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The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2),

the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced

at an unprecedented scale leading to a tremendous amount of viral genome sequencing

data. To assist in tracing infection pathways and design preventive strategies, a deep

understanding of the viral genetic diversity landscape is needed. We present here a

set of genomic surveillance tools from population genetics which can be used to better

understand the evolution of this virus in humans. To illustrate the utility of this toolbox,

we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year

of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences

published in the GISAID database during the pre-vaccination phase. We demonstrate

that, compared to standard phylogenetic approaches, haplotype networks can be

computed efficiently on much larger datasets. This approach enables real-time lineage

identification, a clear description of the relationship between variants of concern, and

efficient detection of recurrent mutations. Furthermore, time series change of Tajima’s

D by haplotype provides a powerful metric of lineage expansion. Finally, principal

component analysis (PCA) highlights key steps in variant emergence and facilitates

the visualization of genomic variation in the context of SARS-CoV-2 diversity. The

computational framework presented here is simple to implement and insightful for

real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen

that threatens the health of populations of humans and other organisms.
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1. INTRODUCTION

The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-
CoV-2) is a highly transmissible virus responsible for the
current ongoing pandemic. SARS-CoV-2 is a positive-sense,
single stranded RNA genome of 29,903 nucleotides. This virus
is transmitted from person to person by droplet transmission.
Most SARS-CoV-2 infected patients experience mild to moderate
symptoms, such as high body temperature and sometimes
respiratory symptoms. However, some patients may experience
severe symptoms like pneumonia and acute respiratory distress
syndrome. The virus’ genome is accumulating mutations at a
steady pace since its introduction into human hosts. Genomic
surveillance and the identification of variants of concern (VOC),
their impact on transmission, disease severity and immune
response are of tremendous importance to pandemic control,
most notably in the context of worldwide vaccination efforts.
In this context, an unparalleled wealth of chronologically and
globally sampled viral genomes have been sequenced in a
concerted international effort and submitted to public databases
such as the Global Initiative for Sharing All Influenza Data
(GISAID) (1).

In attempt to track the transmission and spread of emerging
lineages, several lineage nomenclatures have been proposed, the
most commonly used ones being the clades from Nextstrain
and GISAID (phylogenetic approach) and Pangolin annotations
(decision tree approach implemented in pangoLEARN) (2).
Additionally, the World Health Organization assigns Greek
letters to Variants of Concerns (VOCs), Variants Being
Monitored (VBM), and Variants Of Interest (VOI). VOCs started
emerging at the end of the first year of the pandemic, with
the first one reported being the Alpha variant (3). Shortly after
that, several other variants have attracted attention from the
scientific community and public health bodies, among them
Beta, Gamma, and Lambda, and more recently, the Delta and
Omicron variants which are becoming globally dominant (4).
However, despite these numerous attempts at describing variants,
it remains very difficult to find out how these different VOCs are
related to each other and to identify quickly from which genomic
background they emerged. As all genomic backgrounds may not
have the same baseline fitness, this information is of importance
for efficient viral diversity surveillance.

Historically, phylogenetics is used to describe relationships
between viral sequences. However, it is becoming more
computationally intensive to use with the increasing number
of closely related sequences made available on GISAID.
Specifically, very low diversity between sequences can sometimes
only be explained by sequencing uncertainty, potentially
leading to falsely resolved monophyletic groups. Phylogenetic
reconstructions can also fall into local minima because of
weak phylogenetic signal due to rugged likelihood surface (5).
Furthermore, as the SARS-CoV-2 data continue to accumulate
in real-time from multiple sources during this global pandemic,
it is not possible to keep the phylogenetic trees up to date
to track thousands of sequences a day. Thus, there is a clear
need to update our computational analysis pipelines to resolve
the bioinformatics bottleneck problem (6). Alternatively, by

taking advantage of established population genetic paradigms
that study the evolution of mutation frequencies in time within
sequences that are closely related, we may be able to describe
and analyze the increasingly large SARS-CoV-2 datasets. For
instance, an early study constructed a haplotype network to
visualize circulating lineages of the SARS-CoV-2 virus (7).
Importantly, while phylogenetic approaches assume that the
ancestral sequences are unobserved and represented by internal
nodes, a haplotype network approach is appropriate when
internal nodes actually are observed, because some sampled
sequences are ancestral to others. This is the case for the current
sampling scheme of pandemic sequences worldwide, despite
many sampling biases (8–10). Currently, effective reproductive
number (R) is a widely used metric to define outbreaks and
to measure COVID19 disease spread (11). Tajima’s D (12),
a classical population genetics approach, can also be used to
investigate SARS-CoV-2 lineage expansions (13). Dimensionality
reduction techniques summarizing genetic diversity are also
widely employed to investigate population structure in various
species, and in particular, principal component analysis (PCA)
has been proposed to investigate the population structure of
SARS-CoV-2 virus early in the pandemic (14).

Here, we use genomic data collected from GISAID (1) during
the fist year of the pandemic (January to December 2020) to
present a computational genomic pipeline for large-scale viral
genetic profiling using a collection of established population
genetic approaches. Using these tools, we aim to characterize the
full scale of genetic diversity during the pre-vaccination phase
of the pandemic, making use of all available GISAID sequences.
We highlight the limitations of alternative methods and provide
access to this pipeline, which can be easily applied to the data
generated in subsequent years of the pandemic. We show that
these methods are useful to characterize the evolutionary steps
undertaken by the virus during its early adaptation to human
hosts. This computational framework can help design efficient
preventive strategies, identify potentially expanding, divergent
lineages and derive a fast response against viral adaptation to
future therapeutic strategies.

2. RESULTS

2.1. Viral Genetic Data Pre-processing
A key challenge in extracting meaningful information from
genomic data is careful pre-processing to exclude low quality
sequences, artifacts associated with diverse sequencing
technologies and missing data. The GISAID database has
stringent submission guidelines and quality checks that
guarantee a minimum quality of the data. However, the diversity
of submitting institutions and heterogeneity of submission
time points leads to a heterogeneous pool of sequences. We
thus recommend adding pre-processing steps (Step 1, Figure 1)
to obtain a more homogeneous dataset and remove as many
technical biases as possible. Specifically, our pipeline flags a series
of systematic errors induced by sequencing and bioinformatic
methodologies (Methods), which were more common in the
first months of the pandemic. From the raw fasta file with
384,407 consensus sequences downloaded from GISAID on
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FIGURE 1 | A data-driven methodological pipeline for analyzing viral genomic data. This workflow recapitulates the major analysis steps used to analyze SARS-CoV-2

consensus sequence data submitted to GISAID during the first year of the COVID-19 pandemic. Dark blue arrows represent steps where all positions are kept (except

spurious sites), blue arrows represent steps where subsets of positions are kept (indicated next to the arrow), yellow boxes represent filtering steps at the level of

sequences, light blue boxes represent the methodological steps and the main steps are numbered from 1 to 8. These population genetic and unsupervised learning

methods constitute a comprehensive toolbox to allow the scientific community to monitor the evolution of the virus efficiently. Box plot modified from Bejarano (15).

