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Aristolochic acid nephropathy (AAN) is a progressive tubulointerstitial nephritis caused

by the intake of aristolochic acids (AA) contained in Chinese herbal remedies or

contaminated food. AAN is characterized by tubular atrophy and interstitial fibrosis,

characterizing advanced kidney disease. It is established that sustained or recurrent

acute kidney injury (AKI) episodes contribute to the progression of CKD. Therefore,

the study of underlying mechanisms of AA-induced nephrotoxicity could be useful

in understanding the complex AKI-to-CKD transition. We developed a translational

approach of AKI-to-CKD transition by reproducing human AAN in rodent models.

Indeed, in such models, an early phase of acute tubular necrosis was rapidly followed

by a massive interstitial recruitment of activated monocytes/macrophages followed by

cytotoxic T lymphocytes, resulting in a transient AKI episode. A later chronic phase

was then observed with progressive tubular atrophy related to dedifferentiation and

necrosis of tubular epithelial cells. The accumulation of vimentin and αSMA-positive cells

expressing TGFβ in interstitial areas suggested an increase in resident fibroblasts and

their activation into myofibroblasts resulting in collagen deposition and CKD. In addition,

we identified 4 major actors in the AKI-to-CKD transition: (1) the tubular epithelial cells,

(2) the endothelial cells of the interstitial capillary network, (3) the inflammatory infiltrate,

and (4) the myofibroblasts. This review provides the most comprehensive and informative

data we were able to collect and examines the pending questions.
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INTRODUCTION

For a long time, the common belief was that the long-
term outcome of patients recovering from acute kidney injury
(AKI) was benign. However, this previous paradigm has
been progressively challenged as several epidemiological studies
demonstrated that AKI significantly increases the risk of chronic
kidney disease (CKD) onset (1–8). Indeed, severe or repeated
AKI episodes initiate an exaggerated recovery process leading
ultimately to rarefaction and sclerosis of glomeruli, atrophy and
dilation of tubules, tubulointerstitial fibrosis and peritubular
capillaries rarefaction, all being characteristic of CKD (9). All
these epidemiological and clinical reports have raised the urgent
need to determine whether the progression of this process could
be stopped or at least delayed. In this regard, animal models
represent a relevant tool to investigate the pathophysiological
link between AKI and CKD and to assess therapeutic
strategies (10). In addition to the classical models of ischemic
reperfusion injury (IRI) and unilateral ureteral obstruction
(UUO), experimental nephrotoxic approaches represent an
attractive alternative.

Human aristolochic acid nephropathy (AAN) was formerly
known as “Chinese herb nephropathy.” This tubulointerstitial
nephritis was first reported in Belgian women after ingestion
of herbal slimming remedies containing aristolochic acids (AA)
(11). At this time, clinicians were amazed by the prominent
interstitial fibrosis with a typical corticomedullary gradient and
the tubular atrophy characterizing this nephrotoxicity (12). Later,
AA metabolism was found to lead to DNA adducts formation
(13). These specific AA-DNA adducts are known to induce
carcinogenesis and mutagenesis by activation of H-ras proto-
oncogene in rats and by p53 gene mutation in humans finally
leading to uretero-vesical cancers (14–18). Beside the Belgian
outbreak, these nitrophenanthrene derivatives were also found
responsible for thousands of cases of the so-called Balkan
endemic nephropathy (19, 20). Finally, in China and Taiwan
where traditional herbal medicines are still widely used, more
than 300 cases have been described but this number is certainly
underestimated as billions of Chinese and Taiwanese’s patients
could have been exposed to AA (21–24). Human AAN has
been reproduced in several animal models including rabbits,
mice and rats (25–29). Interestingly, a biphasic evolution of the
tubulointerstitial lesions was demonstrated in our male Wistar
rat model and in our mice models (26, 27, 30). The acute
phase (several days following the beginning of AA exposure) is
characterized by a necrosis of the proximal tubular epithelial cells
(PTEC) concomitantly to a rise of plasma creatinine. This phase
is rapidly followed by an inflammatory infiltrate along with a
normalization of the biological parameters, reflecting an attempt
of PTEC regeneration. Following the acute phase, interstitial
fibrosis and tubular atrophy were the main hallmarks of the later
chronic phase (already several days after starting AA exposure
and persisting after cessation of AA intoxication). Regarding the
marked interstitial fibrosis characterizing AAN, these models
are of particular interest in order to study the AKI-to-CKD
transition and the respective role of the different actors involved
in this process.

