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Background: The location of retinal vessels is an important prerequisite for Central

Serous Chorioretinopathy (CSC) Laser Surgery, which does not only assist the

ophthalmologist in marking the location of the leakage point (LP) on the fundus color

image but also avoids the damage of the laser spot to the vessel tissue, as well as the

low efficiency of the surgery caused by the absorption of laser energy by retinal vessels.

In acquiring an excellent intra- and cross-domain adaptability, the existing deep learning

(DL)-based vessel segmentation scheme must be driven by big data, which makes the

densely annotated work tedious and costly.

Methods: This paper aims to explore a new vessel segmentation method with a

few samples and annotations to alleviate the above problems. Firstly, a key solution

is presented to transform the vessel segmentation scene into the few-shot learning

task, which lays a foundation for the vessel segmentation task with a few samples

and annotations. Then, we improve the existing few-shot learning framework as our

baseline model to adapt to the vessel segmentation scenario. Next, the baseline model

is upgraded from the following three aspects: (1) A multi-scale class prototype extraction

technique is designed to obtain more sufficient vessel features for better utilizing the

information from the support images; (2) The multi-scale vessel features of the query

images, inferred by the support image class prototype information, are gradually fused

to provide more effective guidance for the vessel extraction tasks; and (3) A multi-scale

attention module is proposed to promote the consideration of the global information in

the upgraded model to assist vessel localization. Concurrently, the integrated framework

is further conceived to appropriately alleviate the low performance of a single model in the

cross-domain vessel segmentation scene, enabling to boost the domain adaptabilities

of both the baseline and the upgraded models.

Results: Extensive experiments showed that the upgraded operation could further

improve the performance of vessel segmentation significantly. Compared with the listed

methods, both the baseline and the upgraded models achieved competitive results on

the three public retinal image datasets (i.e., CHASE_DB, DRIVE, and STARE). In the
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practical application of private CSC datasets, the integrated scheme partially enhanced

the domain adaptabilities of the two proposed models.

Keywords: retinal vessel segmentation, few-shot learning, multi-scale class prototype, feature fusion, domain

adaptability, integrated framework

INTRODUCTION

Retinal vessels are important structures of our eyes, which
are responsible for transporting oxygen, nutrients, and waste
to ensure the normal function of the eyes. The vessels
contain important information including tortuosity, diameter,
angle of branches, and density, and their segmentation is
crucial to the measurement of the above parameters which
assist in the automatic analysis and diagnosis of various
fundus diseases, such as Diabetic Retinopathy (1), Age-Related
Macular Degeneration (2), and Glaucoma (3). The traditional
manual segmentation method is exceedingly time-consuming
and laborious, and the segmentation accuracy is easily affected
by the subjective factors of doctors. Therefore, some researchers
have developed segmentation methods based on traditional
image processing techniques, such as the matched filtering
method (4), the mathematical morphology method (5), the
vessel tracking method (6), and so on. With the help of
the image processing technology, the above schemes realize

the transformation from manual segmentation to automatic
segmentation and improve the efficiency of vessel segmentation,
but there is still much room for further promotion in
segmentation accuracy.

In addition, with the rapid development of artificial
intelligence technology, machine learning has been widely used

in various segmentation scenes (7–9) and provides a new
impetus for the retinal vessel segmentation task. Various excellent
machine learning-based automatic segmentation methods (10)
have been designed, which can be divided into two categories
(11): the unsupervised methods and the supervised methods.
Among them, the unsupervised methods do not rely on pixel-
wise labeling information to guide the vessel segmentation
process. The typical representative is clustering. Wiharto
and Suryani (12) used fuzzy c-means (FCM) algorithm to

extract the vessels. They employed a channel separation,
contrast limited adaptive histogram equalization (CLAHE), and
median filtering to preprocess the fundus images, followed by
dimension transformation, clustering, thresholding, andmasking
operations. The impact of the number of clusters on the
segmentation effect of vessel structures was also explored in

their work, which provides a direction for further improvement
of the scheme. A k-means clustering-based method (13) was
presented to segment the vessels, which achieved a comparable
performance. The authors binarized the vessel-enhanced images,
and a logical OR operation was applied on the binary vessels
to produce the final results. However, it is worth noting that

although the unsupervised methods do not require any label
information, the single segmentation rule may lead to an unstable
performance because of the differences in contrast and brightness
between the retinal images.

In view of this, some ideas of vessel segmentation based on
supervised learning have been proposed (14–29) and the related
research work will be briefly introduced in the following. An
ensemble classification-based approach was presented by Fraz et
al. (14). This typical solution combined the decision tree with
the conventional feature extraction steps (i.e., gradient vector
field, morphological transformation, line strength measures, and
Gabor filter responses), which worked well on the public datasets.
With the help of image preprocessing and feature selection
operation, Krishna and Gnanasekaran (15) applied the modified
adaboost extreme learning machine to extract the retinal vessels,
and the method performed well on pathological retinal images.
To enhance the local information with better discrimination for
vessel and non-vessel pixels, Aslani et al. (16) incorporated a
set of robust features into a hybrid feature vector for better
characterizing the retinal vessels, closely followed by a random
forest classifier. Orlando et al. (17) put forward a discriminatively
trained and fully connected conditional random field model to
tackle the thin and elongated vessel structures, which obtained
better results in terms of sensitivity, f1-score, G-mean, and
Matthews correlation coefficient. A novel method (18), which
regarded the segmentation task as cross-modality learning, was
skillfully designed. By establishing the deep neural network
with strong induction ability, they achieved satisfactory results
without the feature design and preprocessing. Srinidhi et al.
(19) explored the visual attention mechanism to automatically
capture the most discriminative features for the random forest
classifier, and a significant improvement was achieved. A simple
yet effective vessel segmentation method was proposed by
Jebaseeli et al. (20), the highlights of which were the operation of
feature generation based on the Tandem Pulse Coupled Neural
Network, and the classifier called it the Deep Learning-Based
Support Vector Machine. Kaur and Mittal (21) developed a
generalized scheme for retinal vessel detection and obtained a
good performance. This method improved the quality of the
constructed vessel features through the initial segmentation and
post-processing strategy, and then, the neural network-based
classifier further enhanced the accuracy of vessel segmentation.