January 19th 2021, we obtained a high-quality dataset of 329,854
consensus sequences. We aligned these high-quality sequences
and extracted all RNA substitutions compared to the reference
sequence (NC_045512.2) (16).

We note that the sequencing effort across the world has been
heavily biased, as we have 4,194 sequences from Africa, 23,499
sequences from Asia, 210,624 from Europe, 72,774 from North
America, 15,009 from Oceania and 3,735 sequences from South
America. These numbers do not reflect the case counts in each
continent but the resources available to track and sequence SARS-
CoV-2 genomes. This bias can be detrimental when it comes to
understanding the virus’s evolution and lineage tracing.

Currently, missing data within consensus sequences, reflected
as N characters in the sequences, is a main source of variant
misassignment. To help reduce this missing data problem and
improve variant assignment, we next imputed all sequences
using ImputeCoVNet (17) at positions where the derived allele
frequency (DAF) was over 1% during at least one month (199

positions). This novel approach uses a 2D residual neural-
network autoencoder that has an accuracy of > 99% and
surpasses distance-based methods in terms of computation time
(17), which is a major advantage for such a large dataset.
Given the very low level of recombination that has been
reported so far, imputation of prevalent mutations is very
accurate for SARS-CoV-2 genomic sequences, such that this
step greatly benefits downstream analyses. We then built a
harmonized database of RNA substitutions (Step 2, Figure 1)
that contains a total of 24,802 mutated genomic positions
(Supplementary Table S1).

Since most of the consensus sequences in this dataset are from
the UK (43%) and the USA (20%), we define two waves in the
first year of the pandemic, corresponding to the two successive
global increases of COVID-19 cases observed in countries that
implemented strict containment measures in March 2020 and
then relaxed these measures in the summer of 2020, with the
caveat that countries from the southern hemisphere had offset
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waves due to seasonality (Figure 2A, bottom) (18). The first
wave comprises sequences sampled from January to the end
of July 2020, whilst the second wave comprises those sampled
from August to December 2020 (19). We identified 20,403
substitutions within the first wave consensus sequences and
22,210 in the second wave, relative to the reference genome
(Supplementary Table S1). Each of these mutated positions were
further categorized based on their frequency of occurrence in the
global host population during the first and second waves of the
pandemic (Supplementary Table S1). Singletonsmake up 23 and
17% of the first and second wave mutations, respectively. Because
these mutations are only seen in one sequence in each wave,
they are most likely enriched in sequencing errors. Doubletons
(mutations seen twice during a wave) account for 14% (first wave)
and 11% (second wave) of the mutations, consistent with an
expanding population. In any given wave, most of the mutations
impacting viral fitness will be found in more than 100 sequences
(20). In our data, such mutations made up 5 and 11% of the first
and second waves, respectively.

2.2. Derived Allele Frequency Trajectories
Through Time
Expanding viral lineages will harbor a set of prevalent genetic
mutations that quickly increase in frequency over the course
of an epidemic. To detect these mutations during the first year
of the COVID-19 pandemic, we considered their derived allele
frequencies (DAF) over time (Step 3, Figure 1). In the first wave,
20 RNA substitutions reached a DAF of 10% for at least one
month (January to July) (Figure 2A). Four mutated positions are
in linkage disequilibrium with each other, as evidenced by their
overlapping DAF trajectories, meaning that they co-occurred
together. Three of these substitutions are C-to-U mutations
(C241U, C3037U, C4408U), while the last one is A23403G in
the Spike protein (S:D614G). These four substitutions increased
very quickly in frequency (Figure 2A, red DAF trajectory). This
lineage was the first to become dominant and did so in a few
months, climbing to 71% inMarch (Figure 2A). It is thought that
S:D614G is the driver of this event and has been shown to have
a selective advantage for SARS-CoV-2 which is conferred by an
increase in transmission and viral load in the respiratory tract
(21). Three consecutive co-occurring substitutions G28881A,
G28882A, and G28883C also increased in frequency during
the first wave (Figure 2A, purple DAF trajectory). It is the
only consecutive tri-nucleotide change, or triplet, that reached
a DAF over 1% in the first year of the pandemic, an event
that is unlikely to arise by chance and could represent an
adaptive change occurring on a codon. These three mutations
span two amino acids in the N protein, leading to N:R203K
and N:G204R. However, in the overlapping gene ORF9c (or
ORF14) (22) they form a single codon mutated from GGG to
AAC, causing a single missense change in the resulting protein
(ORF9c:G50N). Interestingly, ORF9c is a novel gene in SARS-
CoV-2 compared to known human coronaviruses (23), coding
for a putative transmembrane protein. Additionally, this codon
change substantially disrupts the RNA secondary structure of this
specific region of the SARS-CoV-2 genome, destabilizing a local

Y-shaped structure into a “wobbly” loop by increasing its free
energy 11.2% and its sub-optimal base-pairing diversity by 24.5%
(Supplementary Figure S1). Finally, the first wave was marked
by the increase in frequency of a group of six co-occurring
substitutions: A1163T, T7540C, G16647T, C18555T, G22992A,
and G23401A (Figure 2A, yellow DAF trajectory). This lineage
peaked in July 2020 and was mainly circulating in Australia (24).