MAJOR CELLULAR MECHANISMS
UNDERLYING AKI-TO-CKD
PROGRESSION AND TRANSLATION TO
AAN MODELS

Clearly, mechanisms linking AKI to CKD are in part universal
and independent of the initial aggression. Understanding the
respective roles of the actors involved in the AKI-to-CKD
transition is essential to develop prevention strategies. In this
regard, Eddy proposed four pivotal cellular responses in the
disease progression: (1) the response of tubular epithelial cells
to the aggression; (2) the loss of endothelial integrity; (3) the
interstitial inflammatory response and (4) the appearance of a
new interstitial cell population, the myofibroblasts (Figure 1)
(31). The following sections are dedicated to each of these major
processes and their translation to rodent models of AAN.

The Proximal Tubular Epithelial Cells
The selective toxicity of AA for PTEC has rapidly been
highlighted (26). In our Wistar rat model, structural and
functional parameters of proximal tubular injury were
longitudinally investigated: (1) the acute tubular necrosis
histologically delineated to the S3 segment (from day 1 to day
5 after the beginning of AA subcutaneous exposure) was found
concomitant to a dramatic urinary increase in low molecular
weight proteins, reflecting the loss of reabsorptive capacity by the
apical brush border of the tubular epithelium; (2) consecutively

FIGURE 1 | The four pivotal cellular responses in the progression of kidney

disease. According to Eddy (31).
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FIGURE 2 | Time course of histological alterations in experimental AAN. Representative photographs of hemalun, Luxol fast blue and Periodic Acid Schiff stained

kidney sections [x200 (A–D), x400 (E–H), and x1000 (I–L)] from CTL mice and mice intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St. Louis, MO, USA)

during 4 consecutive days. Mice were sacrificed 5, 10, and 20 days after first day of AA treatment. Necrotic tubules with cell debris in tubular lumen are visible in mice

treated with AA at days 5 and 10 and cystic tubules are visible in mice at days 10 and 20.

to interstitial infiltration by inflammatory cells, areas of non-
regenerative tubular necrosis were rapidly replaced by severe
tubular atrophy and were surrounded by interstitial fibrosis. In
addition, in the rat Wistar model, induction of active caspase-3
in the PTEC demonstrated the contribution of apoptosis in
tubular atrophy (27). This biphasic evolution was reproduced
in our mouse models (Figure 2). The PTEC targeting by AA
suggested the involvement of specific molecular mechanisms
that could be responsible for the accumulation of the toxin in
these cells. This hypothesis has been confirmed in vitro (32, 33)
and in vivo (28, 34) by several studies reporting a critical role of
the organic anion transporter (OAT) family in AA uptake into
the PTEC. Specifically, we demonstrated that in AA-treated mice,
probenecid treatment reduced tubular necrosis, lymphocytic
infiltrate, tubular atrophy as well as fibrosis by blocking AA
entry into PTEC as attested by the reduction of DNA-adducts
formation (28).

Moreover, it has been pointed out that the formation of AA-
DNA adducts is not necessarily associated to AA nephrotoxicity
(35, 36). The formation of those adducts is not the only
source of cytotoxicity. Indeed, AA-induced cytotoxicity could
also be linked to the release of Ca2+ from the endoplasmic
reticulum (ER) that causes ER and mitochondrial stress resulting
in caspases activation and apoptosis (37–39). Furthermore, we
and others reported that AA led to an increase in oxidative
stress that contributed to DNA damage and cell cycle arrest

in experimental studies (27, 40–44). In this regard, Bonventre
demonstrated that following AA-induced AKI, PTEC stop their
cell cycle in the G2/M phase. This arrest is considered as a
protective mechanism as it could help to repair DNA lesions (44).
However, this mechanism has also been found to be associated
with an excessive production of transforming growth factor β

(TGFβ) and connective tissue growth factor (CTGF) thereby
promoting fibrosis.