In recent years, deep learning (DL), as one of the important
technologies to realize the machine learning idea, has shown
great potential in the field of medical image segmentation.
Liskowski and Krawiec (22) designed a DL-based model for
detecting the vessel structures. The model, with or without max-
pooling layers, was trained on about 4,00,000 examples that
are preprocessed with global contrast normalization, zero-phase
whitening, and were augmented using geometric transformations
and gamma corrections, while the area under the curve (AUC)
was up to 0.99. Similarly, a deeply supervised network was
established by Mo and Zhang (23), and the novelty is that
the multi-level hierarchical feature extraction technique and
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the auxiliary classifiers are integrated into the network, which
enhanced its discriminative capability on the vessel and the non-
vessel pixels. Jiang et al. (24) proposed a supervisedmethod based
on the fully convolutional network (FCN) and transfer learning;
the accuracy of which was 1–2% higher than other related
research. To further improve the segmentation performance,
a scheme inspired by a dense conditional random field was
presented in (25). By training the convolutional neural network
(CNN) to generate discriminative features, the scheme aimed to
solve the sub-optimal problem of the hand-crafted unary features
in the linear models. In order to alleviate the issue of inaccurate
segmentation of thin vessels caused by the highly imbalanced
pixel ratio between thick and thin vessels, a novel DL-based
vessel segmentation model (26) is constructed delicately. They
designed a segment-level loss to emphasize more on the thickness
consistency of thin vessels in the training process and combined
it with the pixel-wise loss to improve the accuracy of the
vessel segmentation. Filipe et al. (27) adopted a multiscale FCN
framework for the vessel segmentation. In consideration of the
varying width and direction of the vessel structure, the stationary
wavelet transform (SWT) was introduced into the framework to
sufficiently exploit the multi-scale nature of the retinal vessels,
and then, the experimental results showed the effectiveness
of the method. To achieve accurate and precise retinal vessel
segmentation, Park et al. (28) presented a conditional generative
adversarial network called M-GAN that is composed of an M-
generator and an M-discriminator. With the help of the deep
residual blocks and the deeper network, the framework acquired
good results. For exploring the DL-based segmentation method
on the other retinal imaging modalities, a framework based on
the U-net shape was established to gain the vessel mask from the
scanning laser opthalmoscopy retinal images and has performed
well (29).

Undoubtedly, the methods based on deep learning have
greatly improved the efficiency, accuracy, sensitivity, and
specificity of retinal vessel segmentation, and the end-to-end
training mode also accelerates the deployment of the DL-based
model in practical application scenarios. Nevertheless, this kind
of scheme is driven by big data to acquire excellent intra-
and cross-domain adaptability, which is challenging for medical
image collection. Meanwhile, to optimize the weights of the
network by the loss function, the densely annotated task is
essential, which is tedious and costly. Therefore, to alleviate the
above issues, a few-shot learning-based method, undertaking the
task of vessel segmentation with only a few annotated training
images, is proposed in this paper. The main contributions of our
research are as follows: (1) Firstly, a key solution is presented
for transforming the vessel segmentation scene into the few-
shot learning task; (2) Then, to adapt to the vessel segmentation
task, we improve the existing few-shot learning framework as
the baseline model for the vessel segmentation in our work;
(3) Next, we upgrade the baseline model for better utilizing
the information from the support images by designing a multi-
scale class prototype extraction technique; (4) After that, the skip
connection technique is integrated into the upgraded model to
promote the gradual fusion of the multi-scale vessel features of
the query images inferred by the support image class prototype

information; (5)Moreover, amulti-scale attentionmodule is built
and applied to the high-level features for the upgrade model to
capture the global information to assist in vessel localization; and
(6) Finally, the integrated framework is further constructed to
boost the performance of both the baseline and the upgraded
models in the cross-domain vessel segmentation scene.

The rest of the paper is organized as follows: Section Related
Work presents the related work of few-shot learning; Section
The Proposed Methods describes the details of our proposed
method; Section Results and Discussions shows the experiments
and discussions; and Section Conclusion and FutureWork comes
up with conclusions.

RELATED WORK

Few-Shot Learning
Few-shot learning aims to improve the network generalization
ability under the condition of a few training examples. Some
methods based on this learning paradigm have been explored
and applied to the classification of natural and medical images.
Huang et al. (30) proposed a few-shot model for fine-grained
classification. The advantage of the low-rank pairwise bilinear
block was that it enhanced the effective distance metric between
the support and query images. Similarly, Sun et al. (31) also
studied the fine-grained classification issue based on the few-
shot learning. Notably, they utilized the location mechanism
to discover the similar characteristics among the objects and
captured the rich discriminative information with a high-order
integration. Related works are also reflected in the medical
disease detection. To make up for the deficiency of the DL
model in predicting rare fundus diseases, Quellec et al. (32)
extended the CNN model with the few-shot learning paradigm,
which improved the discrimination ability on rare pathologies
through an unsupervised probabilistic way. A few-shot learning-
based method (33) was presented to transfer knowledge from
a well-defined source domain to a target domain, the goal of
which was so the CNN model could obtain new concepts and
representations from a few training samples.

Few-Shot Segmentation
In addition, the few-shot method also performs well in the
natural image segmentation field. Seeing that the pixel-wise
segmentation is tedious and costly, a segmentation network (34),
consisting of a two-branch dense comparison module and an
iterative optimization module, which is followed by an attention
block, was proposed and has achieved better performance. Li et
al. (35) exploited a similar technique that integrated the attention
mechanism and the refinement network into the segmentation
model, which improved the model performance. Compared with
the natural images, the task of the medical image segmentation
is more complex and difficult due to the similarity between the
normal tissues and the pathological regions, and the extreme
professionalism of the pixel-wise annotation process. Some of the
few-shot segmentation methods have been successfully applied
to the medical image segmentation, which affords new ideas
for solving the medical image segmentation problem. Feyjie et
al. (36) designed a few-shot learning-based framework for the
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FIGURE 1 | An overview of the baseline model.

skin lesion segmentation, the excellent performance of which
also provided inspiration for our research work. To enhance its
segmentation ability, they also incorporated the semi-supervised
block into the framework. Besides, a unified framework (37),
which worked under the condition of the scarcity of both the
medical images and the corresponding annotations, was put
forward and has contributed to the rare disease segmentation.
Additionally, Ouyang et al. (38) further developed creatively a
few-shot-based method without any annotations and trained the
network with only the pseudo labels, which opened up a new
direction for few-shot-based segmentation schemes.