The second wave is marked by an increase in the number
of prevalent mutations compared to the first wave: from
August to December, 33 new high-frequency substitutions arose
(Figure 2A). The DAF trajectories for these mutations show
two well-defined groups, representing two different lineages: one
with mutation S:A222V at genomic position 22,227 (Figure 2A,
dashed green DAF trajectories) and a lineage with mutation
S:N501Y at position 23063 (Figure 2A, dashed plum DAF
trajectories). The lineage with S:A222V corresponds to 20E
in Nextstrain annotations (G in GISAID Clade annotation)
and was first reported by Rambault and colleagues (25, 26).
This lineage accumulated 11 co-occurring mutations during its
expansion and was mostly seen in European countries. The
lineage with S:501Y mainly corresponds to the Nextstrain 20I,
now commonly known as the Alpha variant, which accumulated
22 co-occurring high frequency mutations during its expansion
(Figure 2A) (25–27).

2.3. Haplotype Networks for Fast
Evolutionary Clustering of Sequences
The generation of haplotype networks is a widely used approach
for analyzing and visualizing the relationships between sequences
within a population (28, 29). The nodes of the network are
haplotypes, edges represent mutated genetic positions that
vary between two nodes (Figure 2B). The size of the nodes
generally varies to represent the number of sequences for a
specific haplotype. In the case where there is little to no
recombination, this approach results in a minimum spanning
tree. To keep the number of nodes tractable for informative
visualization, we defined the haplotypes by selecting the 22
mutations displayed in the DAF trajectories that are most
representative of the virus’s genetic diversity during the first
year of the pandemic (Methods, Figure 2A underlined positions,
Supplementary Figure S2). We generated a haplotype network
(Step 4, Figure 1) using a technique that takes the time
of sampling into account (Methods). We included the 122
haplotypes with more than 10 sequences in our representation,
ignoring rare events. The final haplotype network includes 17
main haplotypes (Figure 2B), representing the main genetic
lineages circulating during the pandemic’s first year and several
“descendant” haplotypes. Haplotype I includes all sequences with
ancestral states at each position (i.e., reference haplotype) and
haplotype XV corresponds mainly to the Alpha variant, differing
from the reference haplotype at 8 positions. The haplotype
network representation also helps clarify the relationships
between specific VOCs, with both Beta and Lambda emerging
as sublineages on a haplotype II genomic background, whereas
Alpha and Gamma arise as sublineages on a haplotype VIII
genomic background.
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FIGURE 2 | Viral genetic diversity during the first year of the pandemic. (A) Top panel shows Derived Allele Frequencies (DAF) over time of representative

high-frequency substitutions during the first year of the pandemic. Only positions that exceed a DAF of 10% for a given month are shown. Positions with highly

correlated DAF trajectories (r2 > 0.99) have the same line color. Solid lines are used for mutations appearing in the first wave of the pandemic (January–July), and

dotted lines show mutations appearing during the second wave of the pandemic (August–December). Bottom panel shows the daily case counts in the top five

countries from which we have the most GISAID sequences. The y-axis represents the % of maximum cases per day rolled over 14 days. On the x-axis, only ticks of

the first of the month are represented. (B) Haplotype network representing genetic subtypes based on representative mutations (position underlined in A). Genomic

positions that differ between two nodes (haplotypes) are specified on edges. Nodes are colored by haplotype and node size represents the number of consensus

sequences for each haplotype. The 17 main haplotypes are annotated with roman numerals. (C) Divergence tree made from 15,690 SARS-CoV-2 consensus

sequences using FastTree using a GTR+Gamma20 model and TreeTime to refine the divergence tree. The haplotype network built from prevalent mutations using all

high-quality consensus sequences recapitulates the phylogeny well.

For the main haplotypes (I to XVII), we created mutational
graphs that represent the mutational landscape of each subgroup
of sequences (Figure 3). These graphs are stratified histograms

of DAFs for genomic positions that differ from the reference
sequence in at least one haplotype. The visualization highlights
a mutational signature unique to each haplotype. The mutational
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jumps are also made obvious by this representation, where we
see a large number of lineage-specific mutations for haplotypes
VI and XV, in addition to XVII (Beta) in the Spike protein.
This representation also allows the detection of homoplasy, for
example at position 11,083, which is fixed in haplotype IV (V
GISAID Clade) but is also seen at various frequencies in multiple
other haplotypes.

To further visualize the genetic diversity of the virus and
the relationships between viral sequences in the first two waves,
we looked at the viral diversity during each wave of the
pandemic using the haplotype network (Figures 4A,B). During
the first wave, the haplotype network shows the presence
of nine haplotypes with more than 200,000 sequences (II–
V, VII–IX, XI, XII) diverging from the ancestral haplotype I
(Figure 4A), with haplotypes II, III, and VIII being the most
prevalent, all carrying the S:D614G mutation. Most haplotypes
are seen in several regions of the world, albeit at different
frequencies (e.g., V arose mainly in Asia and II mainly in
North America), except for haplotype XI. This latter lineage
(Pangolin D.2) was mostly circulating in Australia, forming
92.8% of all high-quality Australian sequences from GISAID
in July 2020. First detected in June 2020, this variant almost
completely vanished as of October 2020. The second wave is
marked by a critical decrease in the prevalence of haplotypes
without the S:D614G mutation (I, IV, VII, and XII, almost
becoming extinct by August 2020) and the fast increase in
prevalence of haplotypes VI, XIV, and XV, which arose mainly
in Europe. Other novel region-specific haplotypes (XIII in North
America, XVI in Europe, and XVII in Africa) arose during
this wave (Figure 4C). Additionally, visualizing root-to-tip
distances (Supplementary Text, Supplementary Figure S4B),
we observed that the second wave was marked by the appearance
of haplotypes with mutational jumps, the most apparent ones
resulting in haplotypes VI and XV.

2.4. Comparison to Phylogenetic
Reconstruction
To compare the haplotype network to a more standard
phylogenetic approach (Step 5, Figure 1), we generated a
divergence tree using FastTree and TreeTime along with
other complementary tools (see Methods), as recommended in
multiple published pipelines (31, 32). Additionally, to conform
with what is done in the literature, the phylogenetic tree was
constructed without an outgroup of a distant lineage, and we
considered the ancestral lineage as the outgroup. With these
approaches, using all 329,854 sequences is computationally
intensive, representing a bottleneck that can prevent fast real
time surveillance, therefore, most strategies use sub-sampling
of datasets (Methods) which can bias the representation of the
circulating diversity of the viral population. In contrast, the
haplotype network can be built with all available sequences, while
recapitulating the phylogenetic structure quite accurately, despite
some lineage splitting, particularly of haplotype I (Figure 2C).
The phylogenetic approach sometimes wrongly combines very
distant lineages, for example lineage I and II (Figure 2C, arrow)
where further inspection of these sequences puts into doubt the
relationship reported by the phylogenetic tree.