The cell death process (necrosis, apoptosis or autophagy)
may also influence the outcome of AKI. Indeed, PTEC necrosis
yields pro-inflammatory factors that act as dangers associated
molecular patterns (DAMPs). After linking with Toll like
receptors (TLR), DAMPs lead to an activation of the innate
immune system and a pro-inflammatory environment (45). On
the other hand, some authors postulate that apoptosis does
not constitute a maladaptive process but is rather a way to
eliminate the damaged cells without the release of cellular debris.
This hypothesis is supported by the study of Bonventre who
demonstrated reduced apoptosis in the AANmodel as compared
to other AKI models such as IRI. AAN animals also displayed
more extensive fibrosis, suggesting that apoptosis constitutes an
adaptive mechanism and that cells undergoing cell cycle arrest
instead of progressing to apoptosis exert profibrogenic effects
(46, 47). However, the role of p53 inhibition on chronic lesions
remains controversial: some authors described a worsening of
the lesions (48) as others suggested the opposite (49). Recently,
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the impact of p53 on AAI-induced nephrotoxicity and DNA
damage was investigated in vivo using Trp53(+/+), Trp53(+/–),
and Trp53(–/–) mice (50). Interestingly, renal injury was more
severe in AAI-treated Trp53(–/–) mice relative to Trp53(+/+)
and Trp53(+/–)mice (50).

Finally, we performed an analysis of urine metabolites from
rats intoxicated with AA by the use of NMR spectrometry. A
significant reduction in Krebs cycle components (α-cetoglutarate,
succinate, citrate) was found, suggesting a mitochondrial
injury (51).

Finally, PTEC could also contribute to interstitial
fibrosis through a complex phenomenon called epithelial-
to-mesenchymal transformation (EMT) (see Section The
Myofibroblasts) (27, 52).

The Endothelial Cell Injury
The preservation of endothelium structure and function
constitutes a key element of renal function. In this regard,
numerous kidney injury models have demonstrated a sustained
renal vasoconstriction and a rarefaction of the peritubular
capillaries (PC) around injured tubules as prominent features of
kidney disease (53) ultimately leading to renal hypoxia thereby
promoting fibrosis and progression to CKD (54–57).

Following injury, renal endothelial cells switch from a
quiescent to an activated state, leading to an imbalance in the
production of vasoactive substances inducing a vasoconstrictive
environment and a reduced blood flow. Specifically, a decreased
bioavailability of nitric oxide (NO) was described as a
characteristic feature of kidney disease (58).

Moreover, a long-term consequence of AKI is a PC rarefaction
that is also considered as a hallmark of CKD (31, 59, 60).
This PC rarefaction is thought to be due to an anti-angiogenic
environment (60) and to the loss of endothelial cells as well as
pericytes that transdifferentiate into myofibroblasts (see section
Conclusions). It also emphasizes the fact that endothelial cells,
unlike tubular cells, fail to regenerate (61, 62).

Only few studies have addressed the involvement of the
vascular network in AAN pathophysiology. In this regard,
Depierreux et al. were the first to describe a thickening of the
walls of interlobular and afferent arterioles due to swelling of
endothelial cells in human kidney biopsies from Belgian AAN
patients. They proposed that primary lesions could occur in
the vessel walls, then inducing tubular destruction (12). Since
then, other investigators demonstrated a dramatic decrease in
PC, in particular in the fibrotic areas in human renal tissue
samples as well as in experimental models (63, 64). In a rat
model of AAN, the reduction of PC network was associated
to a decreased expression of vascular endothelial growth factor
(VEGF) and to an increased expression of hypoxia inducible
factor 1α (HIF-1α), thereby suggesting that ischemia and hypoxia
are critical processes contributing to AAN progression (63).
Similar data were also reported by Wen et al. in a rat model of
AAN. Interestingly, they also described an imbalance between the
vasoactive factors with a reduced NO production occurring along
with an increase in mRNA and protein expression of endothelin
(ET) (65). Such imbalance between vasoactive substances was
also investigated in our lab in a mouse model of AAN. In

our hands, renal NO bioavailability was reduced following AA
intoxication not only during the acute phase (66) but also during
the progression to the chronic stage (29).We also highlighted that
oral treatment with L-Arginine (L-Arg) led to the maintenance of
renal NO bioavailability along with a reduction of AA toxicity
(29, 66). Several studies have reported the impact of AA on
endothelial cells in the literature. Shi and Feng showed that AA
decreased cell viability in a dose- and time-dependent manner.
They also demonstrated that AA could induce endothelial cell
apoptosis and increase activation of caspase-3 (67). Guan et
al. highlighted that HUVEC treated with AA display impaired
angiogenesis capacities (68). More recently, our team showed a
cytotoxic effect of AA on EAhy926 endothelial cells. In addition,
exposure of aortic rings to AA impaired vascular relaxation to
acetylcholine (69).