It can be found that the few-shot learning has been widely
used in the field of natural image classification and segmentation,
which promotes the paradigm to show its head in the similar
fields of medical images. Also, its successful application in
practice drives us to further apply it in the retinal vessel
segmentation to assist in fundus CSC laser surgery. The
motivation of introducing the few-shot learning into the fundus
blood vessel segmentation task is that the paradigm can guide
the vessel segmentation model training under the condition of
a small number of annotated images, which is different from
most machine learning models that rely on a large amount of
image resources for an effective feature learning. This does not
only reduce the cost of data collection but also helps ease the
pressure of label making. However, we are faced with a thorny
problem that has to be solved, that is, how to transform the
vessel segmentation scene into a few-shot segmentation task?
Specifically, how to construct the support and query sets in our
vessel segmentation task? The solution will be introduced in
Section The Proposed Methods.

THE PROPOSED METHODS

Methods
The vessel segmentation scheme based on the few-shot learning
paradigm consists of two parts. The first part is how to construct
the support and the query sets in vessel segmentation task by
imitating the natural image scene. As we all know, the vessel
structure of each person is not exactly the same. Therefore, in
this paper, the vessel images from different people are regarded
as different classes, and the patches of each class are regarded
as its members. Then, we sampled the members of different
classes as the support set, and the remaining members of the
corresponding classes as the query set. Especially, given a C-
way K-shot learning task, this simple yet effective solution
can smoothly build the corresponding episodes for the vessel
segmentation task. The second part is to establish the vessel
segmentation model. Inspired by (36), we build a model in which
the semi-supervised module in (39) is removed to suit our task.
Simultaneously, the dilated convolution kernels are also replaced
by the ordinary convolution kernels to prevent information loss
caused by the gridding effect. Finally, we obtain the baseline
model for retinal vessel segmentation as shown in Figure 1.

Preprocessing
After solving the problem that transformed the vessel
segmentation scene into a few-shot segmentation task, here
comes the preprocessing operation. In this paper, the gamma
correction and the CLAHE are employed, respectively, aiming at
improving the brightness and the contrast of the retinal images.
In addition, we separate the green channel, which is a routine
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FIGURE 2 | The preprocessing operation: (A) Original image; (B) Gamma-corrected image; (C) Green channel image; (D) CLAHE image; (E) Mask; (F)

Mask-processed image; and (G) Patches.

operation in the vessel segmentation scenario, to show the
vessel structures more clearly. The masks are used to eliminate
the disturbance outside the region of interest. Furthermore,
in response to the construction of the support and the query
sets, the clipping operation is applied to the previous operation
result. Meanwhile, the overlapping technique is also adopted
here to ensure the similarity and the quantity of patches in the
same retinal image. Specifically, we firstly set the size of the
image patch template to 224 × 224 pixels, and then the clipping
function is realized by moving the template in the horizontal
and vertical directions. In the process, we realize the overlapping
function by setting the moving step as 64 (i.e., the overlapping
size is 160) among each image patches in the above directions.
The whole preprocessing is shown in Figure 2.

Problem Definition
The task of this paper is to construct the vessel segmentation
model based on the few-shot learning paradigm, which possesses
a strong generalization ability to the similar unseen targets by
learning only a few annotated examples. In this scenario, we are
given an annotated retinal image set D = {Xi,Yi}

N
i=1, where Xi is

the ith sample andYi corresponds to its label. TheN is the number
of the annotated retinal images. In order to train the model, D

is divided into the training set Dtrain = {Xj,Yj}
N1
j=1, validation

set Dvalid = {Xk,Yk}
N2

k=1
, and testing set Dtest = {Xl,Yl}

N3

l=1
,

where N1, N2, and N3 represent the number of images in each
set, respectively. As mentioned above, in order to adapt to the
few-shot segmentation task, each retina image Xi is regarded as
a unique class and is cropped into patches to build the support
set Sis = {xis, yis}

K
s=1 and the query set Qiq = {xiq, yiq}, where

K denotes the sampling numbers from the class i, xis is the sth

support patch extracted from the image Xi with its annotation yis,
and xiq is the query patch extracted from the remaining patches
in the image Xi with its annotation yiq. So, given a C-way K-
shot segmentation task, the training episodes can be described

as
(

Sjs,Qjq

)

by randomly extracting C classes from N1 and

K members from each corresponding class during the training
stage. To verify the model performance in the training process
and to save the optimal weight parameters, the same technique,
such as building the training episodes, is also applied to the
validation set Dvalid.

Few-Shot Learning-Based Segmentation
Architecture
Although the baseline model performs well in the vessel
segmentation task (refer to Section Results and Discussions), it
is defective to derive the label information of the query images
by only using the support image class prototype information
from the high-level layer. The reason is that part of the
foreground and the background contents of the support images
will be lost in the down-sampling process, which will provide
an incomplete guidance for the query image label prediction
and render inaccurate results. Therefore, the baseline model is
further upgraded to alleviate the above problems (as shown in
Figure 3). Specifically, a multi-scale class prototype extraction
technique, which is embedded into the parallel positions of
the down-sampling steps in the encoder composed of the
first four modules from the VGG16 (40), is designed for
the information derivation of the query images. Besides, the
gradual fusion scheme for the multi-scale vessel features is also
integrated in the upgraded model. In this paper, the mask average
pooling (36, 38) is also employed to extract the class prototype
information of the support images, and the formulation can be
expressed as:

Pls =
1

W ×H

W
∑

w=1

H
∑

h=1

fω(x
l
s) ◦ y

l
s, l ∈ (1, 2, 3, 4, 5) (1)

where Pls represents the class prototype of the support image
feature map xls with the widthW and heightH and l is the parallel
position mark. The fω is the feature mapping function composed
of weight parameters ω and the network framework, and yls
denotes the annotation obtained by the linear interpolation
sampling on the support image mask. The Hadamard product,
denoted by the symbol ◦ , is used to extract the class prototype
of xls. Then, the same operation is adopted as (29), that is,
to apply the up-sampling operation on each class prototype
Pls and convolve the sampling result with the corresponding
query image feature map xlq to obtain the multi-scale vessel
maps. Meanwhile, the skip connection technique is integrated
into the upgraded model to fuse the multi-scale information
for better segmentation results. Finally, the binary cross-entropy
loss function is established based on the probability prediction
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FIGURE 3 | An overview of the upgraded model.

map p
q

jk
and its corresponding true annotation yjk, which can be

expressed as:

L(ω, b) = −
1

C × K

C
∑

j=1

K
∑

k=1

[yjk · log(p
q

jk
)

+(1− yjk) · log(1− p
q

jk
)] (2)

p
q

jk
= sigmoid(xQ(k)) =

1

1+ e−xQ(k)
(3)

where p
q

jk
and xQ(k) denote the probability prediction map of

the query patches with its true annotation, and the kth feature
map of the query patches of the model outputs, respectively.
In addition, it is well-known that the convolution module is a
local operation and ignores the global information, which may
lead to the failure of a pixel-level prediction task. Considering
this, a block (i.e., the MSA module in Figure 3) based on the
non-local attention operation (41) and multi-scale operation is
established to seek the global information integration of the query
feature maps at different scales, aiming at assisting the upgraded
model to approach the retinal vessel segmentation task. In view
of the rich semantic information of high-level features and the
cost of mathematical calculation, the attention operation is just
performed on the query feature map with two scales at the last
layer of the encoder, and the details are shown in Figure 3.