Indeed, with the haplotype network annotations, we are
able to identify problematic connections between sequences in
the phylogeny that would otherwise go undiscovered. Once
identified, these false connections can then be corrected by
additional tools and manual adjustments (Supplementary Text,
Supplementary Figure S3). Additionally, the haplotype network
allows easy representation of recurrent mutations that occur
independently multiple times on several genomic backgrounds.
For instance, the C-to-U mutation at position 14805 (Figure 5A)
emerged on three different backgrounds (IV, XII, XIII).
Haplotypes X and XI share a mutation at position 1163 in
ORF1a/b (Figure 5B), but each is part of an independent
mutational jump. Sequences from haplotype XI include the Spike
missense mutation S:S477N (genomic position 22992), which is
a recurrent mutation that also defines haplotype VI (Figure 5C),
a distantly related lineage that expanded in Europe during the
second wave (33) (Figure 4C). Finally, the mutation at 23063
(S:N501Y), which defines haplotypes XV and XVII (Figure 4D),
has appeared multiple times since the emergence of SARS-CoV-
2 (34). Nevertheless, phylogenetic and molecular-clock analyses
can bring complementary information to the haplotype network,
for instance, by allowing estimation of the time to a most recent
common ancestor (TMRCA) and mutation rate. After thinning
using Gblocks (35) to remove unresolved parts of the alignment
(see Methods), the TMRCA was estimated to be in October
2019 and the mutational rate estimate was 21.60 mutations/year,
in line with Nextstrain and other estimates (36, 37). However,
alternative data pre-processing steps and parameters choices
led to different values (see Supplementary Text), highlighting
again that these phylogenetic results should be interpreted
with caution.

2.5. Comparison to Other Lineage
Annotation Systems
Our haplotype definition is well in line with Nextstrain’s
lineage definition and GISAID clade annotation system
(Supplementary Figure S2A), though some distinctions exist.
For instance, the haplotype approach can differentiate sequences
from haplotype I and IV, differing by two substitutions (genomic
positions 26144,14805), and from III and IX, differing at position
25583, whereas Nextstrain does not differentiate these lineages,
grouping them into 19A and 20A, respectively. Similarly,
GISAID clade annotation groups sequences from haplotypes
III and XIV into clade G despite differing by a substitution
(genomic position 22227). We note that these three examples
show disagreement between GISAID and Nextrain annotations,
and basing a nomenclature system on haplotype annotations can
reconcile the two. In contrast, our categorization of sequences
by haplotype and the Pangolin annotation methodology (3) do
not agree well (Supplementary Figure S2B) with, for instance,
the B.1 lineage spanning many genetically distant haplotypes:
sequences from haplotype II and VIII can be assigned to the
same generic B.1, while these differ by a total of five high
frequency mutations, including the triplet at 28881-28883.
Conversely, lineages B.1.1, B.1.2, and B.1.5 are sub-lineages of
haplotypes VIII, II, and III, respectively, defined by mutations
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FIGURE 3 | Mutational signatures of the 17 major haplotypes. Aligned histograms of each of the main 17 haplotype groups. The y-axis of each histogram represents

the frequency within each haplotype of mutations that differ from the reference nucleotide in at least 90% of the sequences represented. On the x-axis, each bar

represents a mutated position colored by its substitution type and is labeled with the corresponding amino acid change (no labels are displayed for synonymous

mutations). The annotation was done using SnpEFF (30).

that never surpassed 10% worldwide. These inconsistencies
between the genetic background of different Pangolin lineages
and the greater granularity observed compared to Nextstrain
lineages justify the usage of haplotype categories for the analyses
of genetic evolution of SARS-CoV-2. However, the haplotype
definition based only on these 22 most prevalent mutations
in 2020 does not differentiate all VOCs. For example, the
sequences of the Gamma variant discovered in Brazil (38),
which also has the substitution at position 23063 (S:N501Y)

as well as the triplet, are grouped with Alpha sequences in
haplotype XV.

2.6. Time Series Change of Tajima’s D
Statistic to Detect Lineage Expansions in
Real Time
The haplotype network representation informs on the overall
size of clusters but lacks information on the lineages’ expansions
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FIGURE 4 | Distribution of SARS-CoV-2 sequences in space and time. Haplotype network of the first (A) and second (B) waves. Node size represents the number of

consensus sequences for each haplotype and pie charts represent continental proportions for each haplotype. (C) GISAID consensus sequence counts (on a log10

scale) of the most prevalent haplotypes on each continent during the first year of the pandemic. (D) Tajima’s D estimates of the three most prevalent haplotypes on

each continent for the first year of the pandemic. Box plots represent 500 estimates of Tajima’s D from random resamplings of 20 genome sequences for each month

with at least 20 sequences. Both the haplotype network and Tajima’s D are insightful tools for detecting expanding lineages at a given point in time.

over time, especially by geographical region. Population genetic
statistics, most notably Tajima’s D, has been used to estimate
epidemiological parameters of pandemic influenza A (H1N1)
(39) and can detect population expansion and contraction events.
Specifically, an excess of low-frequency alleles in the population

results in a strongly negative Tajima’s D value, indicating a rapid
population expansion. However, Tajima’s D is very sensitive to
population structure and is, therefore, not meaningful when
applied on a global scale. However, the genetically-informed
grouping of sequences by haplotypes as well as stratification
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FIGURE 5 | Recurrent mutations visualized using the haplotype network. Haplotype Networks colored according to the presence of specific alleles at genomic

positions 14,805 (A), 1,163 (B), 22,992 (C), and 23,063 (D). Node size represents the number of the first year of the pandemic consensus sequences for each

haplotype.