The Role of the Immune System
The histological examination of renal tissue samples from the
first human cases had suggested that AAN was characterized
by a diffuse and pauci-cellular interstitial fibrosis along with a
corticomedullary gradient and marked tubular atrophy (12). The
involvement of the immune system in AAN pathophysiology
was rapidly evoked thanks to the results of a pilot clinical
study in which steroids treatment resulted in slowing down
the progression of the renal failure (70, 71). In addition,
histopathological analyses from AAN patients highlighted
the presence of an inflammatory infiltrate of mixed origin
(monocytes/macrophages, B-lymphocytes and CD8 cytotoxic T-
cell (72) or mastocytes (73), leading to a paradigm shift regarding
the role of interstitial inflammation in AAN. Indeed, the role
of the immune system has been largely demonstrated in both
ischemic and other toxic AKI models (74).

In our AAN Wistar model, a significant inflammatory
infiltrate following acute tubular necrosis has been described
(27, 30). During the acute phase, injured PTEC secrete
inflammatory cytokines contributing to the accumulation of
inflammatory cells into the renal interstitium (increased urinary
levels of MCP-1 on day 7 and of IL-1α on day 10). During the
chronic phase (day 35), a significant urinary release of IL-1α,
TNF-α, IFN-γ, MCP-1, IL-4, and TGFβ was observed (27, 30).
Moreover, an increased cortical expression of hyaluronan (HA)
following tubular necrosis has been demonstrated in our AA-
intoxicated mice as in other AKI models such as the IRI model
(75–77). This ubiquitous glycosaminoglycan is normally found in
the extracellular matrix of the renal medulla, but not the cortex,
except during inflammation and ischemic injuries (76, 78). In
inflammatory conditions, HA can be cleaved by hyaluronidases,
generating low molecular weight “fragments” that interact with
TLR2 and 4 (77, 79) thereby contributing to an inflammatory
environment (76, 77, 79).

Following tubular necrosis and cytokines secretion, an
inflammatory infiltrate including various immune cells such as
dendritic cells (DC), neutrophils, macrophages, natural killer T-
cells (NKT) and T and B lymphocytes has been described in AKI
(74). The respective functions of these cells remain controversial,
depending on the AKI model and the time course of the
disease. Regarding experimental AAN, the role of the different
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immune cell types was investigated only recently. Macrophages
surrounding injured PTEC were observed in our AA-intoxicated
rats and mice models (27, 29, 30). Phagocytosis of cell debris may
lead to macrophage maturation (MHC class II expression) and
stimulation of naive lymphocytes. The macrophage infiltrate was
rapidly followed by a lymphocytic infiltrate composed of CD8+

and CD4+ T-cells (80). Using several depletion protocols (anti-
CD4+, anti-CD8+ or anti-CD25+) in our AAN mouse model,
we investigated the respective roles of these specific cells. We
observed an aggravation of AA-induced AKI in mice depleted
with anti-CD4+ or anti-CD8+ T-cells along with an increased
TNF-α andMCP-1mRNA renal expression. However, regulatory
T-cells depletion did not modify the severity of AKI, suggesting
an independent mechanism (80). An increased proportion of
myeloid CD11bhighF4/80mid and a decreased proportion of their
counterpart CD11blowF4/80high population was also observed
after AA intoxication. After CD4+ T-cell depletion, the increase
in the CD11bhighF4/80mid population was even higher whereas
the decrease in the CD11blowF4/80high population was more
marked after CD8+ T-cell depletion. These results suggest that
CD4+ and CD8+ T-cells are able to limit the severity of AA-
induced AKI. The protective effect of CD4+ and CD8+ T-cells
has been associated with an imbalance of the CD11bhighF4/80mid

and CD11blowF4/80high populations (80).

The Myofibroblasts
Tubulointerstitial fibrosis constitutes the final common pathway
of CKD. In this regard, myofibroblasts are commonly pointed
as the predominant effector cells of this process. They represent
a unique population of cells that appears de novo after
kidney injury due to the secretion of factors by injured
tubules and inflammatory cells (31, 81). They exert their pro-
fibrotic function by producing the extracellular matrix, the
crosslinking enzymes and the inhibitors of matrix degrading
metalloproteinases (52). Expression of αSMA, a stress fiber
protein that facilitates increased contractility, along with a typical
fibroblastic morphology is their defining feature (52).

