org/10.1210/jc.2013-4115
https://doi.org/10.1186/cc9039
https://doi.org/10.1210/jc.83.2.309
https://doi.org/10.1016/j.ecl.2006.09.010
https://doi.org/10.1371/journal.pone.0002026
https://doi.org/10.1089/thy.2007.0287
https://doi.org/10.1507/endocrj.K10E-369
https://doi.org/10.1055/s-2007-1009285
https://doi.org/10.1073/pnas.0601600103
https://doi.org/10.1007/s10787-007-0013-x
https://doi.org/10.1152/ajpheart.00476.2008
https://doi.org/10.1016/j.biopha.2020.109881
https://doi.org/10.1016/j.vph.2022.106953
https://doi.org/10.1210/jcem.76.5.8496307
https://doi.org/10.1210/jcem.80.8.7629231
https://doi.org/10.1093/bja/aeu187
https://doi.org/10.3389/fimmu.2020.01043
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Stanculescu and Bergquist Drawing on Critical Illness to Explain ME/CFS

213. Singer M. Critical illness and flat batteries. Crit Care. (2017)

21:309. doi: 10.1186/s13054-017-1913-9

214. Naviaux RK, Naviaux JC Li K, Bright AT, Alaynick WA, Wang L, et al.

Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA.

(2016) 113:E5472–80. doi: 10.1073/pnas.1607571113

215. Naviaux RK. Perspective: Cell danger response Biology—The new

science that connects environmental health with mitochondria

and the rising tide of chronic illness. Mitochondrion. (2020)

51:40–5. doi: 10.1016/j.mito.2019.12.005

216. Naviaux RK. Metabolic features and regulation of the healing

cycle-a new model for chronic disease pathogenesis and

treatment. Mitochondrion. (2019) 46:278–97. doi: 10.1016/j.mito.201

8.08.001

217. Arnett SV, Clark IA. Inflammatory fatigue and sickness behaviour - lessons

for the diagnosis and management of chronic fatigue syndrome. J Affect

Disord. (2012) 141:130–42. doi: 10.1016/j.jad.2012.04.004

218. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L.

Management of post-acute covid-19 in primary care. BMJ. (2020)

370:m3026. doi: 10.1136/bmj.m3026

219. Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos

D, Sutton R, et al. Autonomic dysfunction in ’long COVID’:

rationale, physiology and management strategies. Clin Med. (2020)

21:e63–7. doi: 10.7861/clinmed.2020-0896

220. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences

of COVID-19 in patients discharged from hospital: a cohort study. Lancet.

(2021) 397:220–32. doi: 10.1016/S0140-6736(20)32656-8

221. Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F,

et al. Persistent fatigue following SARS-CoV-2 infection is common

and independent of severity of initial infection. PLoS ONE. (2020)

15:e0240784. doi: 10.1371/journal.pone.0240784

222. Komaroff AL, Bateman L. Will COVID-19 lead to myalgic

encephalomyelitis/chronic fatigue syndrome? Front Med. (2021)

7:606824. doi: 10.3389/fmed.2020.606824

223. Wildwing T, Holt N. The neurological symptoms of COVID-19: a systematic

overview of systematic reviews, comparison with other neurological

conditions and implications for healthcare services. Ther Adv Chronic Dis.

(2021) 12. doi: 10.1177/2040622320976979

224. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae

of COVID-19 (PASC): an overview of biological factors that

may contribute to persistent symptoms. Front Microbiol. (2021)

12:698169. doi: 10.3389/fmicb.2021.698169

225. Mackay A, A. Paradigm for post-Covid-19 fatigue syndrome analogous

to ME/CFS. Front Neurol. (2021) 12:701419. doi: 10.3389/fneur.2021.7

01419

226. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic

fatigue syndrome may help unravel the pathogenesis of

postacute COVID-19 syndrome. Trends Mol Med. (2021)

27:895–906. doi: 10.1016/j.molmed.2021.06.002

227. Comella PH, Gonzalez-Kozlova E, Kosoy R, Charney AW, Peradejordi IF,

Chandrasekar S, et al. A Molecular network approach reveals shared cellular

and molecular signatures between chronic fatigue syndrome and other

fatiguing illnesses. [Preprint] medRxiv. (2021). Available at: https://www.

medrxiv.org/content/10.1101/2021.01.29.21250755v1 (accessed February 21,

2021).

228. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance

links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome.

Proc Natl Acad Sci USA. (2021) 118:e2024358118. doi: 10.1073/pnas.202

4358118

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Stanculescu and Bergquist. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 13 March 2022 | Volume 9 | Article 818728

https://doi.org/10.1186/s13054-017-1913-9
https://doi.org/10.1073/pnas.1607571113
https://doi.org/10.1016/j.mito.2019.12.005
https://doi.org/10.1016/j.mito.2018.08.001
https://doi.org/10.1016/j.jad.2012.04.004
https://doi.org/10.1136/bmj.m3026
https://doi.org/10.7861/clinmed.2020-0896
https://doi.org/10.1016/S0140-6736(20)32656-8
https://doi.org/10.1371/journal.pone.0240784
https://doi.org/10.3389/fmed.2020.606824
https://doi.org/10.1177/2040622320976979
https://doi.org/10.3389/fmicb.2021.698169
https://doi.org/10.3389/fneur.2021.701419
https://doi.org/10.1016/j.molmed.2021.06.002
https://www.medrxiv.org/content/10.1101/2021.01.29.21250755v1
https://www.medrxiv.org/content/10.1101/2021.01.29.21250755v1
https://doi.org/10.1073/pnas.2024358118
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
	Introduction
	Pathophysiological Mechanisms
	Hypoperfusion and Endotheliopathy
	Intestinal Injury
	Pituitary Suppression
	Low Thyroid Hormone Function

	Discussion
	Linkages Between Intestinal Injury and Pituitary Suppression
	Linkages Between Pituitary Suppression and Low Thyroid Hormone Function
	Linkages Between Low Thyroid Hormone Function and Endothelial Function
	Linkages to Mitochondrial Function
	Relevance of Critical Illness Treatment Trials for ME/CFS
	Commonality With Other Illnesses

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