Furthermore, in order to obtain the good performance of both
the baseline and upgraded models in the cross-domain retinal

vessel segmentation task, an integrated framework (as shown
in Figure 4) is conceived according to the principle that the
minority obeys the majority, the mathematical idea of which can
be parameterized as follows:

pljk = Fl(xQ(k)), l = 1, ...,N1 (4)

pN1 = 1

{(

N1
∑

l=1

1
{

pljk > T
}

)

> T1

}

(5)

where N1 and Flare the total number of models in the integrated
framework and the lth model, respectively. The pl

jk
and pN1 denote

the probability prediction map from the lth model and the
statistical prediction result of N1 models, respectively. The 1{•}
is an indicator function which outputs 1 if the parameters meet
the threshold condition T or T1, and these two values are set to
0.5 and 1 in this paper, respectively. Then, the final probability
prediction map pF

jk
of the query patches can be expressed as:

pFjk =

{

max{pl
jk
(m, n)}, if pN1 (m,n) =1

min{pl
jk
(m, n)}, otherwise

(6)

where (m, n) represents the position coordinate of the element in
pl
jk
or pN1.
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FIGURE 4 | An overview of the integrated framework.

TABLE 1 | The basic configuration of the segmentation architecture.

Encoder Decoder

Conv3-64 Up-sampling

Conv3-64 Conv3-512

Maxpooling Conv3-256

Conv3-128 Up-sampling

Conv3-128 Conv3-256

Maxpooling Conv3-128

Conv3-256 Up-sampling

Conv3-256 Conv3-128

Conv3-256 Conv3-64

Maxpooling Up-sampling

Conv3-512 Conv3-64

Conv3-512 Conv3-32

Conv3-512 Conv3-3

Maxpooling Conv3-1

Segmentation Architecture Configuration
In this paper, no matter our baseline model or upgraded
model, the basic architecture configuration is the same, which
is composed of encoder and decoder. The encoder consists
of the first four modules of VGG16 (40), and the decoder
consists of conventional neural network layer. Table 1 shows the
specific configuration.

RESULTS AND DISCUSSIONS

Retinal Image Datasets and Experimental
Settings
To assess the performance of the proposed baseline and upgraded
models based on the few-shot learning paradigm, we have
carried out extensive experiments on the public retinal image
datasets, namely, CHASE_DB (42) (abbreviated as CHASEDB),
DRIVE (43), and STARE (44), to demonstrate the excellent
potential of the paradigm. In our experiments, for each dataset,
only 10 images, namely, 10 classes, are used as the candidate
set for constructing episodes composed of the support and

query sets, which is different from the machine-learning-based
segmentation models that are generally trained with more than
10 images. In fact, we randomly selected no more than five types
of vessel images, that is, C is set to 5, 4, or 3, to drive the
vessel segmentationmodel in the training process. The remaining
images are divided into the validation and testing sets. Of note, in
order to deduce the label information of the testing set based on
the structural similarity between retinal vessels, the testing images
share the support images of the validation set. In addition, taking
the calculation cost and the reliability verification of both the
baseline and the upgraded models into consideration, five groups
of C-way K-shot modes (Hereinafter referred to as CK modes),
namely, 5-way 3-shot, 4-way 3-shot, 3-way 3-shot, 3-way 4-shot,
and 3-way 5-shot, are set up to construct different episodes for
training the above vessel segmentation models, respectively. In
addition, we conducted application experiments on ophthalmic
clinical CSC dataset composed of 20 fundus images to test
the effectiveness of the two models and the feasibility of the
integrated framework. All experiments are performed on the
NVIDIA-3080ti GPU with the Tensorflow framework, and the
learning rate, epoch, iteration, and gradient optimizer are set to
0.0001, 30,100, and Adam, respectively.

Evaluation Metrics
In this section, the performance of the baseline and upgraded
models in the training, validation, and testing processes is
comprehensively evaluated based on the accuracy and the
loss of training process, the segmentation metrics, namely,
sensitivity (Sen), specificity (Spe), accuracy (Acc), f1-score (F1),
and AUC, and the actual segmentation results on the testing
images. Meanwhile, the superiority and the potential of the
proposed method is also discussed by comparing it with some
typical machine learning based vessel segmentation methods.
The segmentation metrics mentioned above are written as:

sensitivity = tp/(tp+ fn), specificity = tn/(tn+ fp) (7)

accuracy = (tp+ tn)/(tp+ fn+ tn+ fp),

f 1-score = 2tp/(2tp+ fn+ fp) (8)
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FIGURE 5 | Comparison of the baseline and upgraded models on training set: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot; and (E)

3-way 5-shot.

where tp, tn, fn, and fp denote true positive, true negative, false
negative, and false positive, respectively.

Comparison of the Baseline and Upgraded
Models on the Training and Validation Sets
For convenience, in the following sections, the baseline and
upgraded models are represented by “Base” and “Impro”,
respectively. As shown in Figure 5, it can be found that both
models can achieve more than 95% accuracy in the end. The
segmentation accuracy of the Impro model is higher than that
of the Base model in most cases under different CK modes on

three datasets during the training process. Similarly, compared
with the Base model, the loss value of the Impro model keeps
a low state on the whole. Even in some training epochs, the
difference of this loss value between the two models is relatively
small, but it is maintained for a short time. In addition, it can
also be found that the upgraded model shows the advantages in
the initial stage of training, whether it is the accuracy value or
the loss value. Specifically, at the beginning, the initial accuracy
of the upgraded model is higher than that of the baseline model,
and the loss value is also small, which means that the upgraded
operation can effectively improve the learning ability of the
model and promote the model to quickly capture the vessel and
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FIGURE 6 | Comparison of the baseline and upgraded models on validation set: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot; and (E)

3-way 5-shot.
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the non-vessel information in the fundus images. In general,
the performance of the upgraded model is slightly superior to
that of the baseline model in terms of accuracy and loss on the
training set.