Given their pivotal importance, the cellular origin of those
cells constitutes a critical question as well as an ongoing debate.
The following cellular origins are proposed:

• Interstitial fibroblasts are commonly regarded as the most
abundant progenitor to myofibroblasts (31).

• Proximal epithelial tubular cells (PTEC) were historically
identified as a potential source of myofibroblasts. A process
called epithelial-to-mesenchymal transition (EMT) was
identified as an important mechanism responsible for the
accumulation of interstitial myofibroblasts and collagen
production during kidney fibrosis. Many in vitro studies
have described the expression of mesenchymal markers when
epithelial cells are injured. However, studies supporting the
existence of EMT in vivo in the kidney have been much more
limited and this hypothesis is nowadays considered as unlikely
to occur in vivo (82). It is now proposed that expression of
mesenchymal markers by epithelial cells in vivo should rather
be interpreted as a sign of dedifferentiation (83).

• Endothelial cells (EC) have also been proposed as progenitors
for myofibroblasts. A process called endothelial-to-
mesenchymal transition (endo-MT) was described as
a trans-differentiation of EC to a more mesenchymal
phenotype. The magnitude of endo-MT contribution to the
myofibroblast pool is variable depending on the experimental
model used (52).

• Pericytes are specialized cells found in close vicinity to EC.
Their role consists in maintaining vascular stability via cell-
cell communication and by the release of factors such as TGFβ
or VEGF (83). It is now proposed that renal pericytes could
migrate from perivascular location to the interstitium and
then acquire the phenotype of the myofibroblast. Nowadays,
pericytes receive much interest since targeting these cells could
lead to preservation of vascular network along with inhibition
of fibrosis (83).

• Fibrocytes are circulating cells of myeloid lineage that are
proposed to be the precursors of fibroblasts (83). These cells,
deriving from the bone marrow, do not appear as major
contributors to the pool of myofibroblasts in the kidney. It
is rather proposed that they may act by paracrine signaling
on other kidney cells to support and promote renal scarring
(52, 83).

In experimental AAN, we have described that myofibroblasts
as well as collagen accumulate in the interstitium following AA
intoxication (Figure 3) (27, 29). In our Wistar rat model, we
have highlighted the loss of the epithelial phenotype (N-cadherin
and E-cadherin) along with the acquisition of mesenchymal
cell markers (vimentin and αSMA) in PTEC during the acute
phase of AAN (27). However, transmembrane migration was
not observed leading to the conclusion that EMT was rather
unlikely to occur. More recently, we showed that the early
inhibition of the p-Smad2/3 signaling pathway by neutralizing
anti-TGFβ antibody (1D11) improved renal function impairment
and partially prevented epithelial-endothelial axis activation by
reducing platelet derived growth factor receptor β (PDGFRβ)+

pericytes (84).

DISCUSSION

Considering the data collected from our initial Wistar rat model
and our consecutive mouse models, we were able to relate
simultaneous or successive events in relation with the four
pivotal cellular responses proposed by Eddy (31) in order to link
AKI to CKD mechanisms. The first insult resulting from AA
intoxication is the onset of non-regenerative proximal tubular
necrosis and early peritubular endothelial insult, resulting
in a prominent interstitial influx by immunocompetent cells
and hypoxia, respectively. Whatever the duration of AA
intoxication (sustained to 35 days in our rat Wistar model
or discontinued after 5 or 20 days in our mouse models),
the inflammatory response is likely to be considered as the
physiopathological link in the progression from the acute phase
to the chronic phase, namely AKI-to-CKD transition. The
promising attempts in blocking AA entry into PTEC or in
modulating targeted subpopulations of immunocompetent cells
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FIGURE 3 | Accumulation of αSMA-positive cells (A–H) and collagen I and III, highlighted by Sirius Red staining (I–P), within the interstitium of the kidney of CTL mice

and mice intoxicated with AA (aristolochic acid I, Sigma-Aldrich, St. Louis, MO, USA) during 4 consecutive days. Mice were sacrificed 5, 10, and 20 days after first day

of AA treatment [Magnification x100 for (A–D) and (I–L) and x200 for (E–H) and (M–P)].

are clearly attractive strategies to be more deeply investigated in
the future in order to enhance recovery from AKI. Furthermore,
the sustained impairment of the vascular network and the onset
of myofibroblasts, a key cellular population in kidney disease
progression, were also reported in our Wistar rat and mice
AAN models.