by world regions provides the opportunity to get closer to
specific viral populations, where Tajima’s D can be applied.
We computed Tajima’s D in each month of 2020 for the
three most prevalent haplotypes in each continent (Step 6,
Figure 1) while controlling for sample size (Section Methods).
We recognize that the uneven sequencing coverage across
the continents may bias mutation rate estimates, therefore we
avoided comparing regions. We then correlated Tajima’s D to the
number of sequences per haplotype per continent and observed
a moderate negative correlation (mean adjusted R2 = 0.24, s.d.
= 0.23, Supplementary Figure S5A). This correlation indicates
that Tajima’s D time series can recapitulate the major variations

in the number of sequences per haplotype per month across
each continent (Figures 4C,D). Indeed, we observe a decrease of
Tajima’s D through time for several haplotypes that either took
over in a specific region or are known to have become dominant
(Figures 4C,D; Supplementary Figures S5B,C). For instance, in
Africa, haplotype XVII (Beta) appears in October 2020 with a
high Tajima’s D value compared to dominant haplotypes VIII
and III, and then shows a fast decrease of Tajima’s D in the next
months, consistent with population expansion (Figure 4D). This
correlates with the drastic increase in the number of sequences
seen at the end of 2020 (Figure 4C), reflecting the emergence of
Beta in South Africa (40). Another striking event of this type is
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seen in Europe where the rapid increase of XV (Alpha) coincides
with a steep decrease in Tajima’s D from October to December
(Figures 4C,D; Supplementary Figure S5B). These events are
also consistent with observations from Singh and Yi (41) who
tracked the spread of the corresponding Nextstrain clades (XV:
Nextstrain 20I; XVII: Nextstrain 20H).

In North America, Tajima’s D for haplotype IX also
shows a marked decrease from April to June, suggesting
an expansion of this lineage, although its prevalence in the
sampled population from GISAID did not increase (Figure 4C).
This may reflect undersampling of specific populations in
North America. Conversely, the rapid rise of haplotype XIII
(Lambda) is captured both by Tajima’s D and sequence counts
(Supplementary Figure S5C). Other types of events can be seen,
such as loss of lineages and lineages causing outbreaks that are
quickly contained. An example of the former is seen in Asia
where SARS-CoV-2 emerged (42), for which Tajima’s D values
of haplotype I sequences (GISAID S clade) increase with time,
reflecting the drop in diversity and a contraction of population
size of the ancestral lineage, which became almost entirely extinct
across the globe, with the last seven sequences sampled in Asia
in September 2020. The signature of a contained outbreak is
seen in Oceania, where the distribution of Tajima’s D across time
is U-shaped, indicating an increase in population size followed
by a contraction, in line with sequence counts (Figure 4C).
In South America, sample counts per haplotype suggest that
haplotype VIII out-competed II and III by the end of 2020,
but the low Tajima’s D values in August 2020 are inconsistent
with a decrease of these lineages and suggest that the number
of sequences assigned to these haplotypes is an underestimate
in that region.

2.7. Fine-Scale Viral Population Structure
Using Principal Component Analyses
To detect and visualize fine-scale structure in genetic variation,
a common statistical approach is to use PCA of coded alleles
at mutated positions segregating in populations. The projection
of sequences onto the principal components is known to reflect
the underlying (generally unknown) genealogical relationships
between haploid sequences (43). In the viral populations of
SARS-CoV-2 from 2020, we performed PCA (Step 7, Figure 1)
on viral mutations present in at least 10 sequences from the first
and second waves (Figure 6). The first two PCs describe the most
variation between sequences and clearly show discrimination
between haplotypes dominating during either of the two waves
(Figures 6A,B). The coordinates of clusters relative to one
another in the first wave agree with the haplotype network
representation (Figure 4A): on PC1, the haplotypes without
S:D614G are separated away from VIII and XI carrying the
triplet mutations, whereas PC2 separates them from haplotypes
II and IX, with haplotype III located at the centre, in line with
its intermediate position in the haplotype network. Additionally,
the distance in the PC1/2 space between haplotype groups
appears to recapitulate very well the genetic distance between
them. For instance, haplotype III sequences are at least four
mutations away from I, three mutations away from VIII,

and two mutations away from II, reflecting distances between
groups on the graph (Figure 6A). In the second wave, PC1 and
PC2 do not reflect these phylogenetic relationships as much,
but rather highlight the most divergent groups (Figure 6B).
Both PCs show the XV group as an extreme group, which
is explained by the major mutational jump of 22 mutations
from the haplotype VIII background defining Alpha. We can,
however, see a subset of XV sequences clustering with VIII
sequences, which are either precursor sequences of Alpha, or
Gamma sequences. Beyond PC1 and PC2, other PCs from
the two waves show additional structure within and between
haplotype subgroups (Supplementary Figure S6). For instance,
PC3/4 of the first wave sequences show the divergence of
haplotype XI (Figure 6C), the lineage dominating in Australia
in the summer, whereas PC4/5 of the second wave sequences
show the emergence of the haplotype XIII lineage (Beta)
from its ancestral background on haplotype II (Figure 6D).
Inspecting additional PCs allowed us to detect the emergence
of subgroups in specific haplotypes (Supplementary Figure S6),
with, for example, a diverging group in haplotype VII (also
known as GISAID L lineage and Nextstrain 19B lineage) which
seemed to have accumulated additional mutations compared
to other sequences in this lineage early on (PC13 and PC14
in Supplementary Figure S6A), which could represent an early
mutational jump that did not spread widely.

2.8. In Depth Exploration Into Lineages of
Interest
With the previous tools, we identified different genetic lineages
of SARS-CoV-2 that were predominant in the first year. We
can also investigate descendant lineages, that arose from main
lineages and increased faster than the parental lineages over
time. To illustrate this, we chose to focus on the subset of
the viral sequence space that have mutations within the 28881-
28883 triplet (Figure 7A). Since the appearance of haplotype
VIII (first sequence sampled February 16, 2020), Alpha and
Gamma have emerged on this genetic background, and in 2021,
Omicron, the three of which include the S:N501Y mutation. We
selected all sequences from the five distinct main haplotypes
with the ACC nucleotide triplet combination (V, VIII, X,
XI, and XV) and performed a PCA of genetic diversity in
these sequences (Figure 7B; Supplementary Figure S7). PC1,
PC2, and PC3 reflect the phylogenetic relationships between
haplotype VIII and its descendent haplotypes, with sequences
from haplotypes V, X, XI, and XV forming distinct groups around
haplotype VIII sequences (Figure 7B). Similar to the second
wave PCA, PC1 is mainly explained by the set of mutations
that appeared on haplotype VIII to generate the Alpha variant
(2.5% of variance explained) and allows clear distinction between
Alpha and the Gamma lineages. PC2 and PC3 allows us to
visually separate the other haplotypes, with PC2 explained by
divergence between V and XI and PC3 separating sequences from
haplotype X. Furthermore, PC4 to PC20 show several subgroups
within the defined haplotypes; for instance PC4 splits the V
group into two distinct sub-lineages, and PC19 shows distinct
groups of XI sequences, while the other PCs seem to reflect
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FIGURE 6 | Viral population structure during the first and second waves of the pandemic. Principal Component Analyses (PCA) of genetic diversity of the first (A,C)

and second (B,D) waves’ consensus sequences reveal the population structure of the 17 main haplotypes in each wave. Genetic variation present in at least 10

genomes is used. The PCA is computed with all sequences, and only the sequences from the 17 main haplotypes are projected. Identical sequences are projected

onto the same coordinates, therefore, the number of sequences represented by each point is proportional to the size of the dots, with added transparency. PC1 and