Furthermore, to check the generalization ability of the model
to the unseen vessel images after each epoch and to save the
optimal weights in time, the accuracy, sensitivity, specificity, and
f1-scores of the two models on the validation set are specially
counted and plotted as shown in Figure 6. It shows that the
Impro model surpasses the Base model in terms of the average
segmentation accuracy and average f1-score in different CK
modes from Figure 6, which implies that the upgradedmodel has
a better segmentation performance. When referring to the other
two metrics (i.e., average sensitivity and average specificity), we
can also get the conclusion that the segmentation performance
of the baseline model is inferior to that of the upgraded model in
most cases.Moreover, the experiment can also show that there are
some differences in the performance of either the baseline model
or the upgraded model on different datasets, which is mainly
caused by the inconsistent data distribution of each datasets.
Nevertheless, compared with the baseline model, the average
values of various metrics of the upgraded model are relatively
consistent on different datasets, which reflects its strong learning
ability. However, it is worth noting that although the Impro
model performs well on the whole, its robustness still needs to
be enhanced.

Comparison of the Baseline and Upgraded
Models on the Testing Set
It can be obviously revealed from Figures 7A–E that both models
can achieve higher AUC values. Especially on the DRIVE dataset,
the AUC value of the Impro model is as high as 98.03% under the
combination of 3-way 5-shot mode and is better than most of the
listed methods. Under different CK modes, the AUC values of the
Impro model on the DRIVE, CHASEDB, and STARE datasets are
higher than those of the Base model, which not only explicitly
proves the excellent performance of the upgraded model, but
also shows the necessity and the effectiveness of the upgraded
operation.Moreover, from Figures 7A–E, we can directly see that
the AUC values of the Base model or of the Impro model are
different in each dataset, which indicates that the dataset, itself,
is an import factor affecting the model performance, and also
proves once again that the inconsistency of data distribution is a
significant part leading to a difference of the model performance.

In addition to the AUC value, we also evaluate the
generalization ability of the models on the testing set from the
other four evaluation metrics shown in Figure 8. Under different
CK modes, both the two models achieve more than 90% in terms
of the accuracy and specificity values, and overall, the Impro
model surpasses the Base model on the above values. Besides,
in consideration of the sensitivity and the f1-score values, the
conclusion can be drawn that the Impro model is significantly
better than those of the baseline model in most cases on the
three testing sets, which is similar to their performance on the
validation set. In general, the performance of the two models
in the testing sets is consistent with that in the training and

validation sets, which implies that both the two models can
better transfer the knowledge learned from the training set to
the unseen vessel images. However, it can still be found that the
test results of the two models in different datasets are slightly
different, which is also consistent with the previous experimental
observations. The difference in the model performance caused
by the inconsistent data distribution of different datasets is the
common factor of almost all the current vessel detectionmethods
based on machine learning, and it is also a problem to be
alleviated in the future.

Comparison of the Baseline and Upgraded
Models on the Segmentation Results
Through the above analysis, on the one hand, it shows the
excellent performance of both the Base and the Impro models
in the vessel segmentation task, while on the other hand, the
Impro model outperforms the Base model overall, which proves
the necessity for the upgraded operation. Furthermore, Figure 9
shows the details of the two models in the vessel segmentation
task on three datasets. It can be found that the two models
have good segmentation ability for the wide vessels and can
extract the main vessel structures. At the same time, by observing
the overall segmentation performance of the two models on
the three datasets, compared with the Base model, the Impro
model, still, has the upper hand, which is embodied in the
vessel continuity and adhesion. Specifically, it can be clearly seen
from Figure 9B that the wide vessels segmented from the Base
model may adhere to each other, but the Impro model performs
better and can properly deal with the vessel adhesion events.
Meanwhile, the Base model is generally inferior to the Impro
model in terms of the vessel continuity. For instance, as shown
in Figure 9C, there is a certain degree of discontinuity between
the branch vessel located by the baseline model and the main
vessel located by the same model. However, compared with this,
the continuity between the main and the branch vessels detected
by the upgraded model is relatively satisfactory.

However, although the Impro model has made progress in
the above segmentation performance, it cannot be ignored that
the baseline and upgraded models still have shortcomings in
small vessel segmentation, and this defect is also a common
weakness of the existing vessel segmentation methods. The
upgraded operation, indeed, improves the recognition ability of
the Base model for small vessels, but there is still much room for
improvement, which is also the direction of our future efforts.

Comparison of the Baseline and the
Upgraded Models With the Previous
Studies
In this section, we compare the proposed baseline and upgraded
models with the existing typical segmentation schemes based
on machine learning, and the results for each dataset are
summarized in Tables 2–4.

For the DRIVE dataset, it can be found that the accuracy,
specificity, sensitivity, and AUC values of the Impro model all
exceeded the Base model under different CK modes, and the
sensitivity difference between the twomodels is themost obvious,
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FIGURE 7 | Comparison of the baseline and upgraded models based on the AUC: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot; and (E)

3-way 5-shot.

which proves that the upgraded model can better distinguish the
vessel pixels from the background pixels. Besides, the highest
accuracy, specificity, and sensitivity of the Impromodel are 96.64,

98.29, and 84.95%, respectively, which are not only higher than
those of the Base model but are also significantly competitive
compared with most of the schemes listed. In addition, the AUC
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FIGURE 8 | Comparison of the baseline and upgraded models based on the sensitivity, specificity, accuracy, and f1-score: (A) 5-way 3-shot; (B) 4-way 3-; (C) 3-way

3-shot; (D) 3-way 4-shot; and (E) 3-way 5-shot.
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FIGURE 9 | Comparison of the baseline and upgraded models on segmentation results: (A) CHASEDB; (B) DRIVE; and (C) STARE.

value of the upgradedmodel is also visibly superior to the baseline
model, and the biggest difference is 1.53%. Moreover, the Impro
model is just 0.65% smaller in this metric than the optimal one
that is listed, which not only reveals its potential superiority
but also means that there is still room for improvement of the
upgraded model based on the few-shot learning paradigm.