Considering these “adaptative” AAN models as well as the
four pivotal cellular responses to a toxic insult, interventional
strategies could be interestingly explored, mimicking clinical
situations. Indeed, there is no consensus available today
regarding the definition of recovery fromAKI. Several definitions
exist such as those of Acute Dialysis Quality Initiative (ADQI),
Kidney Disease: Improving Global Outcomes (KDIGO) and
Acute Renal Failure Trial Network (ATN) and they are not
unequivocal (85). There is increasing evidence suggesting that
AKI and CKD should be considered as an interconnected
syndrome (9). Clinical studies and experimental research
strongly suggest that even after mild AKI and “apparent”
recovery of renal function, clinical subjects or experimental
animals are at increased risk of developing CKD (86). In our

opinion and according to those from other authors, this strongly
suggests that there is no recovery ad integrum after AKI and
that subclinical lesions (i.e., with normal plasma creatinine
measurement) favor the onset of secondary CKD. It is likely
that compensatory mechanisms exist such as “compensatory
hypertrophy” of the remaining contralateral kidney after
nephrectomy (in case of living kidney donor for instance).
However, this mechanism cannot be considered as a recovery
ad integrum even if the kidney function is seemingly normal.
Moreover, it is now obvious that repeated “minor” episodes of
AKI constitute a springboard to CKD. From that perspective,
our AAN models differ from other classical AKI models such as
ischemic reperfusion injury (IRI), unilateral ureteral obstruction
(UUO), 5/6e nephrectomy model and nephrotoxic AKI models
such as ciclosporin, cisplatin, and adriamycin. Indeed, the toxic
insult due to multiple AA injections, even if mild, is sustained
in time. Therefore, tubular regeneration is dampened, repair
is maladaptive especially in the context of DNA damage and
severe reduction of peritubular capillaries leading ultimately
to tubular atrophy, interstitial chronic inflammation, vascular

Frontiers in Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 822870

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Baudoux et al. Experimental AKI-to-CKD Transition

rarefaction and prominent fibrosis. Each model suffers from
technical difficulties and limitations regarding extrapolation to
clinical situations. However, we actually would like to underline
some advantages of our AAN models: they do not require any
particular skills by opposition to surgical models, the toxicity
is rapidly induced and it generates homogenous alterations in
both kidneys; moreover, contrasting with UUO or unilateral IRI,
there is no renal compensation from the other kidney; finally,
there is prominent fibrosis in the chronic phases of the model.
Despite numerous advantages of the AAN models, it should be
mentioned that the genotoxic properties of AA could represent
a limitation of the AAN models—but only in chronic exposure
(at least more than 3 months in our hands). Indeed, AA have
been recognized for many years as a human carcinogen causing
upper urinary tract carcinoma but also bladder cancer and renal
cell carcinoma (18). Exposure of rodents to AA could interfere
with cell cycle of the urothelium or the digestive tract and induce
activation of protooncogens such as H-ras. In rodents, H-ras has
been found to play the same role as TP53 (14).

CONCLUSIONS

The incidence and prevalence of CKD are still rising worldwide
(87, 88). It has become increasingly clear that AKI constitutes
a significant risk factor for the development of CKD (9). In
this regard, animal models play a crucial role in unraveling
the pathological mechanisms of the so-called AKI-to-CKD

transition (10). On the basis of our findings as well as
data from the literature, we were able to observe a biphasic
evolution of the structure and function parameters following
AA intoxication with tubular injury which constitutes the first
pivotal cellular event. Following PTEC injury, inflammation was
described as persisting all along the experimental protocols.
We propose that the inflammatory response constitutes the
link in the progression from the acute phase to the chronic
phase. The prolonged inflammatory response hampered tubular
regeneration and ultimately led to tubular atrophy, interstitial
chronic inflammation, peritubular capillaries rarefaction and
prominent fibrosis. Finally, impairment of the vascular network
and myofibroblasts, a key cellular population in kidney
disease progression, were also described in our AAN rodent
models. In conclusion, these models recapitulate the four
pivotal cellular responses that are crucial in the AKI-to-CKD
transition.
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