PC2 show differentiation between the main lineages from the two waves (A,B). The variant responsible for the Australian outbreak stands out clearly on PC3 from the

first wave (C) and the Lambda variant sequences (XIII) are shown as the most distal subgroup on PC4 and PC5 from the second wave (D), in opposition to sequences

from haplotype VI (on PC4) and subgroups of haplotype III (on PC5). The PCA recapitulates insightful characteristics of the evolutionary relationships of sequences and

identifies major lineages from the two pandemic waves.

the genetic heterogeneity within VIII sequences (Figure 7B;
Supplementary Figure S7).

To investigate further Alpha lineages, we performed a PCA
only on sequences annotated Alpha (B.1.1.7) by Pangolin
(Figure 7C, Supplementary Figure S8), which corresponds to
haplotype XV. The three-dimensional PCA plot of Alpha
annotated sequences shows additional structure within that
lineage, with nine main groups arising (G1-9). To understand the
mutational landscape of each group of Alpha/XV sequences, we
generatedmutational graphs specific to these groups (Figure 7C).

The G2 group has no additional mutations to the Alpha-
defining mutations, suggesting that this group is the ancestral
lineage. It is separated, on PC1, from other groups of sequences
with a mutation at genomic position 17615, in ORF1ab (G3,4,6-
9). The G5 group shows a nonsense mutation at genomic
position 28095 (ORF8:K68*). Interestingly, ORF8:K68* increased
in frequency in the first months of 2021 as Alpha was spreading,
and was found in over 80% of Alpha sequences by September
2021, revealing a potentially beneficial mutation on the Alpha
background (Supplementary Figure S9).
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FIGURE 7 | Mutational landscape of haplotype VIII and its descendant lineages. (A) Haplotype network colored according to the alleles at positions 28881-28883.

Two additional low-frequency combinations had emerged at this locus with genotypes AGG and TGG (arrow). (B) PCA generated from sequences from haplotype VIII

and descendants V, X, XI, and XV. PC1, PC2, and PC3 explaining 3.5% of the variation were plotted into three axis. (C) PCA visualization of 0.6% of the variation

within Alpha annotated sequences, PC1, PC2, and PC3 plotted onto three axis. PC1/2/3 reveal 9 major groups, arbitrarily labeled G1 to G9. (D) Mutational graphs

reporting mutations seen in at least 25% of the sequences in each group in C. Bars are colored by substitution type, and the corresponding amino acid changes are

shown, as in Figure 3. Genomic position annotation was done using SnpEFF (30).

3. DISCUSSION

The worldwide efforts to sequence and share thousands of
viral genome sequences made in depth tracking of SARS-
CoV-2 evolution possible over time, as it spread across the
world. However, processing, analysis, and interpretation of

hundred-thousands of sequences and mutation events is a
challenging task (44). Here, we first proposed a pre-processing
pipeline to improve downstream analysis by ensuring high-
quality data and imputing missing alleles at key positions to
facilitate annotation and therefore lineage tracing. Indeed, after
imputation, we were able to recover sequences that would have
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otherwise been excluded in the haplotype network, and therefore
miss key intermediate events (key mutational events). Detection
of spurious sites due to sequencing errors and biases is also an
important step, and data analysts should be careful about these
when processing large amounts of genomic data, especially in
a small genome of 29Kb, where by now, every position in the
genome has been affected by sequencing errors.

We used population genetic approaches to explore and
identify emerging SARS-CoV-2 lineages. Allele frequency tracing
through time is a widely used population genetic approach that
can monitor circulating lineages over time. Overall, SARS-CoV-
2 experienced a period of relative evolutionary stasis during
its first months infecting human hosts, consistent with other
reports (20, 45). Mutations providing increased viral fitness
started emerging and led to a number of VOCs. Indeed, the
second wave of the pandemic was marked by the appearance
of lineages with mutational jumps which may reflect adaptive
steps in the evolutionary trajectories of SARS-CoV-2 within the
human host, with the virus acquiring selective advantages to the
host immune system (46–49). We observe that the virus has
experienced mutational jumps that increased in size (i.e., the
number of mutations within a jump) over time, with S:D614G
occurring alongside 3 other mutations during the first wave,
S:N501Y occurring along side 21 other Alpha mutations during
the second wave, and more recently, the new VOC Omicron has
acquired a total of 50 mutations on haplotype VIII, which include
S:N501Y and S:S477N.

The nomenclature has become increasingly complex with the
number of lineages and sub-lineages emerging throughout the
world. For the Pangolin or Nextstrain naming, it is unclear
how different lineages are from each other, and, therefore, it is
not obvious to know on which genomic background a lineage
is occurring. However, knowing about the past history of a
specific lineage is very important to understand and potentially
predict its evolution and impact. Some lineages could evolve
specific properties, such as hypermutability or loss of a gene (e.g.,
ORF8 knock-down, as for Alpha G5 sequences), which could
help in understanding their epidemiological impact.We explored
tracing lineages using a haplotype network that was generated
using the most frequent mutational events in a given time period
in order to clarify the genetic background of VOCs in 2020.
Interestingly, the Delta variant that emerged early 2021 arose
on haplotype III background, but was accompanied with one
of the triplet mutations, G to A at position 28881 (N:R203M).
One current limitation of the haplotype network presented here
is that it is based on a fixed set of mutations, that may not
be the ones that are relevant in the next waves. It is however
easy to accommodate new mutations from successive waves, as
new haplotypes can be generated with any mutational events of
interest on any region of interest, for instance the Spike protein,
the main vaccines target currently.