Additionally, Table 3 shows the performance of our models
on the STARE dataset. Apparently the Impro model generally
obtains better results than the Base model, especially in the
accuracy, specificity, and AUC metrics. Compared with other
methods, our Impro model performs well in sensitivity and
achieves 83.37%, which shows that the model possesses good
capability to segment vessel pixels. Nevertheless, this may make
the upgraded model recognize the more true negatives as true
positives and result in poor performance on other metrics, which
encourages us to continue to optimize the few-shot basedmethod
for vessel segmentation comprehensively. In addition, we can
find that the data-driven models are still dominant in these four
metrics overall. This is because more images can make this kind
of vessel segmentation model, learn the characteristics of blood
vessels more fully, and enhance its sensitivity to the information
of blood vessels.

Moreover, the two models also performed well on the
CHASEDB dataset, as shown in Table 4. The performance of the
Impro model is still outstanding, and most of its segmentation
evaluation metrics are beyond the Base model under different

CK modes. The optimal accuracy, sensitivity, specificity, and
AUC values achieved by the Impro model are 96.96, 83.44,
98.05, and 97.85%, respectively, which are inferior to those in
(24, 27, 28). The reason is that the methods in (24) and (27)
both utilized the data augmentation strategy that makes the deep
learning framework obtain a more powerful ability to capture
the vessel information, and the adversarial learning strategy
promotes the scheme (28) to gain strong data distribution
learning ability in the vessel segmentation task. Nevertheless, the
above accuracy, sensitivity, and specificity values achieved by the
Impro model are generally higher than those acquired by the
other listed methods, and even the lowest sensitivity value (i.e.,
79.08%) obtained from the Base model shows its advantages,
which demonstrates the competitiveness of the two models to a
certain extent.

Comparison of the Domain Adaptability of
Single Model
The performance of the DL model in the intra- and cross-
domain tasks is the key reference and an important basis to
observe its generalization level. Therefore, the intra- and cross-
domain vessel segmentation based on a single model (i.e., the
baseline model or upgraded model) is performed in this part,
and the results are shown in Figures 10, 11. Here, we give an
example to illustrate the experimental setup. When experiments
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TABLE 2 | Performance comparison on DRIVE.

Methods Acc (%) Spe (%) Sen (%) AUC (%)

Base Impro Base Impro Base Impro Base Impro

Proposed 5-way 3-shot 94.52 94.46 96.08 95.56 77.48 82.45 96.25 97.07

4-way 3-shot 95.82 96.61 97.91 98.28 73.97 79.21 95.98 97.29

3-way 3-shot 95.82 96.64 97.88 98.29 74.35 79.47 96.62 97.19

3-way 4-shot 95.77 96.45 97.87 97.70 73.90 83.35 96.53 97.79

3-way 5-shot 95.66 96.34 97.50 97.43 76.55 84.95 96.50 98.03

Machine learning Fraz et al. (14) 94.80 98.07 74.06 97.47

Krishna et al.

(15)

96.19 98.36 74.35 -

Aslani and

Sarnel (16)

95.13 98.01 75.45 96.82

Orlando et al.

(17)

- 96.84 78.97 95.07

Li et al. (18) 95.27 98.16 75.69 97.38

Srinidhi et al.

(19)

95.89 96.67 86.44 97.01

Liskowski and

Krawiec (22)

95.35 98.07 78.11 97.90

Mo and

Zhang (23)

95.21 97.80 77.79 97.82

Jiang et al.

(24)

96.24 98.25 75.40 98.10

Zhou et al.

(25)

94.69 96.74 80.78 -

Yan et al. (26) 95.42 98.18 76.53 97.52

Filipe et al.

(27)

95.76 98.04 80.39 98.21

Park et al. (28) 97.06 98.36 83.46 98.68

The bold values indicate the maximum value of the corresponding metric in the manuscript.

are conducted on the STARE dataset, the Base-STARE or Impro-
STARE represents an intra-domain experiment, which means
that the training set of STARE is used to train the model, and
the STARE testing set is used to test the model. On the premise
of STARE dataset, the Base-DRIVE or Impro-DRIVE denotes a
cross-domain experiment, which represents training the model
with a training set from the DRIVE dataset and testing the model
based on the STARE testing set.

As shown in Figure 10, the baseline model or the upgraded
model generally performs better in the intra-domain task,
especially the sensitivity and f1-score metrics. As for the cross-
domain scene, the above metric values of the two models are
inferior to those in the intra-domain scene. However, as for the
other twometrics, it can be found that the performance of the two
models in the cross-domain task is close to or even higher than
that in the intra-domain task. In addition, it can be seen from the
AUC metric in Figure 11 that the retinal vessel segmentation of
the twomodels in the intra-domain scene is superior to that in the
cross-domain task in most cases. However, in some instances, the
cross-domain segmentation results of the Impro model are even
better. For example, when the upgraded model trained based
on the STARE dataset was tested on the DRIVE dataset, the
AUC values of 97.27, 97.76, and 97.39% were obtained under

the conditions of 5-way 3-shot, 4-way 3-shot, and 3-way 3-shot
modes respectively, which were 0.2, 0.47, and 0.2%more than the
intra-domain values of the corresponding upgraded model. Yet,
with the same CK modes, the baseline model performs slightly
worse in AUC value. The above observations show that the
adaptability of a single model in intra- and cross-domain tasks is
different, and overall, the intra-domain segmentation level of the
model is superior to its cross-domain performance. Nevertheless,
in some cases, the good results of the model in cross-domain task
also suggest its potential application value in this scenario.

Comparison of the Domain Adaptability
Between the Single Model and the
Integrated Framework
The above experiments tested the performance of the baseline
and the upgraded models on the public retinal image datasets,
which not only showed the effectiveness of the two models in the
fundus vessel segmentation task, but also implied their potential
competitiveness compared with the existing methods. Of note,
whether it is the baseline model or the upgraded model, their
performance in the intra-domain task is relatively better than
that in the cross-domain task to a certain extent. However, we are

Frontiers in Medicine | www.frontiersin.org 14 March 2022 | Volume 9 | Article 821565

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xu et al. Vessel Segmentation for CSC Laser Surgery

TABLE 3 | Performance comparison on STARE.

Methods Acc (%) Spe (%) Sen (%) AUC (%)

Base Impro Base Impro Base Impro Base Impro

Proposed 5-way 3-shot 94.59 95.63 96.71 97.39 77.70 81.53 95.63 96.92

4-way 3-shot 94.46 95.92 96.50 98.16 78.18 78.04 95.91 97.29

3-way 3-shot 94.89 95.81 97.06 97.73 77.56 80.47 96.06 97.16

3-way 4-shot 94.88 95.77 97.33 97.69 75.39 80.46 95.97 97.25

3-way 5-shot 94.63 95.65 96.64 97.19 78.51 83.37 96.19 97.53

Machine learning Fraz et al. (14) 95.34 97.63 75.48 97.68

Aslani and

Sarnel (16)

96.05 98.37 75.56 97.89

Orlando et al.