Using Tajima’s D, a classical neutrality test statistic, we
captured the expansion and decline of major circulating
haplotype populations in each continent, and correlate them to
sequence counts in specific regions of the world. Inconsistencies
between Tajima’s D predicted expansions and decreases in
sequence counts could be an indication of undersampling in a

given region, which is a limitation. Sampling biases are numerous
in this dataset, and attempts to correct them may also lead to
other systematic errors. Furthermore, it is a very unbalanced
dataset in terms of sampling countries, with 144,376 (44%) of the
sequencing effort during the first year done in the UK. Global
strategies aiming at a more uniformly distributed sequencing
effort between countries would enable the identification of early
emerging variants. Overall, correlating Tajima’s D values with
epidemiological data at finer geographical scale might improve
its explanatory power and inform public health agencies about
the epidemiological trends. Essentially, Tajima’s D can be used in
combination with effective reproductive numbers (R) to estimate
the spread of an expanding population in a given region (13).
More recently a Genomic Identity (GENI) score (a genome
diversity metric) was formulated from SARS-CoV-2 genomic
data to estimate outbreak trends that lead to the emergence
of new variants (50). This score increases when a population
expands and could also be used in a similar way as Tajima’s D,
in a haplotype-specific manner to account for viral population
structure and genetic background.

Population structure during the first year of the pandemic
was successfully visualized using PCA in each wave. PCA can
thus reveal insightful characteristics of the viral genetic data,
and has the potential to identify growing lineages, but grouping
of data points (here, sequences) in PCA derived from genetic
variation is known to be heavily influenced by uneven sampling
of sequences, whichmeans that the number of sequences sampled
within sub-lineages will influence distances between subgroups
(43). This limitation can be problematic for early detection
of new differentiated sub-lineages, which are often sampled in
lower numbers compared to the other well-established lineages.
Using PCA on a subset of sequences from a specific lineage
(e.g., haplotype VIII, Figure 7) revealed fine-scale structure and
highlighted diverging groups, defined by specific mutations.
However, a limitation of this is that proper clustering using
PCA is not always obvious and the field would benefit from
novel hierarchical methods that provide real-time clustering of
sequences according to their genomic relationships to predict
emerging variants.

We presented here a series of population genetics-based
analyses to ease lineage tracing of SARS-CoV-2 variants and
understand the evolutionary relationship between emerging
ones. During the first year of the pandemic, there was no
clear evidence of recombination events occurring, as also
demonstrated by our analyses. However, because these
population genetic approaches are developed and tested
with the assumption that the viral sequences are non-
recombining, it can constitute a limitation in application if
such events start emerging. New reports supporting evidence
of recombination events have started emerging, including
evidence of recombination between B.1.1.7 and B.1.177 lineages
and evidence supporting the recombining origins of lineage
B.1.628 (51). More recently, a group reported the first case of
an intra-host recombination event during a co-infection with
Delta and Gamma of the sample in the study (52). This is the
first reporting of a recombination event during co-infection
of an individual. The higher rate of potential co-infections, as
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more transmissible variants sweep the nations, will increase the
chance of fitter recombinants lineages arising. Fortunately, the
haplotype network approach is an appropriate tool to detect
potential recombination of dominant haplotypes, which will
look like cycles in the network, and future work will adapt the
network reconstruction to accommodate such departure from
the minimum spanning tree representation we currently use.

In conclusion, these approaches constitute a comprehensive
toolbox to allow the scientific community to continually
and closely monitor the evolution of any viral population.
In particular, we found that population genetics tools such
as haplotype networks, Tajima’s D, and PCA give a more
detailed genetic diversity analysis of SARS-CoV-2 than existing
surveillance strategies only based on phylogenetic trees. In
the case of the ongoing pandemic caused by the SARS-
CoV-2 virus, developing a dynamic, global and up-to-date
understanding of viral evolutionary strategies will be of utmost
importance to rapidly respond to emerging variants, identify
increasingly infectious or vaccine-escaping lineages, and locate
at-risk populations.

4. METHODS

4.1. Pre-processing Details
We downloaded a total of 384,407 sequences from GISAID
on January 19th 2021. We then removed samples from non-
human hosts as well as those with incomplete sequences (<
29, 000bp), for a total of 339,427 sequences. Each consensus
sequence was mapped separately to the SARS-CoV-2 reference
genome (NC_045512.2) using minimap2 2.17-r974 (53). All
mapped sequences were then merged back with all others in
a single alignment bam file. The variant calling was done
using bcftools mpileup v1.9. https://samtools.github.io/bcftools/
in haploid calling mode. Sequences were processed by batches
of 1,000 sequences to overcome technical issues in processing of
very low frequency variants within a bam file. Once the variant
calling was obtained for each batch, INDELS were removed and
bcftools merge was used to merge all the variant calls across the
entire dataset. Variants located in both ends of the genome, which
have high levels of missingness (>20%, positions 1-54 and 29838-
29903) were excluded. We then flagged spurious variants within
these sequences (see below) and identified 361 samples with at
least two flagged positions, which we removed from our dataset.
Of the remaining 339,066 sequences, we excluded sequences
without GISAID metadata and with incomplete sampling date
(sampling month unavailable), which resulted in a final dataset
of 329,854 high-quality consensus sequences. We divided this
dataset into two pandemic waves: 139,515 sequences with a
submission date between January 1st and July 31st 2020 were
defined as first wave samples, and 190,339 sequences with a
submission date between August 1st and December 31st 2020
were defined as second wave samples. A mutation database
was built using the sqlite3 library. Only positions that are
variant from the reference, including missing calls, were included
in the position table of the SQL database. For phylogenetic
analyses, the multiple sequence alignment of 360,026 consensus

sequences from 2020 provided by GISAID was downloaded
on May 12th 2021.

4.2. Spurious Sites Flagging
Positions that were masked by (54) were removed. We
additionally developed a tool to flag spurious variants within
consensus sequences due to sequence misalignment in the
original labs, which we initially detected by inspecting
consensus sequences manually These errors were found in
larger proportions in the sequences uploaded to GISAID in
the early stages of the pandemic. Our approach identified
substitutions compared to the reference genome that were
located within 10 genomic positions of stretches of N, defined
as at least 5 consecutive Ns. This strategy was applied to the
339,427 consensus sequences from human host, we identified
2,164 sequences with at least one flagged position (0.6%). Among
these, flagged positions where the mutated allele otherwise
reached 1% in one of the pandemic waves (for a total of 199
positions) were considered real mutations and not as spurious
sites. A total of 6,736 spurious sites were detected and the variant
allele was replaced by N in the sequences. Furthermore, we
removed 361 samples with at least two flags. Additional details
on this procedure can be found in Supplementary Text. The
code is available here https://github.com/HussinLab/covid19_
mostefai2021_paper.

4.3. Imputation
For the 199 positions reaching 1% derived allele frequency (DAF)
in the consensus sequences of one of the two pandemic waves, we
imputed the missing alleles using ImputeCoVNet (17). Briefly,
ImputeCoVNet is a 2D convolutional ResNet autoencoder that
aims to learn and reconstruct SARS-CoV-2 sequences with the
help of two sub-networks: (1) an encoder that is responsible
for embedding the given input into a low-dimensional vector,
and (2) a decoder that is responsible for reconstructing that
sequence from that low-dimensional vector. During training, the
encoder network takes as input complete sequences encoded with
a one-hot representation and the decoder outputs a reconstructed
version. Once trained, the model was used to infer missing values
within incomplete sequences: the missing alleles at previously
defined positions of interest were predicted by the model during
reconstruction. We evaluated imputation accuracy on sequences
without missing data and reached an accuracy of 99.12% on this
set of mutated positions. The code is available here https://github.
com/HussinLab/covid19_mostefai2021_paper.

4.4. Identification of High-Frequency
Representative Substitutions
The 329,854 high-quality consensus sequences were binned into
months according to collection date. Monthly DAF for each
substitution (24,802) was computed using consensus sequences
available for each month. A total of 53 substitutions with DAF
over 10% in at least one month were considered to be high-
frequency substitutions, 20 in the first wave and 33 in the second
wave. In the second wave, the DAF trajectories (i.e., DAF per
month for each mutation) were highly correlated (Pearson r2 >

0.99), forming two distinct groups of substitutions: for each of
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the groups, only one mutation was retained, genomic positions
22,227 and 23,063. With the 20 high-frequency substitutions
from the first wave, a total of 22 high-frequency substitutions
were considered to be representative of the evolutionary
trajectories of SARS-CoV-2 in 2020 (Supplementary Table S2).

4.5. Haplotype Network
The 22 representative positions were used to define viral
haplotypes, which consisted of a group of alleles at these positions
that are inherited together from a single parental sequence. We
obtained a total of 463 unique haplotypes, and only those with
more than 50 sequences were kept, for a total of 56 haplotypes. A
haplotype network representing distance relationships between
haplotypes was built. Because SARS-CoV-2 sequences were
sampled sequentially through time, the haplotype network takes
the temporal dimension into account. We split the year into 24
intervals representing half-months and each consensus sequence
was attributed to one time interval. For each time interval, a
haplotype network was generated using the haplonet function
of the pegas R package (55) by including only sequences that
occurred before or within this time interval. The networks were
merged iteratively over time. At each step, if the merging created
a cycle (i.e., the addition of a haplotype that is linked with two
previously linked haplotypes) we removed the branches of the
cycle that link the haplotypes for which the first occurrence
was the longest timeframe. If many links had the longest
timeframe, we removed the link between the more differentiated
haplotypes. This process solved several time inconsistencies. The
code is available here https://github.com/HussinLab/covid19_
mostefai2021_paper.

4.6. Phylogenetic Analysis and Molecular
Clock
To reduce the dataset to allow feasible phylogenetic analyses,
we applied several filters: (1) we kept only sequences from the
17 main haplotypes and identical consensus sequences were
merged, keeping the earliest collection date as the annotation;
(2) outlier sequences in terms of their number of mutations
at a given date were excluded; and (3) we sampled at least 3
samples per date per haplotype and then balanced the sampling
up to a maximum of 1000 samples per haplotype. The resulting
dataset had a total of 15,690 sequences. The sites identified as
problematic for phylogenetic tree reconstruction (problematic
sites list v. 2021-04-15) were removed (54). The phylogenetic tree
was computed using FastTree v2.1.11 (56), an approximately-
maximum-likelihood method, using a GTR + Gamma20 model.
The divergence tree obtained was then refined using TreeTime,
a molecular-clock phylogeny inference method (v. 0.7.4) (57)
and was trimmed for excessive long branches using TreeShrink
(58). The root-to-tip distance was computed using TempEst
v1.5.3 (59) and tree visualization was made using ggtree (60).
To compute mutation rate and TMRCA, we used a refined
alignment obtained using Gblocks thinning method (35) with
default parameters, prior to applying the pipeline described
above. All code used in this study is available at https://github.
com/HussinLab/covid19_mostefai2021_paper.

4.7. Tajima’s D
To track SARS-CoV-2 haplotypes’ spread, we used a population
genetic metric that can infer changes in effective population
sizes by comparing the contribution of low- and intermediate-
frequency mutations to viral genomic diversity, i.e., Tajima’s D
(12). We calculated Tajima’s D at the continent level to be able to
relate its time series to the haplotype network. For each haplotype
and each of the 12 months of the first and second waves,
we randomly sampled 20 viral consensus sequences from each
continent to calculate Tajima’s D, and repeated this procedure
500 times to obtain confidence intervals. Lineages or time bins
with fewer than 20 sequences were discarded. This sub-sampling
method allowed us to control for differences in sample size
across continents and time, although sampling biases inevitably
resulted in reduced detected diversity. After calculating Tajima’s
D, we correlated it to the number of sequences per haplotype per
continent per month, which we used as a proxy for the number of
cases per haplotype per continent per month. We also performed
this correlation for each haplotype separately. We evaluated the
significance of the correlation using the permutational ANOVA
(n=5000 permutations) implemented in the R package “lmPerm”
(v.2.1.0) (61). These analyses were implemented in R and
are available on Github (https://github.com/arnaud00013/SARS_
CoV_2_haplotypes_Tajima_D_2020_time_series/).

4.8. Dimensionality Reduction Techniques
Principal Component Analysis (PCA) was performed on the
first and the second waves high-quality consensus sequences.
Genomic positions with more than 10% of missing samples were
removed from analysis: 247 for the first wave and 6 for the second.
We kept only derived alleles at a position when seen in at least 10
samples, which resulted in a final set of 6,163 mutated positions
for the first wave and 9,818 for the second one. Triallelic and
quadriallelic sites were coded as separate mutations. Missing data
is encoded as reference allele. We used the incremental PCA
method (62).
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