(17)

- 97.38 76.80 -

Li et al. (18) 96.28 98.44 77.26 98.79

Srinidhi et al.

(19)

95.02 97.46 83.25 96.70

Liskowski and

Krawiec (22)

97.29 98.62 85.54 99.28

Mo and

Zhang (23)

96.74 98.44 81.47 98.85

Jiang et al.

(24)

97.34 98.46 83.52 99.00

Zhou et al.

(25)

95.85 97.61 80.65 -

Yan et al. (26) 96.12 98.46 75.81 98.01

Filipe et al.

(27)

96.94 98.58 83.15 99.05

Park et al. (28) 98.76 99.38 83.24 98.73

The bold values indicate the maximum value of the corresponding metric in the manuscript.

TABLE 4 | Performance comparison on CHASEDB.

Methods Acc (%) Spe (%) Sen (%) AUC (%)

Base Impro Base Impro Base Impro Base Impro

Proposed 5-way 3-shot 96.76 96.91 97.83 97.92 80.82 81.86 96.64 97.10

4-way 3-shot 96.85 96.96 97.97 97.99 80.14 81.60 96.92 97.12

3-way 3-shot 96.85 96.91 98.05 97.87 79.08 82.60 97.48 97.85

3-way 4-shot 96.90 96.96 98.05 98.02 79.63 81.18 96.93 97.07

3-way 5-shot 96.70 96.82 97.70 97.72 81.83 83.44 97.12 97.24

Machine learning Fraz et al. (14) 94.69 97.11 72.24 97.12

Orlando et al.

(17)

- 97.12 72.77 95.24

Li et al. (18) 95.81 97.93 75.07 97.16

Mo and

Zhang (23)

95.99 98.16 76.61 98.12

Jiang et al.

(24)

96.68 97.45 86.40 98.10

Zhou et al.

(25)

95.20 97.51 75.53 -

Yan et al. (26) 96.10 98.09 76.33 97.81

Filipe et al.

(27)

96.53 98.64 77.79 98.55

Park et al. (28) 97.36 - - 98.59

The bold values indicate the maximum value of the corresponding metric in the manuscript.
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FIGURE 10 | Comparison of the domain adaptability based on the Acc, Sen, Spe, and F1: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot;

and (E) 3-way 5-shot.

also pleased to observe that the cross-domain adaptability of the
upgraded model is, sometimes, even more prominent than that
of the intra-domain model.

In order to improve the cross-domain adaptability of the
two models, we proposed an integrated framework (as shown
in Figure 4) and verified it on the ophthalmic clinical CSC
dataset. The CSC is a common fundus disease caused by the
impairment of retinal pigment epithelium function due to the
increased choroidal permeability, characterized by neurosensory
retinal detachment (NRD), with or without pigment epithelium
detachment (PED) (45–47), or detachment area (DA), and
leakage point (LP). As shown in Figure 12, the NRD and PED
can be clearly displayed on the optical coherence tomography
(OCT) B-scan image and DA, and the LP can also be drawn
on a fundus color image by an ophthalmologist according to
the corresponding angiography image. In recent years, either
the traditional laser photocoagulation or the micro-pulse laser
photocoagulation has become one of the important means of
CSC therapy, which plays an effective role in inhibiting the
development of CSC. However, the location of retinal vessels
is of great importance in the whole process of the above
CSC laser surgery, which does not only help the doctors
mark the location of the LP on fundus color image, but also
avoids the damage of laser spot to vessel tissue and the low
efficiency of surgery caused by the absorption of laser energy by
retinal vessels.

Therefore, this section applies the proposed single model (i.e.,
the baseline model and upgraded model) and the integrated
framework to the ophthalmic clinical CSC dataset, which
is not only a comparison of their performance, but also a
practical application test. First, the symbols in the following
figures and tables are briefly explained here. The “Base-DRIVE,”
“Base-CHASEDB,” and “Base-STARE” denote the baseline
model trained with DRIVE, CHASEDB, and STARE datasets,
respectively. the “Base-UNION” represents the integration of the
above three models, which means that N1 is 3. The naming rules
for the upgraded models are consistent with the baseline models.

It can be seen from Figure 13 that both the baseline and
the upgraded models can better adapt to the CSC dataset, and
more than 90% of the AUC values are obtained. In most cases,
the AUC metric of the Base-UNION is better than the Base-
DRIVE and the Base-CHASEDB; the maximum values of which
are 96.13 and 97% under the conditions of baseline and upgrade
schemes, respectively. This preliminarily shows the effectiveness
and the feasibility of the integrated idea in improving the cross-
domain adaptability of a single model. However, we have to
admit that the AUC values of the Base-STARE and the Impro-
STARE are slightly better than the corresponding integrated
models, the maximum values of which are 96.5 and 97.18%,
respectively. The above observations, on the one hand, show the
correctness of the integration scheme, and on the other hand,
also convey that the performance of this scheme has room for
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FIGURE 11 | Comparison of the domain adaptability based on the AUC: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot; and (E) 3-way

5-shot.

further improvement. At the same time, it can also be found
that whether the integration framework is based on the single
upgraded model or the single upgraded model itself, their AUC
values on the CSC dataset is better than their corresponding
baseline model in most cases, which is basically consistent with
the performance of the upgraded model and the baseline model
on the public datasets. The above analysis not only confirms
further the necessity of our upgraded operation, but also hints the
potential application ability of the model based on the few-shot
learning paradigm in clinical dataset. In addition, Table 5 clearly
shows the values of the other four metrics of the single model and
the integrated framework on the CSC dataset. For example, the
CSC-U (U represents Union, that is, the integrated framework)
represents the application of the integrated framework on the
CSC dataset, and CSC-D represents the application of Base-
DRIVE or Impro-DRIVE on the CSC dataset. Under different
CK modes, the ACC and F1 values of the integrated framework
are almost better than those of the corresponding single model,
especially the F1 value. Although the integrated framework is
slightly inferior in the Spe and Sen metrics, it still has the upper
hand overall. It can be found that both the Base-CHASEDB and
the Impro-CHASEDB achieved the maximum Spe value, but
performed poorly in the Sen metric, which implies that they will

FIGURE 12 | (A) Pigment epithelium detachment (PED) and neurosensory

retinal detachment NRD; (B) NRD (C) detachment area (DA) (the internal area

marked by yellow line) and leakage point (LP) (the blue point).

introduce more false positives (refer to Figure 14 for details) in
vessel segmentation task on the CSC dataset. The above implies
that a simple model integration can appropriately enhance
the poor cross-domain adaptability of a single model, but the
integrated principle of theminority obeying themajority needs to
be improved.

Figure 14 shows the fusion results of the segmented
retinal vessels and the fundus color images, in which the
black part represents the position information of vessels,
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FIGURE 13 | Comparison of the domain adaptability based on the AUC: (A) 5-way 3-shot; (B) 4-way 3-shot; (C) 3-way 3-shot; (D) 3-way 4-shot; and

(E) 3-way 5-shot.

TABLE 5 | Performance comparison of single model and integrated framework on CSC dataset.

Methods Acc (%) Spe (%) Sen (%) F1 (%)

Base Impro Base Impro Base Impro Base Impro

5-way 3-shot CSC-U 94.90 95.09 96.32 96.08 79.40 84.25 72.30 74.20

CSC-D 94.52 94.46 96.08 95.56 77.48 82.45 70.33 71.38

CSC-S 93.93 94.19 94.91 94.83 83.23 87.21 69.68 71.55

CSC-C 94.06 94.82 96.57 96.96 66.63 71.45 65.30 69.83

4-way 3-shot CSC-U 95.01 95.32 96.47 96.58 79.07 81.53 72.65 74.48

CSC-D 94.74 94.57 96.39 96.09 76.67 77.98 70.96 70.67

CSC-S 93.83 94.84 94.79 95.90 83.31 83.30 69.35 73.03

CSC-C 94.26 94.87 96.77 96.94 66.90 72.28 66.17 70.28

3-way 3-shot CSC-U 95.07 95.19 96.62 96.34 78.09 82.63 72.64 74.24

CSC-D 94.60 94.49 96.39 96.07 74.98 77.23 69.94 70.16

CSC-S 94.29 94.54 95.37 95.31 82.47 86.06 70.78 72.53

CSC-C 94.12 94.77 96.91 96.67 63.61 73.93 64.45 70.31

3-way 4-shot CSC-U 95.18 95.06 96.76 96.10 77.82 83.72 73.01 73.97

CSC-D 94.72 94.27 96.43 95.49 76.05 80.84 70.73 70.27

CSC-S 94.43 94.43 95.66 95.17 81.02 86.35 70.93 72.22

CSC-C 94.23 94.83 97.03 97.05 63.53 70.56 64.85 69.60

3-way 5-shot CSC-U 94.85 94.67 96.17 95.45 80.33 86.19 72.33 73.06

CSC-D 94.36 93.93 95.93 94.86 77.21 83.68 69.66 69.79

CSC-S 93.92 93.77 94.79 94.23 84.40 88.78 69.95 70.50

CSC-C 94.07 94.78 96.44 96.56 68.16 75.35 65.84 70.77

The bold values indicate the maximum value of the corresponding metric in the manuscript.

the inner area marked by yellow line represents DA, and
the blue point is LP. After a careful comparison, it can
be found that the integrated framework can segment more
retinal vessels than the single model driven by DRIVE
or CHASEDB dataset. Although the Base-CHASEDB and
the Impro-CHASEDB have advantages in Spe metric, it

leads to more false positives (Refer to Table 5) in the
actual segmentation results. Moreover, the Base-STARE or the
Impro-STARE is generally dominant in the task of vessel
segmentation. However, it cannot be ignored that they will
bring more discrete vessel segments, which may disturb the LP
localization process.
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FIGURE 14 | Comparison of the single model and the integrated framework on practical application.

In general, through the above results and discussions, it can
be found that the performance of both the Base and Impro
models is consistent in the training, validation, and testing
processes, which indicates the stability of the two models. In
addition, we can see that although the baseline model can
adapt to the vessel segmentation task well, it is weaker than
the Impro model in terms of adhesion and continuity in wide
vessel segmentation as a whole, which also emphasizes the
necessity of an upgraded operation. Moreover, compared with
some typical machine-learning-based methods listed, the Base
and Impro models show superiorities in most cases, but we
still need to catch up with the optimal scheme. Furthermore,
a single model performs well in the intra- and cross-domain

tasks, and overall, either the baseline model or the upgrade
model is better in intra-domain tasks. The proposed integrated
framework enhanced the vessel segmentation ability of a single
model in the cross-domain task to a certain extent, but the
integrated idea based on the minority obeying majority needs
to be improved in the future to promote the superiority of the
integrated framework.

CONCLUSION AND FUTURE WORK

In this paper, a novel few-shot learning-based method for retinal

vessel segmentation is proposed. Firstly, from the perspective
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of a problem scenario migration, the vessel segmentation scene
is skillfully transformed into the few-shot learning task, which

lays a foundation for vessel segmentation under the condition

of few samples. Then, on the basis of the above, two models
based on the few-shot learning paradigm are established. In

the first step, we build a baseline segmentation model by
improving the existing few-shot learning framework, which
adapts to the vessel segmentation task well. In the second step,
to improve the segmentation performance of the baseline model,
we make further efforts from the following three aspects: (1)
A multi-scale class prototype extraction technique is designed
to obtain more sufficient vessel features for better utilizing
the information from the support images; (2) The multi-scale
vessel features of the query images inferred by the support
image class prototype information are gradually fused to provide
more effective guidance for the retinal vessel segmentation
task; and (3) A multi-scale attention module is raised to
promote the consideration of the global information in the
upgraded model to assist the vessel localization. Moreover, the
integrated framework is conceived to appropriately alleviate
the low performance of a single model in the cross-domain
vessel segmentation scene. Extensive experiments on three
public retinal image datasets demonstrate that the few-shot
learning-based method can effectively carry out the intra-
domain vessel segmentation task with a few annotation samples
and possess a potential cross-domain application capability.
Practical application experiments on our private CSC dataset
not only confirms the effectiveness of the integrated framework
to improve the cross-domain adaptability of a single model,
but also further indicates the clinical application value of
the few-shot learning-based method in assisting the CSC
laser surgery for retinal vessel localization. However, although
we broaden the research ideas for the vessel segmentation
in the case of few samples, the limitations of this method
cannot be ignored. In the future, we will focus on enhancing
the segmentation ability of the proposed models on the
small vessels and alleviate the problem of a discontinuous
segmentation issue, and try to explore the vessel segmentation
scheme based on the few-shot learning paradigm without
any annotations.
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